
ar
X

iv
:1

90
5.

08
31

4v
2

 [
cs

.R
O

]
 5

 J
ul

 2
01

9

Longitudinal Dynamic versus Kinematic Models for Car-Following

Control Using Deep Reinforcement Learning

Yuan Lin1, John McPhee2, and Nasser L. Azad3

Abstract— The majority of current studies on autonomous
vehicle control via deep reinforcement learning (DRL) uti-
lize point-mass kinematic models, neglecting vehicle dynamics
which includes acceleration delay and acceleration command
dynamics. The acceleration delay, which results from sensing
and actuation delays, results in delayed execution of the control
inputs. The acceleration command dynamics dictates that the
actual vehicle acceleration does not rise up to the desired
command acceleration instantaneously due to dynamics. In
this work, we investigate the feasibility of applying DRL
controllers trained using vehicle kinematic models to more
realistic driving control with vehicle dynamics. We consider
a particular longitudinal car-following control, i.e., Adaptive
Cruise Control (ACC), problem solved via DRL using a point-
mass kinematic model. When such a controller is applied to
car following with vehicle dynamics, we observe significantly
degraded car-following performance. Therefore, we redesign
the DRL framework to accommodate the acceleration delay and
acceleration command dynamics by adding the delayed control
inputs and the actual vehicle acceleration to the reinforcement
learning environment state, respectively. The training results
show that the redesigned DRL controller results in near-optimal
control performance of car following with vehicle dynamics con-
sidered when compared with dynamic programming solutions.

I. INTRODUCTION

Reinforcement learning is a goal-directed learning-based

method that can be used for control tasks [1]. Reinforcement

learning is formulated as a Markov Decision Process (MDP)

wherein an agent takes an action based on the current

environment state, and receives a reward as the environment

moves to the next state due to the action taken. The goal

of the reinforcement learning agent is to learn a state-action

mapping policy that maximizes the long-term cumulative re-

ward. DRL utilizes deep (multi-layer) neural nets to approx-

imate the optimal state-action policy through trial and error

as the agent interacts with the environment during training

[2]. DRL has found recent breakthroughs as it surpassed

humans in playing board games [3]. DRL is actively evolving

and various algorithms have been developed which include

Deep Q Networks [2], Deep Deterministic Policy Gradient

(DDPG) [4], Distributed Distributional Deterministic Policy

Gradient [5], and Soft Actor Critic [6].

1Dr. Yuan Lin is a Postdoctoral Fellow in the Systems Design Engi-
neering Department at University of Waterloo, Ontario, Canada N2L 3G1.
y428lin@uwaterloo.ca

2Dr. John McPhee is a Professor and Canada Research Chair in the
Systems Design Engineering Department at University of Waterloo, Ontario,
Canada N2L 3G1. mcphee@uwaterloo.ca

3Dr. Nasser L. Azad is an Associate Professor in the Systems Design
Engineering Department at University of Waterloo, Ontario, Canada N2L
3G1. nlashgarianazad@uwaterloo.ca

Connected and automated vehicles have become increas-

ingly popular in academia and industry since DARPA urban

challenge as autonomous driving could potentially become

a reality [7]. Fully autonomous driving is a challenging task

since the transportation traffic can be dynamic, high-speed,

and unpredictable. The Society of Automotive Engineers

has defined multiple levels of automation as we progress

from partial, such as Advanced Driver Assistance Systems

(ADAS), to full automation. Current ADAS include ACC,

lane-keeping assistance, lane-change assistance, emergency

braking assistance, and driver drowsiness detection[8]. Fu-

ture highly automated vehicles shall be able to tackle more

challenging traffic scenarios such as freeway on-ramp merg-

ing, intersection maneuver, and roundabout traversing.

Since DRL has been demonstrated to surpass humans in

certain domains, it could potentially be suited to solve the

challenging tasks in automated driving to achieve superhu-

man performance. Current literature has seen that DRL is

used to tackle various traffic scenarios for automated driving.

In [9], Deep Q-learning is used to guide an autonomous

vehicle to merge to freeway from on-ramp. In [10], [11], [12],

[13], Deep Q Networks and/or DDPG allow an autonomous

vehicle to maneuver through a single intersection while

avoiding collisions. In [14], DRL is used to solve for the

lane change maneuver. Other studies have also used DRL to

train a single agent to handle a variety of driving tasks [15],

[16].

However, all the above-mentioned studies consider point-

mass kinematic models of the vehicle, instead of vehicle

dynamic models wherein acceleration delay and acceler-

ation command dynamics are included. With acceleration

delay, the reinforcement learning action such as the target

acceleration is delayed in time; with acceleration command

dynamics, the actual acceleration does not rise up to the

target acceleration immediately [17]. We acknowledge that

acceleration command dynamics is being considered in a

couple of most recent works that use DRL for vehicle

control. In [18], a longitudinal dynamic model is considered

for predictive speed control using DDPG. In [19], a car-

following controller is developed with acceleration command

dynamics considered using DDPG by learning from natu-

ralistic human-driving data. However, both studies did not

investigate the impact of acceleration delay, which could

degrade the control performance.

Regarding car-following control using DRL, there are

other studies in the literature that have developed such

controllers. In [20], a cooperative car-following controller

is developed using policy gradient with a single-hidden-layer

http://arxiv.org/abs/1905.08314v2

neural net. In [21], [22], human-like car-following controllers

without considering vehicle dynamics are developed using

deterministic policy gradient by learning from naturalistic

human-driving data. To the best of our knowledge, there

is currently no study that utilizes DRL to develop an ACC

controller in simulation (not learning from naturalistic data).

There are studies in the literature that investigate delayed

control inputs in non-deep reinforcement learning. It is

suggested that the delay can negatively influence control

performance if it is not considered in the reinforcement

learning controller development [23]. A few approaches have

been proposed to cope with control delay for reinforcement

learning. In [24], the environment state is augmented by

adding the delayed control inputs, i.e., the actions in the

delay interval which have not been executed, for developing a

vehicle speed controller using reinforcement learning whose

state-action mapping policy is a decision tree instead of

a neural net. In [25], the authors proposed to learn the

underlying dynamic system model so as to use the model

to predict the future state after the delay for the purpose of

determining the current control action. In [26], a memoryless

method that exploits the delay length is proposed to directly

learn the control action from the current environment state

with the state-action mapping policy being a tile coding

function instead of a neural net. There is currently no study

that researches how a deep neural net trained in a no-

control-delay environment responds to control delay. There

is currently no work that develops a DRL controller with

control delay considered.

The contribution of this work is studying the necessity

and methodology of incorporating vehicle dynamics, which

include both acceleration delay and acceleration command

dynamics, in developing DRL controllers for automated

vehicle control. We first investigate whether a DRL agent

trained using vehicle kinematic models could be used for

more realistic control with vehicle dynamics. We consider

a particular car-following scenario wherein the preceding

vehicle maintains a constant speed. As it shows that the

DRL controller trained using a kinematic model causes

significantly degraded performance when vehicle dynamics

exists, we redesign the DRL controller by adding the delayed

control inputs and the actual acceleration to the environment

state [27], [24] to accommodate for vehicle dynamics.

II. CAR-FOLLOWING PROBLEM FORMULATION

In this section, we derive the state-space equations of the

car-following control system so as to (1) understand how

it could fit into the reinforcement learning framework with

state-action mapping, and (2) use dynamic programming

(DP) to compute the global optimal solutions for comparison

with DRL solutions. DP is based on the state-space equations

and checks all permissible state values to search for the

global minimum cost for the control system [28].

We acknowledge that the relatively easy car-following

control problem may preferably be solved using classical

control method instead of DRL which is more capable to

solve more challenging control tasks such as freeway on-

ramp merging. We choose the car-following control problem

here because it can be explicitly modeled to obtain the

state-space equations with which we can use DP to solve

for the guaranteed global optimal solutions for comparison

purposes. The DP solutions are critical because they serve as

benchmarks with which we can evaluate the DRL controllers

trained with either the vehicle dynamic or kinematic model.

The other autonomous driving control tasks such as freeway

on-ramp merging may not be explicitly modeled since they

involve highly complex multi-vehicle interactions.

Fig. 1. Schematic for car following with a constant distance headway.

We consider a simple car-following control problem

wherein a following vehicle i desires to maintain a constant

distance headway dd between itself and its preceding vehicle

i− 1, see Fig. 1. The gap-keeping error dynamic equations

of the car-following control system can be derived as:

e = li−1 − li − bi−1 − dd

ė = vi−1 − vi

ë = ai−1 − ai

(1)

where e is the error between the actual inter-vehicle distance

and the desired distance headway dd , bi−1 is the vehicle

body length of the preceding vehicle i− 1, li−1 and li are

the distances traveled by the preceding and the following

vehicles, respectively, vi−1 and vi are the velocities of the

preceding and following vehicles, respectively, ai−1 and ai

are the actual accelerations of the preceding and the follow-

ing vehicles, respectively. For the state space representation,

we define x1 = e,x2 = ė. Then

ẋ1 = x2

ẋ2 = ai−1 − ai

(2)

Assuming no vehicle-to-vehicle communication, the pre-

ceding vehicle’s acceleration ai−1 is unknown to the fol-

lowing vehicle. As the DRL algorithm used here is Deep

Deterministic Policy Gradient which demands the system to

be deterministic, we only consider preceding vehicle’s speed

to be a constant with ai−1 = 0. In fact, without knowing the

preceding vehicle’s acceleration, the system is not closed and

the exact optimal solution could not be found. We found that

even though the DRL neural nets are trained for this scenario

in which the preceding vehicle has a constant speed, the

trained neural nets could be applied to scenarios when the

preceding vehicle accelerates or decelerates with acceptable

gap-keeping errors. Since the purpose of this paper is to

compare the use of dynamics versus kinematic models for

vehicle control, we do not show such results here.

Now we consider using the vehicle kinematic and dynamic

models for the control. For a point-mass kinematic model, the

following vehicle’s control input ui is exactly the acceleration

ai, i.e., ui = ai. The vehicle integrates and double-integrates

over the control input (acceleration) for velocity and position

updates, respectively. Thus, the state space representation

when using a point-mass kinematic model is

ẋ1 = x2

ẋ2 =−ui

(3)

For a vehicle dynamic model, we adopt a simplified first-

order system for the acceleration command dynamics from

the current literature used for Toyota Prius and Volvo S60

[29], [30], which is shown in Laplace Domain as

Ai(s)

Ui(s)
=

1

τs+ 1
e−φs (4)

where s is the Laplace Transform variable, Ai(s) and Ui(s)
are the Laplace Transforms of ai and ui, respectively, τ
is the time constant of the first-order system, and φ is

the acceleration time delay. In time domain, the first-order

system can be interpreted as

ȧi =
ui(−φ)− ai

τ
(5)

where ui(−φ) denotes that ui is delayed by φ in time.

Introducing another state variable x3 = ai, the state space

representation when using the dynamic model is

ẋ1 = x2

ẋ2 =−x3

ẋ3 =
ui(−φ)− x3

τ

(6)

The control goal is to minimize both the error and control

effort, which is a common goal of classical control methods

such as Linear Quadratic Regulator and Model Predictive

Control. Here we define the absolute-value cost for the car-

following control system as

J =

∫ t f

0
(α

|e|

enmax

+β
|ui|

umax

)dt (7)

where t f is the terminal time, |e| and |ui| denote the absolute

values of the error and control input, respectively, umax is the

allowed maximum of |ui|, enmax is the nominal maximum of

|e|, and α and β are coefficients that satisfy α > 0, β > 0,

and α +β = 1. The α and β values can be adjusted so as

to decide the weighting of minimizing the error over the

control action in the combined cost. The enmax is a nominal

maximum because the gap-keeping error can be very large,

especially during DRL training wherein the vehicle can have

any acceleration behavior before it gets well trained, see the

next section. We choose a sufficiently large enmax to represent

a maximum gap-keeping error of a general car-following

transient state.

As both dynamic programming and reinforcement learning

are based on discrete time, the above continuous-time equa-

tions are discretized using a forward Euler integrator. Note

that the absolute-value cost is different than the quadratic

cost for LQR and MPC. This is because, for DRL, absolute-

value rewards lead to lower steady-state errors [31]. As we

want to compare DRL solutions with DP ones, the DP cost

function needs to be the same as the DRL’s.

III. DEEP REINFORCEMENT LEARNING

ALGORITHM

In this section, we introduce the reinforcement learning

framework and the specific DRL algorithm, DDPG (Deep

Deterministic Policy Gradient), that we use to solve the

above car-following control problem.

A. Reinforcement Learning

As stated in [1], reinforcement learning is learning what

to do, i.e., how to map states to actions, so as to maxi-

mize a numerical cumulative reward. The formulation of

reinforcement learning is a Markov Decision Process. At

each time step t, t = 0,1,2, ...,T , a reinforcement learning

agent receives the environment state st , and on that basis

selects an action at . As a consequence of the action, the

agent receives a numerical reward r(st ,at) and finds itself

in a new state st+1. In reinforcement learning, there are

probability distributions for transitioning from a state to

an action and for the corresponding reward, which are

not illustrated here. The goal in reinforcement learning is

to learn an optimal state-action mapping policy π⋆ that

maximizes the expected cumulative discounted reward R =
E[∑t=T

t=0 γ tr(st ,at)] with E denoting the expectation of the

probabilities. The symbol ⋆ denotes optimality. The Q-value,

i.e., the state-action value, for time step t is defined as the

expected cumulative discounted reward calculated from time

t, i.e., Q(st ,at) = E[∑t=T
t γ tr(st ,at)]. Reinforcement learning

problem is solved using Bellman’s principle of optimality.

That is, if the optimal state-action value for the next time

step is known Q⋆(st+1,at+1), then the optimal state-action

value for the current time step can be solved by taking the

action that maximizes r(st ,at)+Q⋆(st+1,at+1).
The reinforcement learning framework for the car-

following control system is based on the state-space equa-

tions described in the previous section. The action of the

reinforcement learning framework is the control input of

the car-following control system ui,t for time t. The reward

function is the negative value of the discretized absolute-

value cost defined in Equation 7 of the previous section.

r(st ,at) =−α
|et+1|

enmax

−β
|ui,t |

umax

(8)

With this expression, the reward value range is (-inf,0]. We

clip the reward to be in the range [-1,0] to avoid huge bumps

in the gradient update of the policy and Q-value neural

networks of DDPG. The huge bumps in the gradient update

lead to training instability [32].

We consider 4 cases of the reinforcement learning frame-

work as this work compares using dynamic versus kine-

matic models for autonomous vehicle control. For case 1,

a kinematic model is used. Based on Equation 3, only the

gap-keeping error and error rate are sufficient to solve for

the dynamic system. So the environment state vector is

st = [et , ėt] for time step t.

For case 2, only acceleration delay is considered with

no acceleration command dynamics. We consider this in-

termediate case for comparison purposes as well. In fact,

for hybrid electric vehicles such as Toyota Prius [29], the

time constant in the acceleration dynamics equation is small

τ = 0.1s, which means that the vehicle responds to a desired

acceleration very quickly. Also, for pure electric vehicles, the

response is even faster. For such vehicles, the acceleration

command dynamics results in little degradation in the DRL

control performance, as we observed in our simulations.

Therefore, case 2 may represent DRL control for hybrid

and pure electric vehicles. For this case, we define the state

vector as st = [et , ėt ,ui,t−k, ...ui,t−1] with k being the largest

integer such that k ∗∆t ≤ φ with ∆t = 0.1s being one time

step value. This means that we feed into the DRL agent the

past control inputs that haven’t been executed by the control

system due to time delay. We expect the DRL agent to use

these delayed control inputs to solve for the corresponding

system responses that would happen in the future and predict

the next optimal control input ui,t .

For case 3, only acceleration command dynamics is con-

sidered with no acceleration delay φ = 0. For this case, the

time constant is τ = 0.5s, which applies to gas-engine vehi-

cles such as Volvo S60 [30]. We consider this intermediate

case for comparison purposes. According to Equation 6, the

state vector is st = [et , ėt ,ai,t] which includes the error, error

rate, and the actual acceleration of the following vehicle.

TABLE I

CAR-FOLLOWING CONTROL SYSTEM PARAMETER VALUES.

Discrete time step ∆t 0.1s

Nominal max error enmax 10m

Max control input umax 2.6 m/s2

Acceleration delay φ 0.2s

Acceleration command dynamics time constant τ 0.5s

Preceding vehicle constant speed vi−1 30m/s

Following vehicle initial speed vi(t = 0) 27.5m/s

Initial gap-keeping error e(t = 0) 2.5m

For case 4, both acceleration command dynamics and

delay are considered. For this case, the time constant is

also τ = 0.5s for gas-engine vehicles. The state vector is

st = [et , ėt ,ai,t ,ui,t−k, ...ui,t−1]. Table I shows the parameter

values for the car-following control system.

B. Deep Deterministic Policy Gradient

The DRL algorithm that we use is DDPG, which is

exactly the same as proposed in [4]. Here we provide a

brief description of the DDPG algorithm and we encourage

the readers to read the original paper. The DDPG algo-

rithm utilizes two deep neural networks: actor and critic

networks. The actor network is for the state-action mapping

policy µ(st |θ
π) where θ π denotes the actor neural net

weight parameters, and the critic network is for Q-value

function (cumulative discounted reward) Q(st ,at |θ
Q) where

θ Q denotes the critic neural net weight parameters. DDPG

concurrently learns the policy and Q-value function. For

learning the Q-value (Q-learning), the Bellman’s principle

of optimality is followed to minimize the root-mean-squared

loss Lt = r(st ,at)+Q(st+1,µ(st+1|θ
π))−Q(st ,at |θ

Q) using

gradient descent. For learning the policy, gradient ascent is

performed with respect to only the policy parameters θ π to

maximize the Q-value Q(st ,µ(st |θ
π)).

TABLE II

DEEP DETERMINISTIC POLICY GRADIENT PARAMETER VALUES.

Target network update coefficient 0.001

Reward discount factor 0.99

Actor learning rate 0.0001

Critic learning rate 0.001

Experience replay memory size 500000

Mini-batch size 64

Actor Gaussian noise mean 0

Actor Gaussian noise standard deviation 0.02

Target networks are adopted to stabilize training [2]. We

use Gaussian noise for action exploration [18]. Mini-batch

gradient descent is used [4]. Experience replay is used

for stability concerns [2]. Batch normalization is used to

accelerate learning by reducing internal covariant shift [33].

Please see Table II for the DDPG algorithm parameter values.

Fig. 2. Undiscounted episode reward for training with the vehicle kinematic
model.

Both the actor and critic networks are neural nets with

2 hidden layers for all cases. For training with vehicle

kinematics (case 1) and just acceleration command dynamics

(case 3), the neural nets have 64 neurons for each hidden

layer and the training time is 1 million time steps. For

training with control delays (cases 2 and 4), the neural nets

have 128 neurons for each hidden layer and the training time

is 1.5 million time steps. For all cases, the training converges.

Fig. 2 shows the undiscounted episode reward for case 1. The

plots of the undiscounted episode rewards for all the other

cases look similar to that for case 1, and are not shown here.

We use the undiscounted episode reward since it allows us

to track changes for the latter part of the car-following errors

0 5 10 15 20
-3

0

6
(a)

K-DRL
K-DP
K-DRL-delay

0 5 10 15 20
27

30

32

0 5 10 15 20
-3

0

3

0 5 10 15 20
-3

0

6
(b)

K-DRL
K-DP
K-DRL-dynamics

0 5 10 15 20
27

30

32

0 5 10 15 20
-3

0

3

0 5 10 15 20
-3

0

6
(c)

K-DRL
K-DP
K-DRL-delay&dynamics

0 5 10 15 20
27

30

32

0 5 10 15 20
-3

0

3

Fig. 3. Training and testing results for the DRL controller trained using the point-mass kinematic model (K-DRL). Columns (a), (b), and (c) show the
results of testing this DRL controller for car-following control with just acceleration delay (K-DRL-delay), just acceleration command dynamics (K-DRL-
dynamics), and both acceleration delay and command dynamics (K-DRL-delay&dynamics), respectively. The variable e is the gap-keeping error, vi is the
following vehicle’s velocity, and ui is the control input to the following vehicle. Note that the control input is equal to the actual acceleration for the
kinematic model case. The preceding vehicle’s constant speed is vi−1=30m/s which is not shown here.

easily. Note that, with the discount factor, the last reward at

20 seconds (200 time steps) of one episode is discounted

by 0.99200 = 0.134. We use OpenAI Gym [34] for creating

the training environment and Stable Baselines [35] for the

DDPG training.

IV. RESULTS

In this section, the DRL results for the above mentioned

4 cases are presented. We also present the DP results which

are the global optimal solutions for all cases for comparison

purposes. We first present DRL and DP results for the car-

following control with a point-mass kinematic model and

the results of applying this kinematics-model-trained DRL

controller to car-following control with vehicle dynamics,

which are shown in Fig. 3. We then present the results

of our proposed solution to deal with acceleration delay

and acceleration command dynamics by adding the delayed

control inputs and the current actual acceleration to the

environment state, which are shown in Fig. 4. Note that,

the acceleration command dynamics for all related cases is

for gas-engine vehicles with time constant τ = 0.5s.

In Fig. 3, when trained using a point-mass kinematic

model, the DRL agent achieves a near-optimal solution as

compared with DP results, see the blue solid and black

dashed lines. When this DRL controller is applied to car-

following control with just acceleration delay, the car-

following performance is degraded to a small extent. The

gap-keeping error e is able to return to near-zero in the steady

state, see column (a) of Fig. 3. When this DRL controller

is applied to car-following control with just acceleration

command dynamics, the car-following performance is de-

graded to a bigger extent as compared to the delay case.

The gap-keeping error e returns to near-zero in the steady

state in a longer time, see column (b) of Fig. 3. When this

DRL controller is applied to car-following control with both

acceleration delay and command dynamics, the performance

is the worst. Both the transient and steady-state performances

are significantly degraded. The steady-state error e does not

0 5 10 15 20
-3

0

6
(a)

DE-DRL
DE-DP

0 5 10 15 20
27

30

32

0 5 10 15 20
-3

0

3

0 5 10 15 20
-3

0

6
(b)

DY-DRL
DY-DP

0 5 10 15 20
27

30

32

0 5 10 15 20
-3

0

3

0 5 10 15 20
-3

0

6
(c)

DE-DY-DRL
DE-DY-DP

0 5 10 15 20
27

30

32

0 5 10 15 20
-3

0

3

Fig. 4. DRL controller results when trained with just acceleration delay (DE-DRL, column (a)), just acceleration command dynamics (DY-DRL, column
(b)), and both acceleration delay and command dynamics (DE-DY-DRL, column (c)). The variable e is the gap-keeping error, vi is the following vehicle’s
velocity, ui is the control input to the following vehicle, and ai is the actual acceleration of the following vehicle. The preceding vehicle’s constant speed
is vi−1=30m/s which is not shown here.

return to zero and forms a wavy oscillation pattern with the

maximum being 0.73m and the minimum being -0.22m.

The columns (a), (b), and (c) in Fig. 4 show the results

for the redesigned DRL controllers trained with acceleration

delay (case 2), acceleration command dynamics (case 3), and

both acceleration delay and command dynamics (case 4),

respectively. For all these cases, the DRL controllers achieve

near-optimal solutions as compared to the DP ones. Note

that the steady-state gap-keeping errors of the DP solutions

in columns (b) and (c) are around 0.5 meters. This would be

reduced when using a smaller interval to create the evenly

spaced samples of the states for DP, although it takes much

longer time to run.

V. CONCLUSION

By solving a particular car-following control problem

using DRL (deep reinforcement learning), we show that a

DRL controller trained with a point-mass kinematic model

could not be generalized to solve more realistic control

situations with both vehicle acceleration delay and command

dynamics. We added the control inputs that are delayed and

have not been executed, and the actual acceleration of the

vehicle, to the reinforcement learning environment state for

DRL controller development with vehicle dynamics. The

training results show that this approach provides near-optimal

solutions for car-following control with vehicle dynamics.

In this work, the DRL controllers are trained with a fixed

initial condition for all cases. We later trained a DRL

controller with varying initial conditions and observed sim-

ilar significant performance degradation when applying the

kinematic-model-trained DRL controller to practical control

with vehicle dynamics.

When the reinforcement learning environment state is

augmented with the delayed control inputs, the DRL agent

is expected to utilize the delayed control inputs to predict

the system behavior in the future and determine the next

optimal control action. Our results show that the DRL agent

is capable to do so after training, in a near-optimal manner.

However, because the environment state is augmented with

more variables, the neural network size needs to be increased

and more training time is needed, which is the disadvantage.

As stated in the introduction, an alternative method is to

learn the underlying dynamic system separately and use

the learned system to predict the system behavior in the

future after the delay time so as to determine the current

control action [25]. However, this method may not be feasible

for challenging autonomous driving control systems such as

merging control because such systems are subject to many

variations and disturbances due to multi-vehicle interactions.

It may not be easy to develop or learn an accurate model for

such systems.

Future work includes developing a more robust car-

following DRL controller that can be trained with rich

variations of the preceding vehicle’s speed. Another research

direction is to develop DRL controllers with vehicle dy-

namics considered for more challenging autonomous driving

scenarios such as freeway on-ramp merging.

ACKNOWLEDGMENT

The authors would like to thank Toyota, Ontario Centres of

Excellence, and Natural Sciences and Engineering Research

Council of Canada for the support of this work.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[3] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, et al., “Mastering the game of go with deep neural
networks and tree search,” Nature, vol. 529, no. 7587, p. 484, 2016.

[4] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[5] G. Barth-Maron, M. W. Hoffman, D. Budden, W. Dabney, D. Horgan,
A. Muldal, N. Heess, and T. Lillicrap, “Distributed distributional de-
terministic policy gradients,” arXiv preprint arXiv:1804.08617, 2018.

[6] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” arXiv preprint arXiv:1801.01290, 2018.

[7] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark,
J. Dolan, D. Duggins, T. Galatali, C. Geyer, et al., “Autonomous
driving in urban environments: Boss and the urban challenge,” Journal

of Field Robotics, vol. 25, no. 8, pp. 425–466, 2008.

[8] A. Eskandarian, Handbook of intelligent vehicles. Springer London,
2012.

[9] P. Wang and C.-Y. Chan, “Autonomous ramp merge maneuver
based on reinforcement learning with continuous action space,” arXiv

preprint arXiv:1803.09203, 2018.

[10] D. Isele, R. Rahimi, A. Cosgun, K. Subramanian, and K. Fujimura,
“Navigating occluded intersections with autonomous vehicles using
deep reinforcement learning,” in 2018 IEEE International Conference

on Robotics and Automation (ICRA). IEEE, 2018, pp. 2034–2039.

[11] Z. Qiao, K. Muelling, J. M. Dolan, P. Palanisamy, and P. Mudalige,
“Automatically generated curriculum based reinforcement learning for
autonomous vehicles in urban environment,” in 2018 IEEE Intelligent

Vehicles Symposium (IV). IEEE, 2018, pp. 1233–1238.

[12] Z. Qiao, K. Muelling, J. Dolan, P. Palanisamy, and P. Mudalige,
“POMDP and hierarchical options MDP with continuous actions
for autonomous driving at intersections,” in 2018 21st International

Conference on Intelligent Transportation Systems (ITSC). IEEE,
2018, pp. 2377–2382.

[13] C. Li and K. Czarnecki, “Urban driving with multi-objective deep
reinforcement learning,” arXiv preprint arXiv:1811.08586, 2018.

[14] P. Wang, C.-Y. Chan, and A. de La Fortelle, “A reinforcement learning
based approach for automated lane change maneuvers,” in 2018 IEEE

Intelligent Vehicles Symposium (IV). IEEE, 2018, pp. 1379–1384.
[15] P. Wolf, K. Kurzer, T. Wingert, F. Kuhnt, and J. M. Zollner, “Adaptive

behavior generation for autonomous driving using deep reinforcement
learning with compact semantic states,” in 2018 IEEE Intelligent

Vehicles Symposium (IV). IEEE, 2018, pp. 993–1000.
[16] S. Aradi, T. Becsi, and P. Gaspar, “Policy gradient based reinforcement

learning approach for autonomous highway driving,” in 2018 IEEE

Conference on Control Technology and Applications (CCTA). IEEE,
2018, pp. 670–675.

[17] R. N. Jazar, Vehicle dynamics: theory and application. Springer,
2017.

[18] M. Bucchel and A. Knoll, “Deep reinforcement learning for predictive
longitudinal control of automated vehicles,” in 2018 21st International

Conference on Intelligent Transportation Systems (ITSC). IEEE,
2018, pp. 2391–2397.

[19] S. Wei, Y. Zou, T. Zhang, X. Zhang, and W. Wang, “Design and
experimental validation of a cooperative adaptive cruise control system
based on supervised reinforcement learning,” Applied Sciences, vol. 8,
no. 7, p. 1014, 2018.

[20] C. Desjardins and B. Chaib-Draa, “Cooperative adaptive cruise con-
trol: A reinforcement learning approach,” IEEE Transactions on Intel-

ligent Transportation Systems, vol. 12, no. 4, pp. 1248–1260, 2011.
[21] D. Zhao, B. Wang, and D. Liu, “A supervised actor–critic approach for

adaptive cruise control,” Soft Computing, vol. 17, no. 11, pp. 2089–
2099, 2013.

[22] M. Zhu, X. Wang, and Y. Wang, “Human-like autonomous car-
following model with deep reinforcement learning,” Transportation

Research Part C: Emerging Technologies, vol. 97, pp. 348–368, 2018.
[23] E. Schuitema, M. Wisse, T. Ramakers, and P. Jonker, “The design of

leo: a 2d bipedal walking robot for online autonomous reinforcement
learning,” in 2010 IEEE/RSJ International Conference on Intelligent

Robots and Systems. IEEE, 2010, pp. 3238–3243.
[24] T. Hester and P. Stone, “Texplore: real-time sample-efficient reinforce-

ment learning for robots,” Machine learning, vol. 90, no. 3, pp. 385–
429, 2013.

[25] T. J. Walsh, A. Nouri, L. Li, and M. L. Littman, “Learning and
planning in environments with delayed feedback,” Autonomous Agents

and Multi-Agent Systems, vol. 18, no. 1, p. 83, 2009.
[26] E. Schuitema, L. Buşoniu, R. Babuška, and P. Jonker, “Control delay in

reinforcement learning for real-time dynamic systems: a memoryless
approach,” in 2010 IEEE/RSJ International Conference on Intelligent

Robots and Systems. IEEE, 2010, pp. 3226–3231.
[27] K. V. Katsikopoulos and S. E. Engelbrecht, “Markov decision pro-

cesses with delays and asynchronous cost collection,” IEEE transac-

tions on automatic control, vol. 48, no. 4, pp. 568–574, 2003.
[28] D. S. Naidu, Optimal control systems. CRC press, 2002.
[29] J. Ploeg, B. T. Scheepers, E. Van Nunen, N. Van de Wouw, and

H. Nijmeijer, “Design and experimental evaluation of cooperative
adaptive cruise control,” in 2011 14th International IEEE Conference

on Intelligent Transportation Systems (ITSC). IEEE, 2011, pp. 260–
265.

[30] K. Lidstrom, K. Sjoberg, U. Holmberg, J. Andersson, F. Bergh,
M. Bjade, and S. Mak, “A modular CACC system integration and
design,” IEEE Transactions on Intelligent Transportation Systems,
vol. 13, no. 3, pp. 1050–1061, 2012.

[31] J.-M. Engel and R. Babuška, “On-line reinforcement learning for non-
linear motion control: Quadratic and non-quadratic reward functions,”
IFAC Proceedings Volumes, vol. 47, no. 3, pp. 7043–7048, 2014.

[32] H. P. van Hasselt, A. Guez, M. Hessel, V. Mnih, and D. Silver,
“Learning values across many orders of magnitude,” in Advances in

Neural Information Processing Systems, 2016, pp. 4287–4295.
[33] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep

network training by reducing internal covariate shift,” arXiv preprint

arXiv:1502.03167, 2015.
[34] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-

man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint

arXiv:1606.01540, 2016.
[35] A. Hill, A. Raffin, M. Ernestus, A. Gleave, R. Traore, P. Dhari-

wal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Rad-
ford, J. Schulman, S. Sidor, and Y. Wu, “Stable baselines,”
https://github.com/hill-a/stable-baselines, 2018.

https://github.com/hill-a/stable-baselines

	I INTRODUCTION
	II CAR-FOLLOWING PROBLEM FORMULATION
	III DEEP REINFORCEMENT LEARNING ALGORITHM
	III-A Reinforcement Learning
	III-B Deep Deterministic Policy Gradient

	IV RESULTS
	V CONCLUSION
	References

