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Abstract—With the rapid development of smartphone 

applications, real-time and readily available journey planning 

information is becoming an integral part of a public transport 

(PT) system. Smartphones and other mobile devices are 

information sources capable of contributing to “big-data”, and 

while each traveler has specific preference when undertaking a 

trip. The objective of this study is to look at how readily 

available smartphone-based information containing elements 

that might influence the decisions of which trip to select, can be 

personalized. The potential effect of personalized data 

availability for PT users has been investigated by considering 

five key weighted factors: waiting time, travel time, fare cost, 

walking time, and number of transfers. The methodology is 

based on finding the K-shortest path for travelers where the 

value of each link comprises the cost of the five weighted factors 

based on users’ preferences. By incorporating weighted factors, 

users may lean toward the 2
nd

, or 3
rd

, etc., shortest path. A case 

study was conducted to look at five parallel PT routes with 

different journey attributes in the city center of Auckland, New 

Zealand. The results show that the satisfaction of the users 

improves as they achieve their desired trip under optimized 

conditions based on their preferences. 

I. INTRODUCTION 

The wide spread use of smartphone applications will have 

a significant impact on the transformation of future urban 

mobility [1]. In recent years, various smartphone-enabled new 

public transport (PT) systems are springing up across the 

world [2]. With respect to PT systems, Schweiger [3] found 

smartphone applications have increasingly developed to 

provide more comprehensive information to PT travelers 

before and during a trip. Governments increasingly recognize 
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that as computer technology becomes both cheaper and more 

powerful, more Intelligent Transportation System (ITS) 

technologies will be deployed. For instance, the New Zealand 

Transport Agency considers that ITS offers the opportunity to 

take the performance of the transport system to a new level, 

dramatically improving the ability to communicate with 

travellers as well as to resolve operational issues in the 

transport network, and the smart devices, such as the 

smartphone, that many of us carry are a key component of ITS 

technology as a tool for data collation and dissemination [4]. 

Some researchers have found that real-time smartphone 

applications have positive impacts on society overall, creating 

economic, environmental and safety benefits [5].  

This research looks at the opportunities for smartphone 

based guidance to improve the PT traveller’s experience, by 

linking “big-data” by definition, the “extremely large data 

sets that may be analysed computationally to reveal patterns, 

trends, and associations, especially relating to human 

behaviour and interactions” with personal preferences, to 

enable the traveller to select the most desirable service option 

available to them. The objective is to identify a means to 

optimally select best suggestions of best routes to fit an 

individual user, for a display on his/her smartphone. A 

theoretical smartphone application is ‘modelled’ in which the 

user is provided with information of the most suitable 

service/route available, based on the PT attributes of most 

concern to that user. This will provide an understanding of the 

potential benefits which can be achieved through smartphone 

PT guidance. 

II. RELATED LITERATURE 

A. Smartphone Opportunities in Improving PT Services 

There are a lot of opportunities of smartphone applications 

in transportation systems, such as route planning, 

ridesharing/carpooling, traffic safety, parking information 

provision, traffic data collection, and traveler information 

provision [6]. With respect to PT systems, the Global Mass 

Transit Report [7] listed 17 key smartphone applications for 

the transit industry, and a partial list comprising some 44 

cities using smartphones technology for fare payments (e.g., 

mobile-point-sale), in addition to journey information and 

real-time service location information provision. Beyond just 

the basic mechanics of planning and paying for a journey, 

travelers are likely to have preferences over different features 

of a journey, that might even influence their decisions to make 

the journey or not. Commuting, whether by car or PT can be a 

cause of considerable stress. According to Cantwell et al. [8], 

the invasion of personal space and the sense of a lack of 
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control over a situation are key factors in elevated stress levels 

of PT commuters. Smartphones allow PT operators to 

communicate directly with PT users, and importantly, 

information can be received prior to arriving at the stop. With 

smartphone technology travelers might avoid travelling on 

crowded services by accessing information on passenger 

loadings, and minimize negative experiences of unreliable PT 

or enduring long wait times, through accessing real-time 

information. Lai and Chen [9] found that user benefits 

resulting in increased satisfaction can be been shown to, 

in-turn, become operator benefits through passenger 

behavioral intentions and customer loyalty. 

Personalized mobile applications have the potential to not 

only improve the convenience and satisfaction of people who 

choose to use PT, but also to enhance the mobility of those for 

whom driving is not an option. Carmien et al. [10] looked at 

the potential of smartphone applications to enrich the lives of 

people no longer, or not, able to drive, such elderly 

populations and those with developmental or other cognitive 

disabilities, who may be PT dependent. An example of this is 

“iBeacon” technology, used in buses and trolleybuses in 

Bucharest. The iBeacon alerts visually impaired transit users 

via an accompanying smartphone application with a voice 

output on their phone. The voice output advises the passenger 

when their bus is 50-60 meters away. The iBeacon also emits 

if a passenger is waiting for the bus, enabling the passenger to 

locate the correct bus.  The application can be used to plot a 

route across the city. 

In Auckland, New Zealand, Auckland Transport has 

developed two applications to guide PT users. One application 

provides users with journey advice as well as a limited amount 

of real time information. The second application requires the 

user to know their route and to enter their desired stops, in 

order for the application to provide more accurate information 

regarding bus service location. However, as the information is 

presented in two separate applications, it is not easy or quick 

for users to access the information required. From a user’s 

perspective, it would be extremely beneficial if a smartphone, 

or a similar display unit, could provide recommendations as to 

the best movement options based on their personal criteria in 

relation to the specific trip they are making. 

B. PT Attributes 

Each user has varying preferences, and further, every trip 

a user makes has unique requirements depending on its 

purpose. Eboli and Mazzula [11] discussed how the features 

that describe a PT service or journey can be distinguished into 

those that ‘more properly’ describe the service, i.e., as journey 

time, service headway etc., and characteristics that depend 

more on customer preferences, e.g., comfort, (being less easily 

measurable). Estergar-Kiss and Csiszar [12] identified a 

‘framework of aspects’ that might be used to evaluate a “smart 

multimodal journey planner”. Some aspects of a PT trip or 

service will be of concern to both the user and the operator, 

although each party may have different interest in the 

particular trip attribute. This literature review covers 

attributes of a PT service/trip from the users’ point of view. 

 Cost - as the fare cost, may be a factor of generalized 

cost. 

 Availability - being the frequency of the service and 

the duration for which the service is offered. 

 Accessibility - can be determined by its distance, or 

the time taken to access the desired stop/station. Walton and 

Sunseri [13] found New Zealand data indicate a perceived 

reasonable walking distance to access sub-mode of travelling 

to the train station is around 820 meters. 

 Service Connectivity – as a customer’s ease of making 

a transfer from one system, i.e., one PT service provider or 

one mode, to another. Key factors for good service 

connectivity include synchronized schedule, quality transfer 

point information and amenities, pre-journey and en-route 

travelling information, and integrated fare policies with 

convenient collection [14-15]. 

 Information – the ease of finding which services are 

available, how well the services are running and whether, if 

there is a problem how easily an alternative service/route can 

be determined. Verhoef [16] found that information arranged 

by destination, as opposed to being provided by service i.e., 

departure time, enables passengers to better select the right 

service, and greatly reduced the delay resulting from the 

selection of the wrong service by approximately 75%. The 

same study found that using a destination-based structure for 

departure information resulted in less time being required to 

search for a service, by around 40%. 

 Reliability – In a study attempting to capture the 

passenger’s point of view, Eboli and Mazzulla [17] found 

service reliability to be one of the most important attributes for 

PT users when making choice options. On-time performance 

is one of the most common indicators used to measure service 

reliability. 

 Comfort – the passenger’s perception of journey 

comfort includes both in-vehicle physical comfort, and that of 

the ambient conditions on board or at stops. Measures of 

comfort may be made by looking at maximum and mean 

vehicle loadings and seat availability, and Vovsha et al. [18] 

showed that if a passenger has a less than 40% probability of 

getting a seat, he or she feels uncomfortable. Other research 

considers ventilation and air conditioning, cleanliness, 

smoothness of ride and security, either individually or 

collectively or as measures of an overall quality of service 

level. Measured separately, passengers’ perceptions of 

comfort and safety are known to be relevant in their choice of 

PT services. 

 Environmental Impact - Emissions, noise, visual 

pollution, vibration, dust, dirt, odour, waste and the 

consumption of natural resources are aspects of a PT service 

that might impact on the environment. Buehler [19] found 

that even when controlling for dissimilarities in 

socioeconomic factors and land-use form Germans are four 

times more likely to use environmentally friendly transport 

modes that Americans. Currently, being pro-environmental 

may only be a factor influencing a choice between PT or 



  

private vehicle use. In future, and in particular with 

supportive policy changes, the relative environmental impact 

of the particular mode could become a matter of preference for 

the PT user. 

C. Factors Influencing PT Users’ Decisions 

The main choice a traveler has when making a journey is 

what mode he or she uses to get from the origin to the desired 

destination. This is a complex decision, and has been found to 

be a factor of trip characteristics, trip purpose, trip regularity, 

time of trip and the traveler’s demographics such as age, 

gender, and income. A number of other factors have been 

found to be important when considering PT as a mode of 

transport including quality of a PT service, connectivity, fare 

costs, accessibility, and journey distance. Integrated 

multimodal transport systems which were convenient, 

accessible, comfortable, quick, affordable and safe, helped 

individuals view PT as a viable option. Factors influencing PT 

users’ decisions can be categorised into three categories, 

psychological, operational and policy factors. These three 

categories are discussed below. 

 Psychological factors: Psychological factors include 

the public's perception of PT, marketing techniques, habitual 

behaviors and pro-environment behaviors. For many a private 

car is viewed as more flexible, comfortable and convenient 

than PT. The private car is seen to be symbolic of an 

individual's status in society and driving one’s vehicle is 

perceived as being pleasurable. Additionally, car users’ 

underestimate their satisfaction with PT and inaccurately, 

recalling previous satisfaction when using PT resulting in a 

negative attitude towards PT which is difficult to change. 

 Operational factors: Operational factors are typically 

controlled by the PT system operators and include safety, 

reliability, transfer time, information systems for users; fare 

systems and users comfort Personal safety can have a 

significant influence on an individual's route and mode 

choice. This places high importance on the security design 

and operation of transport stations. Stations are where there is 

the crime is most likely to occur when undertaking a PT trip, 

with users having greatest vulnerability at stations. Walking 

and waiting time is perceived as onerous. As such transfer 

penalties are commonly applied in transport modelling, to 

account for users’ negative perception of PT transfers. For 

transfers to become a common part of a PT system, individual 

traveler behavior needs to change. This requires both the 

system to facilitate the change and the motivation of the user 

to make the change. The level of information provided to 

users can significantly alter the users’ experience. 

Information can be provided prior to taking the trip, at the 

terminal, and on-board. Effective information systems, such 

as communicating when travelers need to disembark through 

mean such as smartphone applications, are seen to be 

beneficial for multi-modal trips [20].   

 Policy factors: Policy factors are usually tied to the 

wider transport system and include push and pull strategies, 

legality, economic decisions, personalized travel plans and 

the integration of the different modal systems within the 

transport system. Chowdhury and Ceder [21] identified five 

main categories for integration of a PT system being (1) 

network integration, (2) fare and ticketing integration, (3) 

information integration, (4) physical integration of stations, 

and (5) integrated timed-transfers. When operating in an 

integrated manner, these factors can increase travelers’ 

likelihood of taking PT.  

III. METHODOLOGY 

In traditional smartphone applications, users are given a 

set of paths and might select to sort the paths using given 

attributes, such as travel time (i.e., Google map), and possibly 

with a boundary related to an attribute, such as the maximum 

number of transfers (i.e., Rejseplanen App in Denmark). 

These apps, to some extent, cater passengers’ preferences for 

different PT attributes, but cannot capture the trade-off 

between the various attributes and the stochasticity involved 

with passengers’ preferences across time, space, weather, 

importance, mood, etc. Therefore, a future smartphone 

application should allow for passengers to indicate, at the 

time of a need for a ride, their preferences of different 

attributes and in return to obtain a set of best recommended 

routes/paths. To model this, we propose to use a weighted 

travel cost incorporating various PT attributes, and to use a 

K-shortest path algorithm to determine a set of paths 

adaptable to users’ preferences. To attain this goal, 

passengers’ route choice behaviour is taken also into account 

by developing a transit assignment model based on the 

K-shortest path concept. The overall framework of our 

analytical approach is illustrated in Fig. 1. 

 

Figure 1.  Methodological framework for the analysis. 

From a user’s perspective, a traveller could assess various 

PT-service information provided by the operator and specify 

the relative importance of different attributes of his/her route 

choice decision made via a smartphone. Given these 

parameters, a pathfinding component returns K-shortest path 

options to be displayed on the traveller’s smartphone 

application. Considering passengers’ real-time demand and 

the computational algorithmic effort, we suggest to compute 

the K-shortest path for all OD pairs offline and storing the 

resultant path sets in a database. For the offline computing, 

we could set all attributes equally important or calibrate these 

parameters from survey data. In real-time scenarios, the input 



  

of preferences is used to update the weighted costs of the 

K-shortest path and obtain a new order of best recommended. 

At the same time, the set of best paths is utilized in a transit 

assignment model to predict the usages of PT services upon 

which the operator could implement operational tactics for 

improving the level of service provided. The mathematical 

formulations encapsulated in the analysis framework are 

briefly elaborated as follows. 

A.  Weighted Path Travel Cost 

The weighted path travel cost associated with link ij, 
ijd , 

is defined by  

                               ,m m

ij ij

m

d c ij  ,             (1) 

where m

ijc  is attribute m associated with link ij and m  is the 

weighting parameter applied to attribute m based on users’ 

preferences. The weighted travel cost of path p connecting 

nodes o and d is obtained via 

                         , ,od p od

p ij ij k

ij

d od p P     ,      (2) 

where p

ij  is the path-link incidence matrix. If path p passes 

link ij, 1p

ij  , otherwise 0p

ij  . Although the above 

equation does not explicitly include a variable of representing 

the transfer cost, the transfer cost is captured by adding 

dummy transfer links to the network. 

B. K-Shortest Path 

The K-shortest path algorithm is an extension of the 

Dijkstra shortest path algorithm that allows more than one 

path to be evaluated, finding not only the shortest path, but the 

subsequent shortest paths. The advantage is that additional 

constraints can be factored to find the ‘new’ shortest path, and 

that the user can make an informed decision based on the 

options presented. 

C. Transit Assignment Model 

The following assignment model is proposed. The model 

postulates that the number of passengers on a route depends 

on the services frequency of the first PT service as well as the 

weighted cost of the route,  
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where od

px  denotes the number of passengers travelling on 

path p; 
plf  represents the frequency of the first PT service 

associated with path p; odL   denotes the set of transit lines 

departing from node o; 
od

kP  represents the K-shortest path set 

connecting nodes o and d; 
od

p  is the set of paths that starting 

with the same PT service; 
odg  is the travel demand between 

nodes o and d. 

The assignment model assumes that each passenger has a 

set 
od

p  of attractive paths (based on the K-shortest path 

procedure’s outcome) and boards the first PT vehicle 

associated with these paths. In case the first PT vehicle is 

utilized by more than one path, the passenger is then assigned 

to a path using logit model. That is, this passenger will use the 

first arrived PT vehicle, but will use different transfers than 

the case in which the vehicle won’t be utilized by other paths. 

In the K-shortest path algorithm, the weighted factors are 

associated with an individual user, who uses a smartphone 

application to set his/her preferences. However, for the 

assignment model, an operator is more interested in the 

aggregated flow distribution instead of disaggregated route 

choice. Thus, in line with Nielsen [22], we adopt a simulation 

procedure to generate various passengers’ preferences to 

compute average flows. 

IV. CASE STUDY 

The case study considers the trips between the suburban 

center of New Lynn and Westhaven in Auckland’s city center. 

The most direct route to the site is via Britomart, Auckland’s 

central transport terminal. It is serviced by the western rail 

line, as well as a number of buses including express services. 

A number of connector bus services intersect the direct bus 

route at Point Chevalier providing opportunity for transfers. A 

map of the study area is shown in Fig. 2. 

 

Figure 2.  Auckland case study routes. 

There are five sensible PT travel path options between 

New Lynn and Westhaven. These are outlined below: 

 Path 1: Rail–Walk 

 Path 2: Bus (New Lynn to Britomart)–Walk 

 Path 3: Bus (New Lynn to Point Chevalier)–Bus 

(Point Chevalier to Victoria Park)–Walk 

 Path 4: Bus (New Lynn to Point Chevalier)–Bus 

(Point Chevalier to Westhaven)–Walk 

 Path 4: Bus (New Lynn to Grey Lynn)–Bus (Grey 

Lynn to Westhaven)–Walk.  

Transfers at Victoria Park are not considered as these 

locations are within a 1.2 km walking distance to the final 

destination and as such transfers at stops are considered 

unrealistic. The case study is based on the morning commuter 

peak period. The five variables used to identify travelers’ 

optimal travel route are waiting time, travel time, fare cost, 



  

walking time, and the number of transfers. Average waiting 

time is estimated using half of the headway for services which 

operate with frequencies less than 20 minutes. Where the 

frequencies are greater than 20 minutes the average wait time 

is assumed to be 10 minutes as passengers do not arrive 

randomly if service frequency is low. Travel times are 

calculated based on historical data for the direct route between 

New Lynn and Britomart. Due to time restrictions, data are 

not collected for the alternative routes and as such 

engineering judgement is used to predict the travel times on 

these routes. Fare cost is irrelevant to this case study. The PT 

fares in Auckland are based on fare boundaries irrespective of 

the mode of transport. As such element has minimal bearing 

on traveller’s route choices. 

The base values of the attributes considered are computed 

and shown in Table I, along with the path costs without user’s 

weightings. The weighted path cost varies because of 

allowing for a passenger to specify his/her journey 

preferences. This can be used to identify the most suitable 

route for each user. The following example considers three 

different passengers, one perceives no difference across all the 

five attributes, one considers that fare is more important, and 

one does not like walking. The weighting parameters for the 

three passengers are presented in the left part of Table II. The 

corresponding weighted path costs are shown in the right part 

of the table.  

TABLE I.  BASE VALUES 

 
Waiting Travel Fare Walking Transfer 

Path Cost 

($) 
 

Value 

(mins) 
Value ($) 

Value 

(mins) 
Value ($) Value ($) 

Value 

(mins) 
Value ($) No. Value ($) 

Path 1 5.0 5.0 50 25.00 5.5 10 10 0 0 45.5 

Path 2 2.5 2.5 92 46.00 5.5 10 10 0 0 64.0 

Path 3 10.0 10.0 91 45.50 5.5 12 12 1 1 74.0 

Path 4 17.5 17.5 95 47.50 5.5 3 3 1 1 74.5 

Path 5 17.5 17.5 96 48.00 5.5 3 3 1 1 75.0 

TABLE II.  PATH RECOMMENDATIONS FOR TRAVELERS WITH DIFFERENT PREFERENCES 

 
Value of Weighting Parameters 

 
Weighted Path Cost ($) 

 
Traveler 1 Traveler 2 Traveler 3 Path No. Traveler 1 Traveler 2 Traveler 3 

wait   0.2 0.1 0.1 Path 1 
9.1 7.3 9.6 

travel   0.2 0.1 0.1 Path 2 
12.8 9.2 11.4 

fare   0.2 0.6 0.1 Path 3 
14.8 10.2 13.4 

walk   0.2 0.1 0.6 Path 4 
14.9 10.2 9.0 

Transfer   0.2 0.1 0.1 Path 5 
15.0 10.3 9.0 

Path Recommendation 1,2,3,4,5 1,2,3,4,5 4,5,1,2,3 

 

The results state that Travelers 1 and 2 be recommended to 

use Path 1 as their best route, whilst Path 4 is the best route for 

Traveler 3. Although the path order for Travelers 1 and 2 is 

identical, the cost saving is different; it is measured by the 

difference between the best and the worst options. That is, for 

Travelers 1 and 2 the cost difference between the best and 

worst routes is $5.9 and $3.0, respectively. The larger the gap, 

the higher benefit for the traveler. It highlights the 

significance of the application to improve the users’ 

satisfaction through the awareness of their benefits, based on 

their desired weightings. 

Two scenarios are illustrated for the assignment results. 

The first scenario is without considering the weighted factors 

in which passengers were assigned to the selected path. In the 

second scenario, 1000 passengers’ preferences are simulated. 

In each simulation passengers are assigned to the path 

generated using the weighted path cost. Fig. 3 depicts the 

distribution of passengers’ flows obtained for the two 

scenarios. That is, the flows of Paths 1, 2, and 5 are identical 

for the two scenarios. This is because of all these paths utilize 

one PT service and thus the flows are assigned based on the 

frequency of that service. For Paths 3 and 4, passengers 

transfer to different PT services after boarding the same line 

and thus the flows are distributed using the logit model. For 

the case in which weighted factors are considered, more 

passengers are assigned to Path 4 than Path 3. These results 

imply that more passengers dislike the long walk time 

associated with Path 3 than Path 4 based on the base values of 

Table 3. The simulation results demonstrate that the proposed 

assignment model could reflect passengers’ preference at an 

aggregated level.   



  

 

Figure 3.  Assignment results. 

I. CONCLUSIONS 

The objective of this study is to look at how readily 

available smartphone-based information containing elements 

that might influence the decisions of which trip to select, can 

be personalized. The potential effect of personalized data 

availability for public transport (PT) users has been 

investigated by considering five key weighted factors: wait 

time, travel time, fare cost, walking time, and number of 

transfers. The methodology is based on finding the K-shortest 

path of travelers where the value of each link is comprised of 

the cost of the five weighted factors based on the users’ 

preference. By incorporating weighted factors, user’s 

preference may lean toward the 2nd, or 3rd, etc, shortest path 

compared with the case of not using weighted factors.  

The findings of the case study in Auckland, New Zealand, 

in this research are limited by the consistent fare structure and 

the simplicity of the Auckland PT network. However, the 

analysis did find that applying a weighting based on user’s 

individual preferences significantly reduces the cost of the trip 

and highlighted the optimal route for their needs. The 

smartphone application can significantly improve PT user’s 

satisfaction through providing information that is specific to 

the users’ preferences. This differs to the applications which 

are currently provided as these typically are focused on time 

only and do not consider other attributes which are important 

to PT users.  

Given the technology available, the high use of 

smartphone devices, and the potential for user preferences to 

be taken into account, it is recommended that further research 

consider the following points: 

 Application of the methodology with a stochastic 

shortest and K-shortest path algorithm to understand 

the variance in PT trips that occur in reality and 

incorporate passengers’ risk-aversion attitude in the 

transit assignment model [23]; 

 Extending the options provided to users to cater for 

more real-time elements such as passengers’ load 

profiles and network congestion; 

 Undertaking a case study using more data to ensure 

the adequacy of the methodology; 

 Incorporating the assignment model in the network 

design model. 
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