
Cooperation-Aware Reinforcement Learning
for Merging in Dense Traffic

Maxime Bouton,1 Alireza Nakhaei,2 Kikuo Fujimura,2 and Mykel J. Kochenderfer1

Abstract— Decision making in dense traffic can be chal-
lenging for autonomous vehicles. An autonomous system only
relying on predefined road priorities and considering other
drivers as moving objects will cause the vehicle to freeze and fail
the maneuver. Human drivers leverage the cooperation of other
drivers to avoid such deadlock situations and convince others
to change their behavior. Decision making algorithms must
reason about the interaction with other drivers and anticipate
a broad range of driver behaviors. In this work, we present
a reinforcement learning approach to learn how to interact
with drivers with different cooperation levels. We enhanced the
performance of traditional reinforcement learning algorithms
by maintaining a belief over the level of cooperation of other
drivers. We show that our agent successfully learns how to
navigate a dense merging scenario with less deadlocks than
with online planning methods.

I. INTRODUCTION

Merging into very dense traffic situation is a challenging
task for autonomous vehicles. Some decision making algo-
rithms are overly conservative and sometimes fail to create
a gap in the traffic. Performing a merge maneuver requires
reasoning about the reaction of traffic participants to the
merging vehicle in a short time. When no gap is present
in the traffic, the autonomous vehicle must be proactive in
distinguishing drivers that are willing to slow down and yield
to the merging vehicle.

It has been shown that planning algorithms must consider
interaction and joint collision avoidance models to avoid
deadlock situations also known as the freezing robot prob-
lem [1]. Previous research addressed the issue of interaction-
aware planning by combining a probabilistic interaction model
with an online planner [2]–[5]. Online planners simulate
the environment up to a certain horizon and take actions
that maximize the expected reward of the corresponding
simulated trajectories. These approaches can scale to large
environments and continuous state spaces, but they still
suffer from the curse of dimensionality. The computational
complexity associated with dense traffic scenarios limits the
planning to short time horizons [3], [6] or limit the number
of vehicles considered [4], [5].

The performance of the resulting policies is greatly in-
fluenced by the underlying model used to represent the
environment [7]. Sunberg et al. showed that a significant

*This work was supported by the Honda Research Institute.
1 Maxime Bouton and Mykel J. Kochenderfer are with the Department

of Aeronautics and Astronautics, Stanford University, Stanford CA 94305,
USA, {boutonm,mykel}@stanford.edu.

2 Alireza Nakhaei and Kikuo Fujimura are with the Honda Re-
search Institute, 375 Ravendale Dr., Mountain View, CA 94043, USA,
anakhaei,kfujimura@hra.com.

Ego Vehicle

Non Cooperative Driver

Cooperative Driver

Merge Point

Desired Path

Fig. 1. Example of a merging scenario in dense traffic. Drivers on the main
road have different reactions to the ego vehicle’s motion. Their behavior
continuously spans from cooperative drivers that yield to the merging vehicle
(green cars) or non cooperative drivers that ignore it (red cars). This paper
analyzes how such behavior information can be used in reinforcement
learning.

improvement in performance can be gained when the planning
algorithm has access to information about the driver internal
state in lane changing scenarios. Previous work address the
problem of modeling interactions between traffic participants
using data-driven approaches, probabilistic models, inverse
reinforcement learning, rule-based methods, or game theoretic
frameworks [2], [4], [5], [8], [9]. Inverse reinforcement
learning techniques and game theoretic frameworks are
generally too computationally expensive to be used in an
online planning algorithm considering more than two traffic
participants [5], [9]. Schmerling et al. demonstrated a data-
driven approach to learn the interaction model on a traffic
weaving scenario involving two agents [4]. They leveraged
parallelization to use this model efficiently for online planning.
Such an approach is promising but is not suitable for dense
traffic scenarios where more than two traffic participants are
interacting.

Instead of relying on online planning methods, we pro-
pose to learn an efficient navigation strategy offline, using
reinforcement learning (RL). RL provides a flexibility in the
choice of the interaction model. RL has been applied to a
variety of driving scenarios such as lane changing [10], or
intersection navigation [11], [12].

In this work, we analyze the ability of an RL agent to
benefit from interaction between traffic participants in dense
merging scenarios. We show that deep reinforcement learning
policies can capture interaction patterns when trained in
a variety of different scenarios, even if information about
the driver behavior is not available. This approach is then
combined with a belief updater that explicitly maintains a
probability distribution over the driver cooperation levels.
Simulation results shows that an RL agent using belief
states as input yields better performance than standard RL
techniques as well as an online planning solver. In addition,
we propose a simple rule-based behavior parameterized by

ar
X

iv
:1

90
6.

11
02

1v
1

 [
cs

.R
O

]
 2

6
Ju

n
20

19

a cooperation level to model the reaction of vehicles on the
main lane to the merging vehicle.

The scenario of interest is illustrated in fig. 1. Vehicles on
the main lane have priority over the merging car (in blue).
We focus on dense traffic situation where cars drive slowly
(around 5 m/s) and very close to each other (the gaps can
be below 2 m). The ego vehicle on the merging ramp must
merge into traffic at a given merge point. When the gaps
between vehicles is not sufficient, the merging vehicle can
only merge if vehicles on the main lane agree to yield.

II. BACKGROUND

In this section we introduce background material on
partially observable Markov decision processes and reinforce-
ment learning.

A. Partially Observable Markov decision processes

A partially observable Markov decision process (POMDP)
is defined by the tuple (S,A,O, T,R,O, γ) where S is the
state space, A the action space, O the observation space, T
the transition model, R the reward function, O the observation
model, and γ the discount factor. An agent taking action a ∈
A in state s ∈ S transitions to a next state s′ with probability
T (s, a, s′) = Pr(s′ | s, a) and receives a reward R(s, a, s′).
In a POMDP, the agent does not know the state, instead, it
maintains an internal knowledge of the state through a belief
b such that b(s) represents the probability of being in state
s. The belief is updated at each time step after receiving an
observation o. The observation is related to the state through
the observation model as follows: O(o, s, a) = Pr(o | s, a).

In a POMDP, actions are chosen according to a policy π
mapping beliefs to action. Policies are associated to value
functions Qπ(b, a) representing the expected accumulated
reward when taking action a in belief state b and then
following policy π. The agent seeks to maximize the expected
accumulated discounted reward. Searching for the optimal
value function is often intractable but many algorithms can
compute reasonable approximation of the optimal value
function [13].

B. Reinforcement Learning

In this work, we consider reinforcement learning (RL) as
an approximate planning technique to solve POMDPs. RL re-
stricts the search of policies to functions mapping observations
to actions instead of mapping beliefs to actions. So-called
memoryless policies are often a competitive alternative to
belief state policies for solving POMDPs [14]. Standard RL
makes the underlying assumption that the POMDP is an MDP
of state space O. In this MDP, the optimal value function
satisfies the Bellman equation:

Q∗(o, a) = R(o, a) + γ
∑
o′

T (o, a, o′) max
a

Q∗(o′, a) (1)

In problems with continuous observations, the value
function must be approximated. In this work we use a neural
network to represent the value function. Such procedure is
referred to as deep Q-learning (DQN) [15]. The solution to

eq. (1) can be approximated by the network minimizing the
following loss function:

J(θ) = Eo′ [(r + γmax
a′

Q(o′, a′; θ)−Q(o, a; θ))2] (2)

where θ represents the parameters of the network. Given an
experience sample (o, a, r, o′), the weights are updated as
follows:

θ ← θ + α(r + γmax
a′

Q(o′, a′; θ)−Q(o, a; θ))∇θQ(o, a; θ)

(3)
where α is the learning rate, a hyperparameter of the
algorithm. In practice, experience samples are stored in
a replay buffer after each interaction. The loss function
is optimized over mini-batches sampled from the buffer
regularly during the training. Mini-batches are sampled using
experience replay [16].

III. PROPOSED APPROACH

This section describes the modeling of the merging scenario
as a POMDP. The proposed model is then used as a simulator
for training a reinforcement learning agent using Deep Q
learning.

A. Merging Scenario POMDP

We model the merging scenario as a POMDP with the
following definitions of the states, observations, actions,
reward and transition model.

1) States: The state of a vehicle corresponds to its physical
state as well as its internal state characterizing its behavior.
The physical state of a vehicle corresponds to its distance to
the merge point, its longitudinal velocity, and its acceleration.
In this work, the behavior is characterized by a single
parameter c, the cooperation level, detailed in section III-
B. We let sit = (xit, v

i
t, a

i
t, c

i
t) be the state of vehicle i at time

t. The state of the ego vehicle (the controlled agent), set , does
not contain the behavior parameter. The complete state of the
environment consists of the collection of the individual states
of each vehicle present: st = (set , s

1
t , . . . , s

nt
t) where nt is

the number of vehicles present at time t. Our formulation
does not restrain the number of vehicle considered in the
problem.

2) Observations: The ego vehicle has limited sensing
capabilities. It can only sense the vehicles within a certain
range, and cannot measure internal states of other vehicles.
In this work we do not consider sensor noise. Instead, we
focus on the partial observability introduced by the internal
state governing the behavior of other drivers. To simplify
the observation space, we restrict the observation to the
longitudinal position and velocity of four neighbor cars: the
front neighbor of the ego vehicle, the vehicle right behind
the merge point, the rear neighbor and front neighbor of the
projection of the ego vehicle on the main lane. To project the
ego vehicle on the main lane, we place it at the same distance
to the merge point than its actual position on the merge lane.
The ego vehicle can observe the longitudinal position and
velocity of these four vehicles perfectly if they are in the field
of view. The longitudinal position, speed, and acceleration

a. Before merge point

b. After merge point

Ego Vehicle

Non Cooperative Driver

Cooperative Driver

Observed Vehicles

Ego Vehicle Projection

1. Front neighbor

2. Vehicle behind merge point

3. Front neighbor of projection

4. Rear neighbor of projection

1

23

4

Fig. 2. Illustration of the vehicles observed by the ego vehicle. The
observation vector (or feature vector) contains information on the position
and velocity of the observed vehicles. When less than four vehicles are
observed, redundant information is present in the feature vector to preserve
its dimension. In addition we analyzed cases where the cooperation level of
each observed cars is part of the feature vector.

of the ego car are observed. In addition, we compare the
cases where the internal state is directly observable by the
ego vehicle or not leading to two or three dimensions per
neighbor cars. The total dimension of the observation space
is 15 when the internal states are observed and 12 otherwise.
We will refer to those two cases as RL with full observation
(FO), that can observe the internal state, and standard RL that
only observes positions and velocities. Figure 2 illustrates the
vehicles observed by the ego car. In addition, it can observe
its own state (three dimensions). This observation vector is
used as input to our RL agent.

3) Actions: The ego vehicle controls its motion by applying
a change in acceleration. At each time step, the acceleration
is updated as follows:

at = at+1 + ∆a (4)

where ∆a is the action chosen by the agent in the set
{−1 m/s2,−0.5 m/s2, 0 m/s2, 0.5 m/s2, 1 m/s2}. The agent
can also apply a hard braking action and releasing action
which instantaneously set the acceleration to −4 m/s2 and
0 m/s2 respectively. Hence, the action space is discrete with
7 possible actions at each time step. The design of the action
space is inspired by the work of Hu et al. [17].

4) Reward: The reward function is designed such that
the optimal policy maximizes safety and efficiency. The
agent receives a penalty of −1 for colliding with other traffic
participants and receives a bonuses of 1 for reaching a
goal positions defined 50 m after the merge point. The time
minimization is incentivized by the discount factor, the sooner

the goal is reached, the less the bonus is discounted. We used
a discount factor of 0.95.

5) Transition: Each vehicle follows a one dimensional
point mass dynamics:

xt+1 = xt + vt∆t+
1

2
at∆t

2 (5)

vt+1 = vt + at∆t (6)

where xt is the position of the vehicle at time t, vt its velocity
and at its acceleration. Other drivers in the environment
follows an interactive driver model described in the next
section. In addition, when a vehicle passes the end of the
main lane it is spawned at the beginning of the lane again.
This technique allows to maintain a dense traffic in simulation.

B. Driver Model

To model the behavior of drivers on the main lane,
we propose an extension of the Intelligent Driver Model
(IDM) [18]. Our model controls the longitudinal acceleration
of the vehicle on the main lane while taking into account
merging vehicles. In addition to the IDM parameters, we
introduce a cooperation level c ∈ [0, 1] which is a scalar
parameter controlling the reaction to the merging vehicle
state. c = 1 represents a driver who slows down to yield to
the merging vehicle if she predicts that the merging vehicle
will arrive ahead of time. c = 0 represents a driver who
completely ignores the merging vehicle until it traverses the
merge point and follows standard IDM. We will refer to this
model as Cooperative Intelligent Driver Model (C-IDM).

C-IDM relies on estimating the time to reach the merge
point (TTM) for the car on the main lane (TTMa) and the
car on the merge lane (TTMb) to decide whether the merging
vehicles should be considered or not. Once the time to merge
for both vehicles is estimated, three cases are considered:
• If TTMb < c × TTMa, the vehicle on the main

lane follows IDM by considering the projection of the
merging vehicle on the main lane as its front car.

• If TTMb >= c× TTMa, the vehicle on the main lane
follows standard IDM.

• In the absence of a merging vehicle or far from the
merging vehicle, the C-IDM driver follows the standard
IDM.

Although this model might not represent precisely how
human drivers behave, it provides us with a broad range of
behaviors by adjusting the cooperation level. In this work
we used a simple constant velocity model to estimate the
time to merge. A more sophisticated prediction model can
be used to have more realistic estimates of the TTM . Given
the cooperation level, the driver has a deterministic behavior.
Figure 3 illustrates the situation where a cooperative vehicle
takes into account the merging vehicle.

C. Inferring the Cooperation Level

Since the cooperation level cannot be directly measured,
the ego car maintains a belief on the cooperation level of
the observed drivers. At each time step, the belief is updated

Vehicle following C-IDM

(𝑐 = 1.0)

Merging Vehicle

Other car

Projection of the

merging vehicle

on the main lane Front car

Merge Point

Fig. 3. Illustration of the C-IDM model where a cooperative vehicle (in
green) considers the merging vehicle as its front car instead of the red vehicle
which is the front neighbor used by standard IDM.

using a recursive Bayesian filter given the current observation
of the environment.

In this problem, the position and velocity of other drivers
is assumed to be fully observable whereas the cooperation
level is not always observed. This assumption of mixed
observability can help us reduce the computational cost of the
belief update. The agent only maintains a distribution over
the cooperation level of observed drivers instead of estimating
the full state of the environment. Our simple belief updater, is
acting as if the cooperation level was binary although it can
take a continuous value. The belief at time t is composed of
the fully observable part of the state, ot, and θi for i = 1 . . . n,
where n is the number of observed drivers. θit represents the
probability that vehicle i has a cooperation level of 1. At
time t + 1, the ego vehicle observes ot+1 and updates its
belief on the cooperation level of vehicle i as follows:

θit+1 =
Pr(ot+1 | ot, ci = 1)θit

Pr(ot+1 | ot, ci = 1)θit + Pr(ot+1 | ot, ci = 0)(1− θit)
(7)

Equation (7) consists of simulating forward the previous
state with the two possible hypothesis: ci = 1 and ci = 0
and comparing the outcome with the current observation.
The probability of transitioning from ot to ot+1 given the
cooperation level, is computed by propagating the state
forward using the proposed transition model and assuming
a Gaussian distribution centered around the predicted value
with a standard deviation of 1 m for the positions and 1 m/s
for velocities. Without this addition of noise in the transition
model, the belief would converge after one observation to
θi = 0 or θi = 1 since the two models would be perfectly
distinguishable.

The focus of this work is not to develop an efficient driver
state predictor but rather discuss how this information can
be used by an RL agent. Future work might consider more
complex filtering techniques such as multi-hypothesis filters,
interacting multiple models, or data-driven approaches to
estimate the driver cooperation level from observation [19].
An additional extension is to consider continuous values of
the cooperation level since it is supported by the C-IDM
model.

D. Belief State Reinforcement Learning

Standard reinforcement learning techniques assume that
the underlying environment is an MDP. Latent states such
as driver behavior characteristics are not explicitly inferred
during training. Although memoryless policies can be efficient,
reasoning about latent states can often lead to a significant
improvement [7]. In the merging scenario, knowing which
drivers are more cooperative can help the agent take better
decisions. It is expected that the ego vehicle will only try to
merge in front of cooperative drivers.

In order to learn such a behavior through reinforcement
learning, we propose to use the belief state as input to the
reinforcement learning policy. The resulting algorithm is very
similar to the standard DQN algorithm applied to the belief
MDP. A transition in the belief state MDP can be described
as follows:
• At time step t, the agent has a belief bt−1 and receives

an observation ot
• The new belief bt is computed using eq. (7)
• The agent takes action at = arg maxaQ(bt, a)

The rest of the algorithm is identical to standard DQN.
The input to the network is a vector of dimension 15:

bt = [ot, θ
1
t , . . . , θ

n
t]

where n is the number of observed vehicle, and ot is the
fully observable part of the state (information on position
and velocity), and θit is the probability of driver i being
cooperative. By feeding in the probability on the internal
state, the agent can reason in the belief space rather than in
the observation space. The resulting Q network is combined
with a belief updater at test time to result in a policy robust
to partial observability.

IV. IMPLEMENTATION

This section highlights some important aspects of our
implementation: the RL training procedure and the distribution
of scenarios used during training. Further details can be found
in our code base1

A. Reinforcement Learning Training Procedure

We used a curriculum learning approach to train the agent
by gradually increasing the traffic density. When training an
RL agent in dense traffic directly, the policy converges to a
suboptimal solution which is to stay still in the merge lane
and does not leverage the cooperativeness of other drivers.
Such a policy avoids collisions but fails at achieving the
maneuver. To encourage exploratory actions, we first train
an agent in an environment with sparser traffic (5 to 12
cars). An alternative to curriculum learning is to design the
reward function to incentivize the learning agent to move
forward at each time step. However, a more complex reward
function often requires a lot of parameter tuning . We found
the curriculum learning approach more practical in this work.

The parameters of the DQN algorithm are summarized in
table I. It was implemented using the Flux.jl library [20].

1https://github.com/sisl/AutonomousMerging.jl

https://github.com/sisl/AutonomousMerging.jl

Training one policy took around 40 minutes on three million
examples.

TABLE I
DEEP Q-LEARNING PARAMETERS

Hyperparameter Value

Neural network architecture 2 dense layers of 64 and 32 nodes
Training steps 3× 106

Activation functions Rectified linear units
Replay buffer size 400 k experience samples
Target network update frequency 5 k episodes
Discount factor 0.95
Optimizer Adam
Learning rate 1× 10−4

Prioritized replay [16] α =0.7, β =1× 10−3

Exploration strategy ε greedy
Exploration fraction 0.5
Final ε 0.01

1) Initial State Distribution: To populate the initial state of
the merging scenarios, we used a two step procedure. The first
step consists of sampling the number of vehicles present from
a desired range. We considered two ranges corresponding to
different traffic conditions:
• Mixed traffic: between 5 and 12 cars on the main lane.

The agent will experience both sparse traffic scenarios
and dense traffic scenarios.

• Dense traffic: between 10 and 14 cars on the main lane.
The main lane has a length of 150 m and the vehicles have
a length of 4 m. In dense traffic situations, the gap between
vehicles varies from less than 2 m to larger distances. Once the
number of cars is decided, vehicles are randomly positioned
on the main lane. The initial velocity of each vehicle is drawn
from a Gaussian distribution of mean 5 m/s and a standard
deviation of 1 m/s Finally, the desired velocity of each vehicle
is drawn uniformly from the set: {4 m/s, 5 m/s, 6 m/s} and
their cooperation level is drawn uniformly in the interval
[0, 1]. The desired velocity is used to parameterize the IDM
part of C-IDM.

The second step of the initialization consists of simulating
the initial state for a burn-in time randomly chosen between
10 s and 20 s. During this burn-in time, the ego vehicle is not
present and the vehicles on the main lane follow the C-IDM.
The burn-in time allows the initial state to converge to a more
realistic situation. This approach is loosely inspired by the
work of Wheeler et al. [21].

Such procedure ensures that the learning agent experiences
a variety of situations during training. The design of the
training scenarios is critical to the performance of the RL
agent and will determine the ability of the policy to generalize.
The more variety it experiences during training, the more the
policy can generalize.

V. EXPERIMENTS

To evaluate the ability of our method to use the coopera-
tiveness of other drivers, we compared the performance of
different policies in the merging scenario with dense traffic
(between 10 and 14 cars on the main lane). Each policy is

evaluated in 1000 scenarios with initial states sampled as
described in section IV-A.1. We measured the percentage of
scenarios that ended in collisions (collision rate), the average
time to reach the goal position located 50 m after the merge
point, as well as the number of scenarios ending in time-out
failure. A time-out failure is declared if the ego vehicle has
not reached the goal position after 50 s. Such failure cases
are representative of the robot freezing problem [1].

We compare the following methods:
1) RL without cooperation level information: The first

policy consists of using a standard reinforcement learning
algorithm which can observe position and velocity of the
other vehicle but not their cooperation level. It is referred to
as RL.

2) RL with cooperation level information: This policy is
trained using standard reinforcement learning but has access
to the cooperation level at training and test time. It is referred
to as RL (FO).

3) belief state RL: This policy is trained in the belief MDP.
The input of the policy is the prediction given by the belief
updater. It is referred to as belief RL.

4) MCTS without cooperation level information: This
policy uses the same algorithm as the previous policy but does
not have access to information about the cooperation level.
Instead, it makes an assumption on the driver cooperation
level. We evaluated three different assumptions:
• c = 1: assumes drivers are always cooperative.
• c = 0.5: assumes a cooperation level of 0.5, drivers on

the main lane will react to the merging vehicle only if
it will reach the merge point in twice less time. This
behavior is a middle ground between non cooperative
and cooperative drivers.

• c = 0: assumes drivers are never cooperative. It is
equivalent to assuming that the drivers on the main
lane follows IDM and are blind to the merging vehicle.

5) MCTS with cooperation level information: This policy
is using Monte Carlo tree search. To handle the continuous
state space we used double progressive widening [22]. We
used a computation budget matching the decision frequency
of 0.5 s. The exact model of the environment is used to
produce the tree, and the root node contains all the information
about the cooperation levels. It is referred to as MCTS (FO).
We refer the reader to [13] for background on the MCTS
algorithm.

The first three approaches are offline deep reinforcement
learning algorithms where as the last two are online planning
methods.

VI. RESULTS AND DISCUSSION

An example of behavior learned through RL is illustrated
in fig. 4. The ego vehicle first slows down as it approaches a
dense traffic. Once a cooperative driver is detected (t = 13 s)
the vehicle slowly merges. At t = 18 s the ego vehicle has
merged and follows the traffic on the main lane.

Figure 5 illustrates the performance of the evaluate policy
on a dense traffic scenario. We can see from the percentage
of collisions that MCTS (FO) is the safest policy, followed

𝑡 = 0𝑠
𝑣𝑒𝑔𝑜 = 10𝑚/𝑠

𝑡 = 3𝑠
𝑣𝑒𝑔𝑜 = 4.75𝑚/𝑠

𝑡 = 10𝑠
𝑣𝑒𝑔𝑜 = 4.25𝑚/𝑠

𝑡 = 13𝑠
𝑣𝑒𝑔𝑜 = 1.75𝑚/𝑠

𝑡 = 16𝑠
𝑣𝑒𝑔𝑜 = 3.5𝑚/𝑠

𝑡 = 18𝑠
𝑣𝑒𝑔𝑜 = 4.25𝑚/𝑠

Ego Vehicle Non Cooperative Driver Cooperative Driver Observed Vehicles

Fig. 4. Example of a trajectory when executing the reinforcement learning
policy in dense traffic. The ego vehicle learns to merge in front of cooperative
drivers.

by the belief RL approach. The three other MCTS policies
had a lot of collisions (much larger than 1 %). The RL policy
without access to information on the cooperation level had
2 % collisions at test time and the two other RL policies
performed similarly with around 0.6 %collisions. Previous
works has shown that only relying on deep RL is not sufficient
to achieve safety [12]. The deployment of those policies would
require the addition of a safety mechanism. It is important to
notice that even though they did not have access to the full
state, the RL and belief RL policy have much better safety
performance than the MCTS approaches that did not have
access to this information either.

Regarding the number of time steps to cross, we notice that
the MCTS policy with c = 1 is the most efficient. The policy
is biased towards taking more aggressive actions since it is
assuming that every driver is cooperative. On the contrary,
the MCTS policy assuming that no driver is cooperative
(c = 0) has a very conservative behavior: it takes the longest
time and has the largest number of time-out failures. As
expected MCTS (c = 0.5) has a performance in between the
previous two. The RL policies are more efficient than the
MCTS (FO) policy and have an average time to cross close
to the most aggressive MCTS policy. In addition, we can see
that the RL policies have much fewer time-out failures than
the MCTS policies. This last fact illustrates that they were
able to successfully infer and leverage the information on the
cooperation level.

One can notice that the gap in performance between MCTS
(FO) and the other MCTS is much larger than the gap between
RL and RL (FO). A possible explanation is that the neural
network approximation is able to capture the cooperation level
inference task in the hidden layers. However, this implicit state
estimation is less efficient than the explicit state estimation
provided by combining the belief updater with the RL policy
during training and execution. The belief RL policy has a
similar safety level and takes, on average, a similar number
of steps than the RL policy with perfect observation.

MCTS
(FO)

MCTS
(c=0)

MCTS
(c=1)

MCTS
(c=0.5)

RL
(FO)

RL Belief
RL

0

10

20

30

C
ol

lis
io

ns
(%

)

MCTS
(FO)

MCTS
(c=0)

MCTS
(c=1)

MCTS
(c=0.5)

RL
(FO)

RL Belief
RL

0

20

40

60

80

100

N
um

be
r

of
st

ep
s

MCTS
(FO)

MCTS
(c=0)

MCTS
(c=1)

MCTS
(c=0.5)

RL
(FO)

RL Belief
RL

0

20

40

60

80

tim
e-

ou
t

fa
ilu

re
s

(%
)

Fig. 5. Performance of the different policies on a dense traffic scenario.
Each policy is evaluated on 1000 simulations. The policy MCTS (FO) did
not result in any collisions. A step in the environment corresponds to 0.5 s.
The number of steps corresponds to the average time to reach the goal
position.

MCTS with full observation still presents a significant
number of time-out failures. We believe that relaxing the
computation constraint would have lead to better performance.
Computation is generally the major bottleneck of online
planning algorithms. Our experiments show that the perfor-
mance can be closely matched using offline trained policies
which take a very short time to execute online. However, the
MCTS policy with full observation is safer than the deep
RL equivalent. A direction for future work is to use the RL
policy as a value estimator to guide the search in MCTS.

VII. CONCLUSION

We presented a reinforcement learning approach to the
problem of autonomously merging in dense traffic. Our study
confirms that an autonomous agent can benefit from reasoning
about the interaction with other drivers. We have shown

that an agent trained using deep reinforcement learning can
outperform online planning methods when being exposed to
a broad range of driver behaviors during training. In addition,
we presented a belief state RL procedure that explicitly tries
to estimate the internal state of other drivers. Finally, we
proposed, C-IDM, a simple parametric model capturing a
variety of cooperative behaviors.

Future work involves using more sophisticated techniques
to estimate driver behavior. Other algorithms to learn belief
state policies could be considered, as well as a direct
comparison with online POMDP solvers [3]. Although our
RL agent learned more efficient policies, an online planner
may provide greater robustness. Using deep reinforcement
learning policies to guide the search of a classical planner
may be a promising direction.

REFERENCES

[1] P. Trautman and A. Krause, “Unfreezing the robot: Navigation
in dense, interacting crowds,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2010.

[2] E. Ward, N. Evestedt, D. Axehill, and J. Folkesson, “Prob-
abilistic model for interaction aware planning in merge
scenarios,” IEEE Transactions on Intelligent Vehicles, vol. 2,
no. 2, pp. 133–146, 2017.

[3] C. Hubmann, J. Schulz, G. Xu, D. Althoff, and C. Stiller,
“A belief state planner for interactive merge maneuvers in
congested traffic,” in IEEE International Conference on
Intelligent Transportation Systems (ITSC), 2018.

[4] E. Schmerling, K. Leung, W. Vollprecht, and M. Pavone,
“Multimodal probabilistic model-based planning for human-
robot interaction,” in IEEE International Conference on
Robotics and Automation (ICRA), 2018.

[5] J. F. Fisac, E. Bronstein, E. Stefansson, D. Sadigh, S. S. Sastry,
and A. D. Dragan, “Hierarchical game-theoretic planning for
autonomous vehicles,” in IEEE International Conference on
Robotics and Automation (ICRA), 2019.

[6] S. Bansal, A. Cosgun, A. Nakhaei, and K. Fujimura, “Collab-
orative planning for mixed-autonomy lane merging,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2018.

[7] Z. N. Sunberg, C. J. Ho, and M. J. Kochenderfer, “The
value of inferring the internal state of traffic participants
for autonomous freeway driving,” in American Control
Conference (ACC), 2017.

[8] C. Dong, J. M. Dolan, and B. Litkouhi, “Intention estimation
for ramp merging control in autonomous driving (in review),”
in IEEE Intelligent Vehicles Symposium (IV), 2017.

[9] D. Sadigh, S. Sastry, S. A. Seshia, and A. D. Dragan,
“Planning for autonomous cars that leverage effects on human
actions,” in Robotics: Science and Systems, 2016.

[10] P. Wang, C. Chan, and A. de La Fortelle, “A reinforcement
learning based approach for automated lane change maneu-
vers,” in IEEE Intelligent Vehicles Symposium (IV), 2018.

[11] T. Tram, A. Jansson, R. Grönberg, M. Ali, and J. Sjöberg,
“Learning negotiating behavior between cars in intersections
using deep q-learning,” in IEEE International Conference on
Intelligent Transportation Systems (ITSC), 2018.

[12] M. Bouton, A. Nakhaei, K. Fujimura, and M. J. Kochenderfer,
“Safe reinforcement learning with scene decomposition for
navigating complex urban environments,” in IEEE Intelligent
Vehicles Symposium (IV), 2019.

[13] M. J. Kochenderfer, Decision making under uncertainty:
Theory and application. MIT Press, 2015.

[14] J. Loch and S. P. Singh, “Using eligibility traces to find
the best memoryless policy in partially observable markov
decision processes,” in International Conference on Machine
Learning (ICML), 1998.

[15] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. A. Riedmiller, A. Fidjeland,
G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis,
“Human-level control through deep reinforcement learning,”
vol. 518, no. 7540, pp. 529–533, 2015.

[16] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized
experience replay,” in International Conference on Learning
Representations, 2016.

[17] Y. Hu, A. Nakhaei, M. Tomizuka, and K. Fujimura,
“Interaction-aware decision making with adaptive strategies
under merging scenarios,” ArXiv preprint arXiv:1904.06025,
2019.

[18] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic
states in empirical observations and microscopic simulations,”
Physical review E, vol. 62, no. 2, p. 1805, 2000.

[19] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics.
MIT press, 2005.

[20] M. Innes, “Flux: Elegant machine learning with julia,” Journal
of Open Source Software, 2018.

[21] T. A. Wheeler, M. J. Kochenderfer, and P. Robbel, “Initial
scene configurations for highway traffic propagation,” in
IEEE International Conference on Intelligent Transportation
Systems (ITSC), 2015.

[22] A. Couëtoux, J. Hoock, N. Sokolovska, O. Teytaud, and
N. Bonnard, “Continuous upper confidence trees,” in Learning
and Intelligent Optimization (LION), 2011.

	I Introduction
	II Background
	II-A Partially Observable Markov decision processes
	II-B Reinforcement Learning

	III Proposed Approach
	III-A Merging Scenario POMDP
	III-A.1 States
	III-A.2 Observations
	III-A.3 Actions
	III-A.4 Reward
	III-A.5 Transition

	III-B Driver Model
	III-C Inferring the Cooperation Level
	III-D Belief State Reinforcement Learning

	IV Implementation
	IV-A Reinforcement Learning Training Procedure
	IV-A.1 Initial State Distribution

	V Experiments
	V-.1 RL without cooperation level information
	V-.2 RL with cooperation level information
	V-.3 belief state RL
	V-.4 MCTS without cooperation level information
	V-.5 MCTS with cooperation level information

	VI Results and Discussion
	VII Conclusion

