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Abstract— Current efforts in Advanced Driver Assistant
Systems and Autonomous Driving research target at making
the vehicles more intelligent, in terms of understanding what is
going on and selecting the most appropriate behaviors. A crucial
element of this research is the prediction of the evolution of the
current driving situation with microscopic driver models. In this
paper we present a microscopic driver model with a gradient-
like, simple behavior generation that is fully and concisely
derived from mathematical risk theory. Following this model,
drivers act by estimating the expected, integral future risks
and benefits and by seeking the best instantaneous tradeoff
between these quantities, choosing the immediate action that
reduces the hypothetical risks in the most efficient way. We show
how this model is able to incorporate different risk types and
situation parameters, allowing an extension and generalization
to variable scenarios.

I. INTRODUCTION

Microscopic driver models are widely used to predict the
behavior of traffic participants (TP’s). Especially for current
research in Advanced Driver Assistant Systems (ADAS)
and Autonomous Driving (AD), it is necessary to predict
where the own and the other traffic participants will go
and how they will behave, see [1] for a review. With this
prediction, the likely evolution(s) of the current driving
scene are estimated. In a next step, a risk assessment can
be performed, by estimating the criticality resp. the risk
of the own predicted behavior within the predicted scene.
By systematic variation of the own behavior, appropriate
safe actions can be found as the result of an optimization
process, see [2]–[5] for behavior architectures which follow
this scheme.

Microscopic driver models describe a single traffic par-
ticipants’ behavior with the purpose of predicting the most
likely time course of a scenario as a forward simulation of
the current situation [6], [7]. For example, in the Intelligent
Driver Model (IDM) ( [8] and related work) the longitudinal
velocity adaptation is described by a differential equation
which incentives to drive forward at the same time as
keeping a certain velocity-dependent safety distance to the
vehicle in front. Although very successful for the analysis of
macroscopic traffic flow phenomena, the IDM is a heuristic
approach with lacking systematic derivation from grounded
risk theory. In addition, its applicability to complex scenarios
is rather limited due to the restriction to longitudinal cases
and the consideration of a single risk source. However,
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extensions of the IDM have also been applied for modeling
lane-change scenarios [9] as well as speed adaptation to
curvy roads and in intersections [10].

In [11], the Foresighted Driver Model (FDM) has been
introduced in an attempt to overcome some of the men-
tioned driver model limitations. In the FDM, starting from a
driving scene prediction the expected risks and benefits are
estimated, and the behavior is chosen so as to minimize the
the overall costs, i.e., minimizing the risks and maximizing
the benefits. Risk sources and risk indicators are incorpo-
rated explicitly into the model, describing collision risks by
e.g. classical risk indicators such as the time and distance
of closest encounter between pairs of predicted trajectories.
The explicit modeling of risk sources allowed for a greater
flexibility to generalize across different scenarios, so that
extensions of the FDM were applied on non-longitudinal
driving situations (intersections and entrances), tactical lane
change, overtaking and continuous lateral control [12]. Nev-
ertheless, the single risks were still modeled in a rather
phenomenological way, so that a derivation of a microscopic
driver model from first principles of risk theory remains an
open question.

To address this issue, in this paper we present an extension
of the Foresighted Driver Model approach, termed FDM++,
which starts from the elementary concepts of event probabili-
ties under uncertain conditions, and in combination with the
so-called survival theory [13] derives a microscopic driver
model based on the consideration of risks and benefits from
basic events. The survival theory has already been applied in
the more complex setting of risk maps [14] to driver behavior
planning in a range of different scenarios, so that we consider
it as a good starting point for our approach.

In detail, the main contributions of this paper are:
1) We derive a driver model from a concise theoretical

foundation for the probability of risky events under
uncertainty.

2) We estimate the risk by calculating the probability
when the ego-vehicle will be hit by a critical event.

3) We present scalar integral measures that serve to assess
safety of he expected future of the driving scene,
including its risk.

4) We derive a model for driver behavior which chooses
the current action that minimizes the future integral of
expected risk.

5) We show that the model is open to incorporate different
types of risks and that it is applicable to longitudinal
and lateral scenarios.

6) We derive a novel way of calculating future collision
risks with explicit uncertainty considerations.
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II. RISK MODEL

We follow a classical risk modeling approach, by assuming
that risk is the combination of the probability of a critical
event multiplied by the cost or benefit that incurs when
that event happens (see e.g. [15]). Since the events are
hypothetical (as they may or may not happen in the future),
and since they can happen at any time, risk is the future
cost expectation value resp. the integral of the predicted
event probability over all future times multiplied with the
associated cost of the event at each particular time.

Let us consider a driving scene in which different risky
events e can possibly affect our ego-vehicle (e.g. it can
potentially collide with a series of Ne objects or other
vehicles). Starting at t, for a particular prediction of the scene
evolution along future time t + s, for the time interval of
length ∆t around t+ s and for each event e we then would
have a risk

RFE,e(t+ s; ∆t) := PFE,e(t+ s; t,∆t)Ce[Ie(t+ s)] (1)

given by the event probability PFE,e
1 and the related costs

Ce
2. The total risk is then given by accumulating the risks

for all future time to get the total (i.e., integral) expected
cost,

C(t) =

Ne∑
e=1

∫ ∞
s=0

[RFE,e(t+ s; ∆t)/∆t] ds . (2)

Since this quantity depends on the future scene evolution,
once the total expected cost C(t) can be calculated, safe
driving strategies can be found by analysing the cost changes
under variation of the ego-vehicle predicted trajectory. In
the following sections we therefore proceed to derive C(t)
from the predicted scene evolution and an event-based risk
estimation approach.

For this purpose, we first introduce in section III the
notion of risk indicators and how to deal with different
sources of risk under uncertainties in sensor measurements
and prediction. From the risk indicators, in section IV first
an instantaneous event probability is calculated, which serves
as the basis for the so-called survival function. The survival
function itself then serves to model the future behavioral
uncertainty as well as the probability that a traffic participant
will reach a certain point in the future predicted trajectory. In
section V, using the survival function we then derive integral
risk measures which serve to quantify the criticality as well
as the fitness of purpose of the predicted trajectories. In
section VI, we describe the complete FDM++ model and
in section VII we show exemplary simulations based on the
model.

1FE stands for “First Event”, meaning that PFE,e is the probability that
event e takes place for the first time at t+ s if we start at t. We will come
back to this formulation later in sections IV-B and V-A.

2Ie are the risk indicators resp. the predicted scene parameters relevant
for the cost calculation when event e happens, e.g. the speed, proximity,
angle of impact and masses of the involved vehicles.

III. SOURCES OF RISK AND RISK INDICATORS

In a normal driving scene, several different risk types
can occur, caused by many risk sources with each leading
to one or more possible risk events, with each event e
characterized by the so-called risk indicators Ie. The main
sources of risk are e.g. other traffic participants, and the
risk types can be roughly categorized into collision with
other vehicles (risk indicators proximity, velocity differences,
relative orientations), collision with vulnerable traffic partic-
ipants like pedestrians, collision with road environment, and
risk emanating from driving dynamics and loss of control
(e.g. curve risk with risk indicators curvature, velocity,
friction coefficient, etc.).

The risk indicators are inherently noisy, since they come
either from noisy sensory measurements or they are the result
of the trajectory prediction which comprises an uncertainty
over the future state prediction. Since our target is a driving
model which takes near-optimal behavioral decisions even in
situations with partial sensory and evolution uncertainty, we
introduce minimal models for uncertainty parametrization.

In particular, for the case of collision risks, the uncertainty
in the position of the traffic participants is the most important
factor. Here, as a rough approximation, we model the posi-
tion uncertainty as a 2D Gaussian distribution of the position
probability, around a mean position x̂. This serves both for
the description of the current position, as well as for the
future positions during the prediction of the likely trajectories
of the traffic participants 3. For the current positions of other
TP’s, the Gaussian distributions serve to model the combined
measurement and state evolution uncertainty; for the future
positions they model a mixture between measurement and
estimation uncertainty and further uncertainty propagation
caused by behavioral uncertainty of the other TP’s.

A. Uncertainty over Future Position of Traffic Participants

For simplicity we work in the Frenet frame, separating
longitudinal and lateral positional components relative to the
driving path. For the longitudinal component, for a single
traffic participant we assume its real position to be centered
around x̂(t) according to:

p(x; t) :=
1√

2π σx(t)2
exp

{
−1

2

[x− x̂(t)]2

σx(t)2

}
. (3)

In addition we assume the longitudinal velocity to be also
distributed around a velocity v̂:

p(v; t) :=
1√

2π σv(t)2
exp

{
−1

2

[v − v̂(t)]2

σv(t)2

}
. (4)

For the trajectory prediction from time t into the future
t + s, we then assume the future positions to be centered

3Other distributions, like the Kumaraswamy distribution [16], might be
more accurate in describing future position probabilities e.g. because they
have lower and upper bounds, however Gaussian distributions suffice for
our modeling purpose and are easier for calculations.
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Fig. 1: Prediction of positional uncertainty by Gaussian
spatial distributions for ego and other vehicle (left) and
calculation of collision probability indicator function from
the overlap of the two distributions at a particular point in
time point

around longitudinal future mean positions x̂(t+s) with future
variances σ(t+ s)

p(x; t, s) :=
1√

2π σx(t+ s)2
exp

{
−1

2

[x− x̂(t+ s)]2

σx(t+ s)2

}
.

(5)
The future variance is gained from the consideration that a

vehicle with initial velocity v̂(t) + ∆v(t), will have a future
position x(t + ∆t) + ∆v(t) ∆t, so that for the positional
variance caused by the velocity variance it holds that σx,v(t+
∆t) = σv(t) ∆t.

With a longitudinal velocity variance which increases with
higher mean velocity i.e., σv(t) = αv v̂(t) , for positive
velocities we set

σx,v(t+ s) =

∫ s

0

αv v̂(t+ s) ds = αv [x̂(t+ s)− x̂(t)] (6)

for the longitudinal positional variance increase caused by
the velocity distribution. In addition, at time t we have a
noisy position measurement expressed by a variance σx,p(t)
which adds additional uncertainty. Combining the uncertain-
ties in position from measurement and velocity variation we
then get the future positional uncertainty for the predictions
according to

[σx(t+ s)]2 = [σx,p(t)]
2 + [σx,v(t+ s)]2 , (7)

which we use in Eq. (5). The left side of Fig. 1 schematically
shows the variance increase over prediction time.

B. Prediction of Collision Probability

Considering now two vehicles with longitudinal position
probabilities p(x0) and p(x1), we get that the probability
distribution of their (signed) distance dlong := x1 − x0 is (by
convolution theorem)

p(dlong) :=
1√

2π σ2
dlong

exp

{
−1

2

[dlong − d̂long]
2

σ2
dlong

}
(8)

with
d̂long = x̂1 − x̂0 and σ2

dlong
= σ2

x0
+ σ2

x1
. (9)

The future (i.e. predicted) distance probability distribution
p(dlong; t, s) is calculated likewise using the predicted x̂0(t+
s), x̂1(t+ s) and the σx0(t+ s), σx1(t+ s) from Eq. (7).

The two vehicles will overlap if their distance is smaller
than their physical longitudinal extension, given by dlong,min.

We therefore have that p(dlong) is 1 if |dlong| ≤ dlong,min and 0
elsewhere, so that a risk indicator function for collision by
spatial overlap is given by (see right side of Fig. 1 for an
explanation):

Ilong,coll :=

∫ +dlong,min

−dlong,min

p(dlong) ddlong (10)

Substituting, after some calculations we get

Ilong,coll =
1

2

{
erf

[
dlong,min − d̂long√

2σdlong

]
− erf

[
−dlong,min − d̂long√

2σdlong

]}
.

(11)
In the limiting case dlong,min →∞ or σdlong → 0, it is Ilong,coll →
1 as intuition would tell.

These considerations work for longitudinal settings and
can be extended to scenarios with parallel lanes, as e.g. for
two-lane opposite direction traffic or multilane runways by
introducing a similar probability distribution for the lateral
distance. Starting from general 2D coordinates x and posi-
tion probability distributions p(x), transforming everything
into the path-relative coordinate system we get that p(x)
factorizes multiplicatively into longitudinal and lateral com-
ponents, and so does the 2D overlap probability calculated
from the distributions, leading to Ilong,coll with dlong,min and Ilat,coll

with dlat,min. Finally, we get that

Icoll = Ilong,coll Ilat,coll . (12)

In this way, using predicted positional means and variances
(i.e., x̂(t + s), σx(t + s), etc.), we can calculate the future
2D expected overlap probability in an analytic, cheap way,
using the future positional probability distributions.

For non-longitudinal settings such as intersections and
lane changes, the approach can be generalized to oriented
Gaussian distributions in 2D, without however leading to
analytical solutions but requiring numerical integration to
calculate the overlap probability by means of the distribu-
tion overlap [17]. Collision risks with pedestrians or with
environment structures can be handled in analogous way,
by adaptation of the prediction model parameters for the
positional distributions.

IV. SURVIVAL THEORY

A. Instantaneous Event Probability

Traffic participants get involved in critical events, like
accidents, in a way that correlates with their net instan-
taneous event rate τ−1 ∈ [0, τ−1max ], i.e., the number of
events that occur per unit time interval for a certain type
of situations. In a statistical setting, if situations get more
dangerous, the probability of events resp. the average number
of events per time increases. We therefore have that the
probability of a critical event in the time interval [t, t+ ∆t]
is

PE(t; ∆t) = τ−1[I(t)] ∆t (13)

with I being the situation-related risk indicator function
which increases monotonously with risk and ∆t the mea-
surement time interval length. For example, if we consider



the collision event between two specific vehicles, for I(t) we
use the collision probability function so that I = Icoll from
section III-B.

The instantaneous event rate is then modeled as a simple
nonlinear threshold process where the instantaneous event
rate increases in correlation with the risk indicator function.
All events of the same type of risk, e.g. collision risks
between vehicles, usually share the same risk indicator
function. For τ−1 ∈ [0, τ−1max ] and a risk indicator function
I ∈ [0, 1] like the overlap probability from section III-B, an
increasing instantaneous event rate function with adjustable
slope β is given by

τ−1[I] := τ−1max

[
1− e−β I

1− e−β

]
. (14)

However, for each type of risk, there are different possible
critical events. For example, between an ego vehicle and Ne
other vehicles in the vicinity, by comparing the positions
of the ego vehicle with each other vehicle there are Ne
possible sources of risky events, since the ego vehicle can
collide with each of the other vehicles. Each risk source e has
its own event probability PE,e(t) and its own risk indicator
function Ie(t) with parameters. In the collision risk event
case, these parameters would be the expected mean positions
and position variances of the involved traffic participants.

B. Events over Time: Survival Function

In the previous section, we have seen that a vehicle can be
engaged in any of a large number of possible critical events
e. This leads to event probabilities

PE,e(t; ∆t) = τ−1e [Ie(t)] ∆t . (15)

The probability that the vehicle is not engaged in any of the
events in the next time interval, i.e., that the vehicle survives,
is then given by

PS(t+ ∆t, t) =
∏
e

[1− PE,e(t; ∆t)] (16)

which for sufficiently small PE,e(t; ∆t) (fulfilled for small
time intervals ∆t) amounts to

PS(t; ∆t) ≈ 1−
∑
e

PE,e(t; ∆t) = 1−
∑
e

τ−1e [Ie(t)]︸ ︷︷ ︸
:=τ−1

tot (t)

∆t

(17)
with the total event rate τ−1tot given by the sum of the single
event rates. In short, the vehicle survives if it is not engaged
in one event and not engaged in another event, and so on.

With this in mind, we can calculate the time course of
the surviving probability of a vehicle by repeatedly applying
Eq. (16). Given that it survived until time t with probability
PS(t), we get

PS(t+ ∆t) = [1− τ−1tot (t)∆t]PS(t) . (18)

For small time intervals ∆t → 0 we get by integration the
solution

PS(t+ s) = exp

{
−
∫ s

0

τ−1tot (t+ s′) ds′
}

︸ ︷︷ ︸
:=S(t+s,t)

PS(t) (19)

with the so-called Survival Function S(t + s, t) which
indicates the probability that a vehicle which was ok at time
t has not yet engaged in any event until time t+ s.

If t is the current and s the future time, the survival
function accounts for the probability that a traffic participant
will not get involved in any of the critical events in the
future time course of predicted evolution of a driving scene.
The survival function is always decreasing, from 1 to 0
for s → ∞. However, depending on the occurring risks,
expressed by the predicted, instantaneous event rates as a
function of future time, it might decrease faster and exhibit
steps at particular critical points in time.

V. RISK MEASURES AND SURVIVAL PROBABILITY

A. Probabilities of Predicted Events

The survival function is an account for the time course
of the risk that a vehicle undergoes during the time period
[t, t+s], with s in the range of several seconds. It can be used
for a series of further very useful analyses of the criticality
that a vehicle is exposed to. If we are interested in the overall
probability that a particular critical event e happens exactly at
time t+s in the future, e.g. the collision with a specific other
vehicle, this is equivalent to the fact that the ego-vehicle will
survive until t+ s and then be engaged in this event for the
first time in the time interval of length ∆t around t+ s, so
that

PFE,e(t+ s; t,∆t) = PE,e(t+ s; ∆t)S(t+ s, t) . (20)

This can of course happen over the entire predicted future.
Accumulating the probabilities over all future times we get

PINT,e(t) =

∫ ∞
0

τ−1e [Ie(t+ s)]S(t+ s, t) ds (21)

where we used Eq. (15) in combination with the survival
function from Eq. (19). The gained result is the overall time-
integrated expected probability (starting prediction at t) that
the ego-vehicle will be engaged in the event of risk source
e from t on.

It is a true probability over the risk events, in the sense
that

PINT(t) :=
∑
e

PINT,e(t) = 1 , (22)

i.e. at any moment in time, if we look at all possible events
that the ego-vehicle can potentially be engaged in, over the
entire predicted future, the ego-vehicle will be hit by one of
the events for certain 4.

4Intuitively, this corresponds to the saying: “On the very long run, we
certainly end up dead.”



B. Escape Probability

The normalization leads to an important property of the
approach. We consider an event to be anything disruptive that
can happen in the predicted future which leads to a deviation
from an assumed trajectory, so that the predicted evolution
of the situation becomes invalid. Most of these events are
caused by true risks associated with possible costs, damage,
or injuries. However, a deviation from an assumed trajectory
can also occur by erratic behavior, e.g. some random steering
or acceleration variations, which move the vehicle away
from the assumed path, etc. These are the so-called “escape
events”, for which we reserve the first index e = 0. These
events are of uncertain origin, and we model them by an
“escape rate” τ−10

5.
Then, the probability of escaping over the entire predicted

future of an assumed trajectory is given by

PINT,o(t) = τ−10

∫ ∞
0

S(t+ s, t) ds . (23)

As a consequence, without any further risks, the survival
function S(t+ s, t) decays exponentially with τ−10 , meaning
that trajectory states further in the future are less likely to be
reached, introducing a finite prediction time horizon. Second,
risks which are very close in terms of prediction time have
greater influence, whereas risks further away in the future
are discounted by the survival function. And third, it is
PINT,o(t) = 1−

∑NE
e=1 PINT,e(t), i.e., the probability to escape

is equal to the probability of not getting engaged in any of
the hypothetical future risks.

C. Integral Instantaneous Future Expectations

Using the survival function, we can calculate very useful
trajectory quantifiers by integrating some function over the
entire prediction time interval:

FINT(t) := 〈F (t+s)〉S :=

∫ ∞
0

F (t+s)S(t+s, t) ds . (24)

These serve to quantify expectation values (e.g. costs and
benefits) along a predicted trajectory. The expectation values
take into account the natural prediction horizon given by the
survival function. As an example, if we want to estimate
expected driving benefits, Eq. (24) only integrates them on
the trajectory portion which we are certain to drive 6.

E.g. from Eqs. (21) and (23), we have seen how to
integrate appropriately over the risk rates,

PINT,e(t) = 〈τ−1e [Ie(t+ s)]〉S (25)
PINT,o(t) = 〈τ−10 〉S (26)

which gave us scalar, integral risk event probabilities ∈ [0, 1]
for each risk source, and which are good measures for the
future time-integrated risk given an assumed scene evolution,
as well as the escape probability.

5The term “escape” expresses that the vehicle will as consequence avoid,
i.e., “escape from” all subsequent risks after such an event happens.

6This is a necessary condition for sensible trajectory evaluation statistics,
since an integration without survival function would always scale with
trajectory length and additionally lead to a disproportional weight of
contributions that lie far ahead in the prediction future.

D. Future Expected Risk

We have so far seen how to calculate sensible expectation
values for the probability of critical events. Nevertheless,
risk is not equivalent to event probability. Rather, it is a
combination of the risk event probability PE with its
severity, e.g. given by the incurred cost Ce 7 if the event
happens [18]. This means that an instantaneous risk is given
by

Re(t; ∆t) = τ−1e [Ie(t)]∆t Ce[Ie(t)] := re(t)∆t (27)

with the differential risk (risk per time unit) re. (For sim-
plicity, here we have assumed that the incurred cost depends
on the same state parameters as the event rates.)

The integral expected risk for each event is then given by

RINT,e(t) = 〈re(t+ s)〉S . (28)

The event costs are accumulated by adding them over all
possible events to an overall integral risk

RINT(t) =

Ne∑
e=1

RINT,e(t) , (29)

where the escape events (e = 0) are omitted since they
are not related to a risk event but rather describe deviating
driving behavior that leads to a change in trajectory and
therefore to an avoidance of the following risks (as they do
not lead to any damage, the escape events are considered to
have zero event costs C0 = 0).

E. Future Expected Utility

Similarly to the risk, we can proceed with continuous (i.e.,
non-event driven) driving qualities, such as other costs and
utilities not related to risky events, and which incur during
the driving process. Let us say that there are u different
driving qualities, expressed by cost functions qu. Then we
get that the cost for each driving quality is given by

QINT,u(t) = 〈qu(t+ s)〉S (30)

and, correspondingly, the total driving quality related costs
amount to

QINT(t) =

Nu∑
u=0

QINT,u(t) . (31)

One straightforward example is the transportation gain,
which can be expressed by using the driving distance that
the vehicle is expected to drive under the given risk condi-
tions, i.e., while it keeps “surviving” and driving along the
predicted trajectory. Since the driven distance is gained by
integrating the longitudinal velocity over time, we get

QINT,trans(t) = −mtrans 〈v(t+ s)〉S , (32)

where mtrans is the associated cost benefit in units of money
per traveled distance. The integral term 〈. . . 〉S delivers the
expected distance that the vehicle will continue to drive given
the current risks. The transportation gain has a double effect:

7Typical cost terms for severity are given e.g. by Ce[I] ∝ k0 + k1v20 +
k3(v0 − ve)2, but this is not at the focus of the derivation of this paper.



Without further constraints, it will consider those trajectories
as beneficial which move the vehicle forward as fast and as
long as possible. It leads to a preference of long survival
times resp. slowly decaying survival functions, avoiding risks
that are close ahead in time.

While QINT,trans is useful for nearly all driving scenarios,
some of the driving quality cost factors apply selectively.
E.g. for driver models it is often assumed that there is a
preferred cruising velocity to which drivers adhere in case
of unperturbed driving. This preference can be included by
an additional driving quality cost

QINT,cruise(t) = mcruise 〈||v(t+ s)− vcruise||2〉S . (33)

A speed limit can be enforced in a similar way, by an
asymmetric velocity-dependent cost term. Further useful
driving quality measure include e.g. the penalization of large
accelerations a by

QINT,comfort(t) = mcomfort 〈||a(t+ s)||2〉S . (34)

VI. FDM++: A DRIVER MODEL BASED ON
INSTANTANEOUS FUTURE RISK EXPECTATIONS

A. Combination of Future Expected Risk and Utility

The total driving cost, including all risk sources e and
driving qualities u, is then given by the combination of the
two contributions such that C(t) = RINT(t) + QINT(t) or,
equivalently,

C(t) :=

Ne∑
e=1

〈re(t+ s)〉S +

Nu∑
u=0

〈qu(t+ s)〉S , (35)

given assumed predicted trajectories for all traffic partici-
pants (usually expressed as traffic participants state distribu-
tions with e.g. predicted means and variances as introduced
in section III-A).

The first contribution RINT(t) quantifies the currently (at
time t) predicted risk costs given by the critical, disruptive
events e. The second contribution QINT(t) quantifies the
currently predicted other costs (penalties or benefits) which
are not disruptive, but incur continuously during the traveled
trajectory. These include driving benefits such as Eq. (32),
and can easily be extended to describe general utility or
penalty terms such as cruising speed adaptation, traffic lights
and traffic rule violation fines, driving in potentially risky
areas, targeted cruising velocity as well as driving comfort.

If we look at the total cost Eq. (35) in detail, in com-
bination with the introduced definitions and derivations,
the risk part is exactly the total expected, predicted risk-
related cost formulated in our risk model introduction in
section II, Eq. (2), now expressed and calculated in terms
of microscopic risk indicators Ie, instantaneous event rates
τ−1e , and the survival function S(t+ s, t).

B. FDM++ Costs of Predicted Trajectories

In the following, we combine all derived ingredients
to sketch the full Foresighted Driver Model FDM++. For
notational compactness, we do this for a scenario of an ego-
vehicle with several other vehicles. We remark, however,
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Fig. 2: Top: Speed profiles of a simple longitudinal scenario
where the ego vehicle (green) starts with zero velocity,
accelerates until it reaches its cruising velocity and brakes as
reaction to a car (“other”, red) in front. The risk prediction
first leads to a smooth adaptation of the ego velocity to the
velocity of the frontal car, and then to a foresighted braking.
Comparison with IDM velocity profile (blue line). Bottom:
Scenario snapshots with indicated acceleration / deceleration
pattern.

that it applies analogously to scenarios with other items like
pedestrians, static road elements, traffic signs and signals
by modeling them with their appropriate risk indicator from
section III and instantaneous event rate functions from sec-
tion IV. We start at current time t with a given, predicted
ego-vehicle trajectory.

Trajectory cost estimation
• For each other traffic participant, predict its future state

evolution in terms of probability distributions, described
e.g. by trajectories x̂(t+ s) with variances σx(t+ s) as
introduced in section III-A.

• For each possible risk source e, calculate a risk indicator
function Ie(t+ s) and the corresponding instantaneous
future event rates τ−1e [Ie(t + s)] using the predicted
states.

• With the instantaneous future event rates, calculate
τ−1tot (t+s) and with that the survival function S(t+s, t).

• For each risk event e, calculate the differential risk over
predicted time re(t+ s).

• For each driving quality contribution u, calculate the
differential cost over predicted time qu(t+ s).

• With the survival function, the differential risk and
driving quality costs, calculate the total driving cost
C(t).

C. Driver Behavior as Instantaneous Optimization of Ex-
pected Costs

For behavior evaluation and planning, we assume that we
have a dynamic ego-vehicle forward model with parameters
θ(t) and constraints, which is used to calculate the predicted
trajectory. E.g., longitudinally in addition to constant velocity



prediction we may use a short acceleration or deceleration
step to gain 3 slightly varied trajectories with parameters θ0,
θ1 and θ2.

FDM++ behavior selection
• For ego-vehicle parameters θn variations do:

– Create predicted ego-vehicle trajectories from θn.
– Calculate trajectory cost estimation ⇒ Cn(t).

• Interpolate Cn(t) as a function of θn(t) ⇒ Ĉ(θ, t).
• Choose θ̂ so that θ̂(t) = argminθ[Ĉ(θ, t)] with θ̂ subject

to the ego-vehicle model constraints
• (Optional) Weight θ̂ depending on the magnitude of the

related costs.
• Use the behavior parameter θ̂ to execute, monitor or

recommend an action.
• Advance a time step ∆t and repeat
Usually, for performance reasons the FDM++ loop is

preceded by a preselection step where the algorithm is
restricted to those traffic participants that have a chance to
become relevant for interaction, e.g. by neglecting those that
are to far or not on collision course with the ego vehicle.

The result is a behavior which seeks to instantaneously
adjust its current driving parameter so that its impact on the
future expected costs (in terms of risks and driving qualities)
is optimal. The main rationale is that it is best to concentrate
on the things that can be done immediately, rather than to
expect benefits that lie far ahead in the future. This intuition
is supported by the weighting via the survival function, which
emphasizes the proximal over the distant future.

A full-blown optimization of the ego-vehicle predicted
trajectory space is also feasible, and has been studied in
numerous previous publications related to risk estimation and
risk maps with survival theory, see e.g. [2]. Here, however,
we introduced a simple and computationally cheap model
which nevertheless is able to capture risks that occur during
normal driving situations.

VII. SIMULATIONS

In this section we show exemplary behaviors gained from
the our FDM++ framework. We present a longitudinal frontal
car following scenario, a speed adaptation scenario with two
cars, and an overtaking speed adaptation scenario. The pre-
dicted trajectories of the other vehicles are assumed to have
constant velocity, and we used 3 predicted ego-vehicle trajec-
tories consisting of a short acceleration amax, no acceleration
and a short deceleration amin followed by constant velocity
driving. In all scenarios we use the same parametrization.
Where applicable, we show the corresponding IDM simula-
tion. We used the parameter setting ∆t = 0.1s, T = 1.6s,
s0 = 2m (IDM only), amax = 3m/s2, amin = −3m/s2,
vcruise = 8m/s or variable (IDM and FDM++), τ−10 = 3/s,
τ−1max = 10/s (for collision risks), β = 5, mcruise = 0.001,
mcomfort = 0.0005, σx(t) = 0.5m (longitudinal, all vehicles),
αv = 0.15, dlong,min = 4m, dlat,min = 2m (FDM++ only). For the
variation parameters we used θn ∈ [amax, 0, amin] and created
3 predicted ego-vehicle trajectories with a short acceleration,
zero acceleration and deceleration step followed by constant
velocity to calculate the costs Cn(t).
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Fig. 3: The ego vehicle (green) is located between two other
vehicles which narrow the gap. The frontal vehicle drives
with constant velocity, the other one is far behind the ego
vehicle (t < 2 s). The ego vehicle adjusts its velocity to
the queue velocity at a gap position which minimizes both
frontal and rear risk. At every moment, the FDM++ takes
all relevant risk sources into consideration, estimating the
total risk involved and leading to a reasonable risk-aversive
behavior. Top: Speed profiles. Bottom: Scenario snapshots.

A. Free Cruising and Frontal Vehicle Braking

In this standard scenario, the ego vehicle starts with zero
velocity on a quasi free road, where another vehicle drives
with constant speed (see Fig. 2) at large distance. The
FDM++ causes the ego vehicle to accelerate until it reaches
its cruising velocity of vcruise = 8m/s and then drive with
constant velocity (t = 5 s). Because of the higher velocity of
ego compared to the other frontal car, the ego vehicle starts to
decelerate continuously with decreasing vehicle distance (t =
15 s) because of an increase in the predicted collision risk.
At some point, the ego-vehicle adapts to the same velocity
as the other vehicle velocity, at a speed-dependent distance.
When the frontal vehicle suddenly brakes until a standstill,
the ego vehicle reacts by braking with maximal deceleration.
For comparison, we simulated the same scenario based on
the IDM. The behavior is qualitatively very similar, since
both accelerate to cruising velocity and react to the sudden
changing behavior.

B. Gap adjustment with Aggressive Oncoming Driver

The second scenario is a car following scenario where
the ego vehicle is located between two other vehicles on a
highway (see Fig. 3). The ego vehicle drives with constant
velocity behind the frontal vehicle. A second vehicle ap-
proaches from behind with high constant velocity (t < 2 s).
The ego vehicle now has two sources of risk to react to,
considering the tailgating oncoming car and avoiding a crash
with the frontal leading vehicle. The ego vehicle smoothly
increases its velocity to mitigate the risk from the oncoming
vehicle from behind (t = 6 s). As a consequence, the relative



velocity to the frontal vehicle increases and the ego vehicle
has to find a tradeoff. At (t = 6.5 s), the oncoming vehicle
reduces its velocity to the queue velocity, which relaxes
the situation. The ego vehicle accelerates and takes its new
distance to the frontal vehicle. In this case, the FDM++
considers several risk sources at once to react in a reasonable
way.

C. Narrow Overtaking

The third is an overtaking scenario where the ego ve-
hicle passes a vehicle in front at a small lateral distance,
e.g. caused by a reduced street geometry as in construction
zones. The lateral distance is sufficiently small so that the
positional uncertainty estimation leads to a potential collision
risk. The frontal vehicle is driving with constant velocity
on the neighboring lane when the ego vehicle intends to
overtake. To reduce the risk and the uncertainty of the
lateral distance, the ego vehicle decreases its velocity prior
to passing, until the moment of minimal distance is reached
(at t = 5 s). After passing, it accelerates back to cruising
velocity, see Fig. 4 for 3 speed profiles for different cruising
speed preference. Since the formulation of the FDM++ is
able to incorporate longitudinal as well as lateral risks, it can
be applied to scenarios like crossings, entrances and lateral
passing as shown here in a straightforward way.
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Fig. 4: Overtaking scenario: the ego vehicle (green) overtakes
a car driving another car in front with small lateral distance.
Positional uncertainty in the prediction of the other vehicle
leads to a predicted collision risk which is reduced during
the overtaking process by deceleration. The FDM++ adapts
its behavior accounting for lateral in the same way as for
longitudinal risks. Top: Speed profiles for 3 different cruising
speed preferences. Bottom: Scenario snapshots of the vcruise =
10m/s speed preference.

VIII. SUMMARY AND CONCLUSIONS

Starting from a classical risk definition and a formulation
of probabilistic, disruptive events, we have derived a compact
driver model based on integral expected risk measures.
A driver model then targets to find the behavior which

minimizes these risk measures, finding a tradeoff between
risk and driving benefits.

From its derivation, the model is able to incorporate
different risk types, risk sources and risk events in a single
formulation in a natural way. As shown in the simulations,
this includes scenarios with longitudinal or lateral risks and
several traffic participants. Detailed specification of some of
the models contributions, such as the precise severity cost
functions, as well as detailed parameter analysis are open
for extensions and future investigations.
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