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Abstract— We present a new two-stage pipeline for predicting
frames of traffic scenes where relevant objects can still reliably
be detected. Using a recent video prediction network, we first
generate a sequence of future frames based on past frames. A
second network then enhances these frames in order to make
them appear more realistic. This ensures the quality of the
predicted frames to be sufficient to enable accurate detection
of objects, which is especially important for autonomously
driving cars. To verify this two-stage approach, we conducted
experiments on the Cityscapes dataset. For enhancing, we
trained two image-to-image translation methods based on gen-
erative adversarial networks, one for blind motion deblurring
and one for image super-resolution. All resulting predictions
were quantitatively evaluated using both traditional metrics
and a state-of-the-art object detection network showing that
the enhanced frames appear qualitatively improved. While
the traditional image comparison metrics, i.e., MSE, PSNR,
and SSIM, failed to confirm this visual impression, the object
detection evaluation resembles it well. The best performing
prediction-enhancement pipeline is able to increase the average
precision values for detecting cars by about 9% for each
prediction step, compared to the non-enhanced predictions.

I. INTRODUCTION

Predicting possible future trajectories of objects in traffic
scenes, such as cars and pedestrians, plays an essential role
in anticipatory driving. Only by having knowledge about the
type of object and its possible movement patterns, we are able
to make safe decisions as a human driver. Having predictions
as an additional input to a driver assistance system or an
autonomous driving system would be beneficial to its internal
decision-making process. Such a system could make faster
and possibly more informed decisions regarding the control
of the vehicle, which leads to an increase in safety.

Predicting the future frames of videos of street scenes is
one way to anticipate the movement of objects. However, to
support a system such as an autonomously driving car, the
quality of the predicted frames must be high enough to enable
the reliable detection of relevant objects. Depending on the
identified object, the decision process will vary greatly. State-
of-the-art object detection software produces good results
on real videos of street scenes. Thus, if a prediction looks
as similar to the real data as possible, we can assume that
detecting objects correctly will be easier.

Due to the success of neural networks on a variety of com-
puter vision tasks, we test the capabilities of neural network-
based methods for generating enhanced video predictions that
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Fig. 1. Example predictions of the different prediction-enhancement
pipelines. a: Input Sequence, b: FutureGAN [1], c: DeblurGAN [22]
(transposed convolutions), d: DeblurGAN (NN-upsampling + convolution),
e: SRGAN [24].

allow for the accurate detection of objects. Particularly, we
build on our previous video prediction network, FutureGAN
[1], and predict five future frames of a street scene based
on five input frames. The original results on the Cityscapes
dataset [7] suggest that the network has learned reasonably
good movement representations. However, for complex input
data, such as natural street scenes, the predicted frames suffer
from blurring effects and other unrealistic artifacts. Therefore,
we test several additional methods to enhance the predicted
frames, thus making them appear more realistic, see figure 1
for example predictions. For enhancing, we utilize generative
adversarial networks (GANs) [13]. In order to make the
predictions more realistic and increase object detection results,
we test two different GAN-based methods. The first one is
an image super-resolution approach, the SRGAN [24], and
the second one is a blind motion deblurring approach, the
DeblurGAN [22]. In both cases, the frame enhancement is
treated as an image-to-image translation problem, where
GANs have led to good results.

In this paper, we provide a reliable pipeline for predicting
traffic scenes. To prove the effectiveness of our prediction-
enhancement pipeline, we evaluate all resulting predictions
using the state-of-the-art object detection network YOLOv3
[35]. Our final model is able to produce predictions of
both good visual quality and high detection accuracy. The
average precision (AP) values for the object class "car" can
be increased by about 9% for each prediction step, compared
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to the non-enhanced predictions.

II. RELATED WORK

Ranzato et al. [33] first introduced a baseline for video
prediction using deep neural networks. Since then, the
deep learning-based prediction of future traffic sequences
has become a widely researched topic in computer vision,
especially in the autonomous driving community.

Due to the uncertainty in predicting the future, generating
high-quality predictions of natural traffic scenes is a very
complex task. This is why some approaches simplify this
task and focus on predicting semantic segmentation masks,
rather than generating the pixel values of the frames [28],
[17], [18], [30], [5]. Many of these approaches, as well
as approaches that directly generate the pixel values, use
recurrent neural network structures [8], [27], [10], [37], [23],
[6], [30], [39]. Lotter et al. [27], for example, utilized long
short-term memory (LSTM) [16] units to generate the pixel
values of the frame one time step ahead. Bhattacharjee
et al. [3] generate predictions using a multi-stage GAN that
takes input frames at different scales. Using GANs [4], [1],
[3], or a combination of GANs and recurrent modules [25],
are further common methods to predict video frames of traffic
scenes.

Despite the recent advances in this field, the resulting
frames often lack realism. To make predictions occur more
realistic, others tackled the problem by learning separate
representations for the static and dynamic components of a
video. This is done either by incorporating motion conditions,
such as optical flow information [12], [34], [15], [17], [25], or
by learning sparse features that represent pixel dynamics [26].
Decomposing the video into static and non-static components
allows the network to simply reproduce the values of the
static part for the majority of pixels. Transformations are
then only performed on the non-static pixels. This leads to
the problem of occluded and new objects not being properly
modeled, especially in long-term predictions.

Our approach builds on the idea of enhancing each
prediction directly using a second network. Recently, related
ideas without an application for traffic scenes were introduced
[41], [38]. These approaches use two-stage networks to
first generate subsequent frames from structure and content
conditions, and then refine the frames using temporal signals
or motion dynamics. We, on the other hand, use the learned
motion representations of a GAN-based model to predict a
set of future frames from a set of input frames. We then use a
separate second model, an image-to-image translation GAN,
to eliminate the artifacts and blurring effects caused by the
transformations of the first network.

III. ENHANCEMENT OF PREDICTED VIDEO FRAMES

The methods used in this paper are based on GANs. In an
adversarial setting, a generator network is trained to model
the data distribution of the training data. During training,
a second network, the discriminator, provides feedback to
the generator about the similarity between the modeled and
the observed data distribution. This results in a minimax

game. The discriminator D tries to maximize its score of
correctly classifying the samples it observes as real or fake.
The generator G tries to fool the discriminator by minimizing
the difference of the modeled and the data distribution, i.e.,
by optimizing

min
G

max
D

E
x∼Pr

[log(D(x))] + E
x̃∼Pg

[log(1−D(x̃))] , (1)

where Pr is the data distribution, Pg is the model distribution,
implicitly defined by x̃ = G(z), and z is the input sampled
from a random distribution P (z). During training, this
approach gradually enforces the generator to produce samples
that appear more and more similar to the training data.

However, there are problems with GAN-based approaches.
First, they are hard to train and the highly unstable training
process often leads to non-convergence. Secondly, there is
the mode collapse effect. This means, the generator learns
to fool the discriminator by producing samples of a limited
set of modes, thus produces samples that lack diversity. The
generator fails to sufficiently model the variation in the real
data distribution.

For generating the traffic scene predictions we make use
of our recent GAN-based approach, FutureGAN, that avoids
these problems. We then evaluate how the predictions can be
enhanced in order to improve the object detection results on
the predicted frames. The methods to enhance the predictions
are all based on variants of the conditional GAN (cGAN) [29],
where enhancing is treated as an image-to-image translation
problem. In the following, we describe the approaches used
in this paper in more detail.

A. FutureGAN

To predict the future frames of the traffic sequences, we
use FutureGAN. This network predicts multiple output frames
from a set of input frames. It is trained using the progressively
growing of GANs technique, introduced by Karras et al. [20].
During training, layers are added progressively to both the
generator and the discriminator network to increase the frame
resolution gradually. Many architectures were particularly
designed to overcome the GAN-related training issues, such as
non-convergence and mode collapse [32], [2]. The progressive
growing training strategy helps to further improve the GAN
training. Additionally, the authors used feature normalization
and a Wasserstein GAN with gradient penalty (WGAN-GP)
[14] loss to increase the training stability of the network. For
details on the network structure and architectural design, we
refer the reader to the original paper [1].

B. DeblurGAN

As a first enhancement method, we chose DeblurGAN [22].
DeblurGAN is a blind motion deblurring method based on
cGANs. The DeblurGAN framework treats motion deblurring
as an image-to-image translation problem. Rather than to
estimate a motion kernel, the network is trained to directly
translate the image from a blurry version to an unblurred
one.



The DeblurGAN loss function

L = LGAN + λLX (2)

consists of two components, a WGAN-GP loss term LGAN
and a content loss term LX, with λ as a balancing factor.
The content loss was introduced in addition to the adversarial
loss term to increase the perceptual quality of the generated
images. In contrast to the standard L1 (MAE) or L2 (MSE)
losses, which are based on the differences of the raw pixel
values, this perceptual loss [19] is based on the differences
in feature space. In particular,

LX =
1

Wi,jHi,j

Wi,j∑
x=1

Hi,j∑
y=1

(φi,j(I
S)x,y − φi,j(Gθ(IB))x,y)2

(3)
is the L2 difference between the feature maps of the ground
truth and the deblurred image of a specific layer in the VGG-
19 [36] network, where φi,j is the feature map obtained before
the i-th max-pooling layer and after the j-th convolutional
layer of the VGG-19 network trained on ImageNet [9], and
IS and IB are the sharp ground truth and the blurry predicted
frame. Wi,j and Hi,j are the width and height dimensions
of the feature maps, respectively. In this case, we used the
V GG3,3 convolutional layer, since the general image content
is typically captured in the lower layers of such a network
[40].

The original results of Kopyn et al. [22] show that motion
blur and artifacts similar to those of the FutureGAN street
scene predictions can be removed effectively. After training
DeblurGAN on our data, we observed that the network
generates a checkerboard pattern on the deblurred test images
(cf. Figure 2). Following the findings by Odena et al. [31],
we assume these patterns to be caused by the transposed
convolutional layers in the upsampling part of the generator
network. Transposed convolutions can produce this type of
pattern because of the overlap that occurs when the kernel
sizes are not divisible by the strides. To avoid such undesired
patterns in the deblurred predictions, we designed a different
version of DeblurGAN. We replaced each of the transposed
convolutional layers in the original DeblurGAN architecture
with a nearest-neighbor upsampling layer followed by a
regular convolutional layer. The resulting generator structure
can be seen in Figure 2. For completeness and comparability,
we conducted separate experiments using both DeblurGAN
versions.

C. SRGAN

The second method we used to enhance the frames
predicted by FutureGAN is a GAN-based approach for image
super-resolution, the SRGAN [24]. Image super-resolution
means that a low resolution (LR) image is upsampled to its
high-resolution (HR) version. The SRGAN was designed to
generate HR images of high perceptual quality, which are
upsampled by a factor of 4 from the LR images. An increased
resolution of the traffic scene predictions might also have
positive effects on the object detection results because of the
increased number of details in the high-resolution image.
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Fig. 2. Generator structure of the two different DeblurGAN-based
enhancement architectures. a) Regular structure as introduced by Kopyn
et al. [22]. b) Modified structure according to the suggestions of Odena et al.
[31].



The SRGAN loss is similar to the DeblurGAN loss (cf. Eq.
2). It also contains both an adversarial and a content loss
term. The content loss is defined as in Eq. 3 as the L2

difference of the feature maps of a specific VGG-19 layer. In
image super-resolution, the task is to recover high-frequency
components, therefore Ledig et al. [24] chose a deeper VGG-
19 convolutional layer (V GG5,4) to calculate the content loss.
Similar as for DeblurGAN, the VGG-19 based content loss
was chosen to learn perceptually meaningful representations
for generating images of high visual quality. In the original
experiments, SRGAN was able to recover high-level details
in the images quite well and achieved high human rating
based mean-opinion scores (MOS). For the detailed structure,
we refer the reader to the original paper [24].

IV. EXPERIMENTS AND EVALUATION

To evaluate the different enhancement methods for traffic
scene prediction, the networks were trained on the Cityscapes
dataset [7]. This dataset consists of 30 frame long 16 bit color
videos, which were recorded with a frame rate of 17 fps in
50 different German cities. The training split contains 2975
videos, the test split 1525.

For generating our initial predictions, we first trained
FutureGAN according to the procedure described by Aigner
and Körner [1]. The network was trained to predict five output
frames from five input frames, thus the training and test sets
contained 8924 and 4574 sequences, respectively. To avoid
any overlap between the training and test split for all further
experiments on the enhancement methods, we continued using
only the Cityscapes test split as a database. We separated
the new dataset into an 80:20 train-test split, leading to 3659
training sequences and 915 test sequences. The original input
frames of size 2048× 1024 px were downsampled bicubically
to 128× 128 px in all cases except for the ground truth frames
for the SRGAN experiments, which were downsampled
bicubically to 512× 512 px. All networks are implemented
in either PyTorch or Tensorflow for Python.

The training was performed on a single NVIDIA TITAN
X Pascal GPU with 12 GB of RAM separately for each
network. We used the ADAM optimizer [21] for all networks.
FutureGAN trained for 140 epochs with a gradually decaying
learning rate of initially l = 0.001 and β1 = 0.0. Both
DeblurGAN versions trained for 300 epochs with β1 = 0.5
and an initial learning rate of l = 0.0001 which gradually
decayed to zero after 150 epochs. SRGAN was trained for
10 initialization epochs using the content loss and then for
300 full epochs with a learning rate of 0.0001 and β1 = 0.9.

After training, we evaluated the different prediction meth-
ods on our test split. For the plain predictions, we used the
trained FutureGAN network to generate a set of five future
frames from a set of five input frames. To test the different
enhancement methods, we generated five predictions using
FutureGAN and then enhanced each of the five frames using
the different image-to-image translation networks. In total, we
evaluated four different prediction pipelines: plain FutureGAN
(no enhancement), FutureGAN + DeblurGAN (transposed

convolution), FutureGAN + DeblurGAN (upsample + con-
volution), and FutureGAN + SRGAN. In order to get an
estimate of the inference time that it takes for predicting
five future frames with each of the prediction pipelines, the
following list provides the average values over the whole test
set on an NVIDIA GeForce RTX 2070 GPU with 8 GB of
RAM:

• FutureGAN: 0.011 s
• FutureGAN + DeblurGAN (trconv): 0.019 s
• FutureGAN + DeblurGAN (ups+conv): 0.020 s
• FutureGAN + SRGAN: 0.707 s

The SRGAN needs the most time to generate five predictions,
most likely due to the increased frame size of the outputs.

A. Qualitative Results

Figure 3 shows a qualitative comparison of the prediction
results for two different video sequences. For each of the two
sequences, we display the input frames, the corresponding
ground truth predictions, the prediction results of FutureGAN
without any enhancement, and the results for the three
different enhancement approaches. The differences between
the enhancement methods are clearly visible. When using the
original DeblurGAN architecture to enhance the predicted
frames, the checkerboard pattern mentioned in section III-B
can be seen in Figure 3 d. Using the modified DeblurGAN
with nearest-neighbor upsampling followed by regular convo-
lutional layers reduces this pattern in the enhanced frames. In
general, both DeblurGAN versions lead to an improved object
appearance in all frames. Although there still remain unclear
object boundaries after enhancing the frames, especially the
cars and lane markings appear smoothed and straightened in
comparison to the plain FutureGAN predictions. We further
observed that the DeblurGAN architecture learned to generate
object-specific features, such as the red colored taillights
of cars (see figure 3). In contrast to that, the SRGAN-
enhancement does not seem to produce a more realistic
version of the predictions. The SRGAN learned to add high-
frequency details to the image which do not match the original
details. This effect is probably caused by the content loss
that is calculated with deeper VGG-19 feature maps. Even
though SRGAN also generates object-specific features such
as red taillights, the overall visual quality of the predicted
frames seems best after the enhancement with the modified
DeblurGAN (see Figure 3 e).

B. Quantitative Results: Traditional Metrics

A traditional way to quantitatively evaluate the enhanced
predictions is to calculate image comparison metrics, such
as the mean squared error (MSE), the peak signal-to-noise
ratio (PSNR), and the structural similarity index (SSIM). For
these evaluations, the resulting images are compared with
the ground truth image of size 128× 128 px, except for the
case of SRGAN, where the comparison is on the increased
size of 512× 512 px. The average values over all five frames
are provided in Table I. Additionally, we plotted the trends
of the MSE, PSNR and SSIM values per predicted frame in
figure 4.
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Fig. 3. Prediction results for the Cityscapes test sequences. a: Input, b: Ground Truth, c: FutureGAN [1], d: DeblurGAN [22] (transposed convolutions), e:
DeblurGAN (NN-upsampling + convolution), f: SRGAN [24].
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Fig. 4. Quantitative results per predicted frame for all enhancement methods (DG = DeblurGAN).

TABLE I
AVERAGE RESULTS OVER 5 FRAMES FOR ALL ENHANCEMENT METHODS

(BEST RESULTS IN BOLD)

MSE PSNR SSIM

FutureGAN [1] 0.0252 22.3829 0.6094
DeblurGAN [22] (trconv) 0.0295 21.5902 0.5266
DeblurGAN (ups+conv) 0.0275 21.9507 0.5907
SRGAN [24] 0.0372 20.4893 0.4900

In general, the MSE, PSNR, and SSIM show worse results
the higher the frame number. This was expected since a
higher frame number represents a prediction further into the

future. Looking in detail at the values, the non-enhanced
FutureGAN predictions yield the best values (lower for MSE
and higher for PSNR and SSIM). Enhancing the predictions
using the modified DeblurGAN version (see Figure 2 b) gives
the second best results for all three metrics. When comparing
the results of these traditional metrics, they seem contrary to
the visual impression of the frames in figure 3. The traditional
metrics can apparently not represent the human perception
of improvement. Figure 3 shows this, when comparing the
plain FutureGAN predictions (see Figure 3 c) to the enhanced
predictions of the modified DeblurGAN (see Figure 3 e).

C. Quantitative Results: Object Detection

To quantify the perceived visual improvement of the
enhancement methods, especially also in the context of traffic
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Fig. 5. Object detection results of YOLOv3 [35] from different video sequences at the five different time steps. a: Ground truth, b: plain FutureGAN [1],
c: DeblurGAN [22] (upsample+convolution) enhanced prediction.

scene prediction, we evaluated the images using a state-of-
the-art object detection network, YOLOv3 [35]. The network
outputs bounding boxes and corresponding class labels. For
evaluating the precision and recall of the object detection
we take the detections on the ground truth frames as ground
truth bounding boxes. This means the evaluation is relative
with respect to the detection results of the algorithm on the
ground truth images.

Figure 5 shows the qualitative results of the object detection
network for four images. For brevity, we now only show
the best performing enhancement method, the modified
DeblurGAN (upsample + convolution), the plain FutureGAN
predictions, and the ground truth frames. In these examples,
one can see that, especially for the object class "car", the
number of detections increases for the enhanced predictions
in comparison with the non-enhanced predictions. However,
the object detection network has problems detecting the class
"person" in the enhanced images. An example of this is also
shown in figure 5.

Since the class "car" is by far the most common class
in our dataset, we specifically look at the average precision
(AP) values of this class. We calculate the AP as defined
in [11] with an IoU threshold of 50% counting as correctly
detected. Figure 6 shows the development of the values per
predicted frame for each of the prediction methods. For
all methods, the general trend is a declining AP for an
increased number of prediction steps, but the slow decrease
suggests that cars are preserved well in the predicted frames.
Additionally, the qualitatively best performing enhancement
method, DeblurGAN (upsample + convolution), shows the
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Fig. 6. Average precision of the class "car" per predicted frame for all
enhancement methods (DG = DeblurGAN).

highest AP values for all five frames, which confirms the
visual impression of the results. The SRGAN enhancement
exhibits the lowest values throughout, which is also in
accordance with the visual impression of the prediction
results.

V. CONCLUSIONS AND DISCUSSION

In this paper, we evaluated the capabilities of GAN-based
methods, SRGAN and DeblurGAN, to enhance video frame
predictions of another generative model, FutureGAN. While,
in general, motion representations and the difference between
the movement of foreground and background objects are



learned by FuturGAN, the predictions suffer from blurring
effects on the moving objects, leading to irregular shapes and
over-smoothed object details. In order to correct these effects,
we used established image-to-image translation models to
generate enhanced versions of the predicted frames. The
networks were trained on the Cityscapes dataset to use
them for traffic scene prediction. We evaluated the different
enhancement methods especially regarding their positive
effects on object detection results, using a state-of-the-art
object detector, the YOLOv3.

The visual quality of the enhanced predictions varies
greatly between the enhancement methods. DeblurGAN
shows a straightening effect, especially on car shapes and
lane markings, leading to visually more realistic results.
Additionally, the network learns to include object-specific
features such as car taillights, which initially were averaged
out in the prediction results of FutureGAN. In contrast,
SRGAN mainly learns to add high-frequency features to
the enhanced image, which results in unrealistic edges and
patterns in the objects. These differences are most likely
caused by the different content losses of DeblurGAN and
SRGAN. While both networks use a very similar approach to
calculate the content loss, DeblurGAN uses an earlier VGG-
19 layer, SRGAN uses a deeper layer. With the low frame
resolution in mind, a lower VGG-19 layer might be better
for capturing the general content of the image.

We evaluated the enhanced frame predictions using tradi-
tional image comparison metrics, but they failed to resemble
the visual impression and showed no improvement for
any of the enhancement methods. The evaluation of the
object detection capabilities with YOLOv3, on the other
hand, confirms the visual impression. The enhancement
method that produced the qualitatively best predictions,
DeblurGAN (upsample + convolution), yielded the best
detection performance. Even though pedestrians got over-
smoothed by the enhancement network, possibly due to
the low resolution of the images or the small number of
training examples, the positive enhancement effect on cars is
substantial. The average precision for detecting cars could be
increased significantly in the enhanced predictions compared
with the regular predictions. This verifies the application of
image-to-image translation models for enhancing predictions
of traffic scenes.

REFERENCES

[1] S. Aigner and M. Körner. FutureGAN: Anticipating the Future
Frames of Video Sequences using Spatio-Temporal 3d Convolutions
in Progressively Growing GANs. The International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences
(ISPRS), XLII-2/W16:3–11, 2019.

[2] M. Arjovsky, S. Chitala, and L. Bottou. Wasserstein Generative
Adversarial Networks. In ICML, volume 70, pages 214–223, 2017.

[3] P. Bhattacharjee and S. Das. Temporal Coherency based Criteria
for Predicting Video Frames using Deep Multi-stage Generative
Adversarial Networks. In NeurIPS. 2017.

[4] P. Bhattacharjee and S. Das. Context Graph based Video Frame
Prediction using Locally Guided Objective. In ECCV: Workshop on
Anticipating Human Behavior, 2018.

[5] A. Bhattacharyya, M. Fritz, and B. Schiele. Bayesian Prediction of
Future Street Scenes using Synthetic Likelihoods. In ICLR, 2019.

[6] W. Byeon, Q. Wang, R. K. Srivastava, and P. Koumoutsakos. Fully
Context-Aware Video Prediction. In ECCV, 2018.

[7] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benen-
son, U. Franke, S. Roth, and B. Schiele. The Cityscapes Dataset for
Semantic Urban Scene Understanding. In CVPR, pages 3213–3223,
2016.

[8] B. De Brabandere, X. Jia, T. Tuytelaars, and L. Van Gool. Dynamic
Filter Networks. In NeurIPS. 2016.

[9] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet:
A Large-Scale Hierarchical Image Database. In CVPR, pages 248–255,
2009.

[10] N. Elsayed, A. S. Maida, and M. Bayoumi. Reduced-Gate Convolu-
tional LSTM Using Predictive Coding for Spatiotemporal Prediction.
CoRR, abs/1810.07251, 2018.

[11] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisser-
man. The Pascal Visual Object Classes (VOC) Challenge. International
Journal of Computer Vision, 88(2):303–338, 2010.

[12] H. Gao, H. Xu, Q.-Z. Cai, R. Wang, F. Yu, and T. Darrell. Disen-
tangling Propagation and Generation for Video Prediction. CoRR,
abs/1812.00452, 2018.

[13] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative Adversarial Networks.
In NeurIPS, pages 2672–2680, 2014.

[14] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville.
Improved Training of Wasserstein GANs. In NeurIPS, pages 5767–
5777, 2017.

[15] Z. Hao, X. Huang, and S. Belongie. Controllable Video Generation
with Sparse Trajectories. In CVPR, 2018.

[16] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural
Computation, 9(8):1735–1780, November 1997.

[17] X. Jin, X. Li, H. Xiao, X. Shen, Z. Lin, J. Yang, Y. Chen, J. Dong,
L. Liu, Z. Jie, J. Feng, and S. Yan. Video Scene Parsing With Predictive
Feature Learning. In ICCV, 2017.

[18] X. Jin, H. Xiao, X. Shen, J. Yang, Z. Lin, Y. Chen, Z. Jie, J. Feng,
and S. Yan. Predicting Scene Parsing and Motion Dynamics in the
Future. In NeurIPS. 2017.

[19] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual Losses for Real-Time
Style Transfer and Super-Resolution. In ECCV, 2016.

[20] T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive Growing of
GANs for Improved Quality, Stability, and Variation. In ICLR, 2018.

[21] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization,
2015.

[22] O. Kopyn, V. Budzan, M. Mykhailych, D. Mishkin, and J. Matas.
DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial
Networks. In CVPR, 2018.

[23] A. R. Kosiorek, H. Kim, I. Posner, and Y. W. Teh. Sequential Attend,
Infer, Repeat: Generative Modelling of Moving Objects. In NeurIPS.
2018.

[24] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi. Photo-Realistic Sin-
gle Image Super-Resolution Using a Generative Adversarial Network.
In CVPR, 2016.

[25] X. Liang, L. Lee, W. Dai, and E. P. Xing. Dual Motion GAN for
Future-Flow Embedded Video Prediction. In ICCV, 2017.

[26] W. Liu, A. Sharma, O. Camps, and M. Sznaier. DYAN: A Dynamical
Atoms-Based Network For Video Prediction. In ECCV, 2018.

[27] W. Lotter, G. Kreiman, and D. Cox. Deep Predictive Coding Networks
for Video Prediction and Unsupervised Learning. In ICLR, 2017.

[28] P. Luc, N. Neverova, C. Couprie, j. Verbeek, and Y. LeCun. Predicting
Deeper Into the Future of Semantic Segmentation. In ICCV, 2017.

[29] M. Mirza and S. Osindero. Conditional Generative Adversarial Nets.
CoRR, abs/1411.1784, 2014.

[30] S. S. Nabavi, M. Rochan, and Y. Wang. Future Semantic Segmentation
with Convolutional LSTM. In BMVC, 2018.

[31] A. Odena, V. Dumoulin, and C. Olah. Deconvolution and Checkerboard
Artifacts. Distill, 2016.

[32] A. Radford, L. Metz, and S. Chintala. Unsupervised Representation
Learning with Deep Convolutional Generative Adversarial Networks.
In ICLR, 2016.

[33] M. Ranzato, A. Szlam, J. Bruna, M. Mathieu, R. Collobert, and
S. Chopra. Video (Language) Modeling: A Baseline for generative
Models of natural Videos. CoRR, abs/1412.6604, 2014.

[34] F. A. Reda, G. Liu, K. J. Shih, R. Kirby, J. Barker, D. Tarjan, A. Tao,
and B. Catanzaro. SDC-Net: Video prediction using spatially-displaced
convolution. In ECCV, 2018.

[35] J. Redmon and A. Farhadi. YOLOv3: An Incremental Improvement.
CoRR, abs/1804.02767, 2018.

[36] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks
for Large-Scale Image Recognition. In ICLR, 2015.



[37] H. Wei, X. Yin, and P. Lin. Novel Video Prediction for Large-scale
Scene using Optical Flow. CoRR, abs/1805.12243, 2018.

[38] W. Xiong, W. Luo, L. Ma, W. Liu, and J. Luo. Learning to Generate
Time-Lapse Videos Using Multi-Stage Dynamic Generative Adversarial
Networks. In CVPR, 2018.

[39] J. Xu, B. Ni, Z. Li, S. Cheng, and X. Yang. Structure Preserving Video
Prediction. In CVPR, 2018.

[40] M. D. Zeiler and R. Fergus. Visualizing and Understanding Convolu-
tional Networks. In ECCV, pages 818–833. Springer, 2014.

[41] L. Zhao, X. Peng, Y. Tian, M. Kapadia, and D. Metaxas. Learning to
Forecast and Refine Residual Motion for Image-to-Video Generation.
In ECCV, 2018.


