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Abstract— The development of algorithms for detecting 
failures in railway catenary support components has, among 
others, one major challenge: data about healthy components 
are much more abundant than data about defective 
components. In this paper, virtual reality technology is 
employed to control the learning environment of convolutional 
neural networks (CNNs) for the automatic multicamera-based 
monitoring of catenary support components. First, 3D image 
data based on drawings and real-life video images are 
developed. Then, a virtual reality environment for monitoring 
the catenary support system is created, emulating real-life 
conditions such as measurement noise and a multicamera train 
simulation to resemble state-of-the-art monitoring systems. 
Then, CNNs are used to extract and fuse the features of 
multicamera images. Experiments are conducted for 
monitoring the cantilever support connection, both down 
(CSC-D) and up (CSC-U), and registration arm support 
connection, both down (RASC-D) and up (RASC-U). 
Experimental results show that the CNNs trained in the virtual 
reality environment can capture the most relevant spatial 
information of the catenary support components. Multicamera 
image detection based on CNNs detects screw loss for all four 
components. For CSC-D and RASC-U, normal and pin-loss 
images are also fully detected. A challenge remains in 
increasing the pin-loss detection for both CSC-U and RASC-D. 
 

I. INTRODUCTION 

The higher demand for railway services and the opening of 
new railway lines have intensified the required maintenance 
tasks of the railway infrastructure. In particular, for a reliable 
power supply, the condition of the whole railway catenary 
system and its components must be monitored periodically 
[1, 2]. Short available periods and large numbers of 
components make monitoring tasks very difficult to perform 
by traditional methods, such as human inspection. Thus, 
developing effective detection technology and methods is 
crucial for guaranteeing both availability and safety in 
current railway catenary systems. 

Currently, monitoring railway components is conducted 
using different technologies and methods [3, 4]. Among all 
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sensor technologies available, video imaging has become 
more popular because of the latest advances in higher 
resolution cameras and big data collection and processing 
methods. Most of the research conducted to date using video 
image detection on railway applications are mainly focused 
on 2D image detection [5-9]. Research based on 2D images 
has also been conducted in the field of monitoring catenary 
support devices. Chen et al. [10] presented a three-level 
cascade deep convolutional neural network to detect and 
diagnose the condition of fasteners in catenary support 
devices. Liu et al. [11] presented a fault detection method 
for loose strands of the isoelectric line using an improved 
faster region-based convolutional network and a Markov 
random field model. Karakose et al. [12] proposed an 
approach for diagnosing the fault of the interaction between 
the pantograph and catenary based on an image-based model. 
Cho and Ko [13] presented a method based on the 
scale-invariant feature transform for measuring the dynamic 
stagger of contact wires and evaluated the reliability of 
railway overhead contact wires. In Liu et al. [14], a laser 
was employed to estimate catenary geometry parameters. 
The light spot from the laser in the contact wire was 
registered via 2D images. Using a genetic particle filter and 
a Kalman filter, the parameters were calculated and 
corrected. The use of 2D images has proven to be sufficient 
for a wide variety of problems. However, with 2D images, 
the spatial information of objects cannot always be 
recovered. With more detailed spatial information, for 
instance, using 3D image monitoring (see Fig. 1), it would 
be possible to address many problems of object detection in 
real-life environments, such as object occlusion and object 
orientation. 

In the literature, new 3D image-based technology and 
algorithms have been proposed [15-17]. In the case of 
monitoring catenary support components, 
multicamera-based methods are already in practice and can 
obtain an almost 3D image resolution. However, because 3D 
data acquisition systems have not yet been widely used, very 
few 3D open source databases are available for training, 
such as automatic detection methodologies. In this paper, 3D 
computer-aided design and virtual reality technology are 
applied to create 3D model databases and simulate realistic 
conditions of the catenary support system. Then, a 
methodology is proposed based on convolutional neural 
networks (CNNs) using multicameras for defect detection of 
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railway catenary support components. The simulated data 
from 3D virtual reality are used to train automatic detection 
methods that require a large quantity of data. Furthermore, 
experiments are conducted to evaluate the efficacy of 
multicamera measurements in the detection of screw loss 
and pin loss in both cantilever support connections and 
registration arm support connections. 

 

 
Fig. 1. 3D simulated image of the catenary support components. 

 
 
The paper is structured as follows. In Section II, the 

methodology is discussed. Section III describes the 
experiments and results. Finally, in Section IV, conclusions 
and further research are discussed. 

 

II. METHODOLOGY 

A. Detection System 

The first step in the proposed methodology is to build the 
catenary virtual detection environment, as shown in Fig. 2. 

 

 
Fig. 2. Catenary virtual detection environment. 

 
Then, the detection scheme mainly consists of three parts: 

the positioning system, image acquisition system, and data 
processing system. First, through the positioning system, it is 
determined whether the train is entering the detection area 
(see Fig. 2, when cameras reach area A). Then, when the 
train runs into the detection area at times t1, t2, and t3 along 
the moving direction, the acquisition system captures the 
images. Twelve cameras installed on the roof of the 
inspection vehicle are considered, six cameras are used to 

collect 3D images in the front area, and six cameras are used 
to obtain 3D images in the back area. A total of three sets of 
data are captured per catenary support, corresponding to (A, 
A’), (B, B’), and (C, C’) drawn in red, green and blue, 
respectively, in Fig. 2. The 3D data are then used by the 
image processing system to detect the defects in the catenary 
support components. 

 

B. Input Data 

The 3D data of catenary support components are acquired 
from the virtual cameras. The components are presegmented 
and labeled according to the parameters of the catenary 
construction drawings. 

 
1) 3D Projection 

3D data contain the spatial information of objects, which 
is more useful for their automatic detection. In the literature, 
most advanced object detection methods are based on 2D 
planar images, from which many methods can be adapted to 
detect catenary support component defects. To make use of 
the advantages of both 3D and 2D imaging, a 3D projection 
method into 2D planar images is applied in this study. 3D 
projections mainly include orthographic projections and 
perspective projections. In this paper, we use the perspective 
projection, as shown in Fig. 3(a). This type of projection 
emulates measurement systems based on multiple 2D 
camera monitoring. 

 

 
(a) 

 

 
 

Add noise 
 

 
(b) 

Fig. 3. (a) Projection simulated 3D data into 2D images. (b) Inclusion of 
noise in the image. 
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2) Adding Noise 

In the field, due to different sources of stochasticities, 
such as measurement errors and environment, the quality or 
resolution of the collected data will experience certain 
impacts. To ensure that the collected data are as consistent as 
possible with the actual field environment, Gaussian white 
noise with a variance of 0.005 is added to the data, as shown 
in Fig. 3(b). The 3D model dataset with added Gaussian 
noise is referred to as 3D-fModelDs. 

 

C. Image Preprocessing 

As shown in Fig. 2, the image data are acquired by twelve 
different cameras located on the roof of the catenary 
inspection vehicle. The sizes of the projected images vary. 
The proposed detection method requires fixed-size input 
data, so the input data are resampled and resized. In image 
processing, there are many methods for resampling images. 
In this paper, bicubic interpolation is employed to resample 
catenary component images.  
 

D. Detecting Defects 

Good features are essential for identifying objects in 
images. In the literature, there are many excellent feature 
extraction algorithms [18-21]. However, with the rapid 
development of artificial intelligence technology, traditional 
feature methods are being replaced by convolutional neural 
networks (CNNs). CNNs have been widely used for solving 
object detection of complex problems. 

In this paper, the AlexNet [22] network structure is used 
to extract image features and classify objects. Based on this 
network structure, CNNs for defect detection of catenary 
support components are proposed, as shown in Fig. 4. First, 
the image data (resampled, size 224×224×3 per image) from 
twelve virtual cameras are sent to the feature extraction 
networks (five convolutional layers), generating twelve 
different feature maps, feature_map  (size 6×6×256 per 

map) and concatenating them. To make full use of the spatial 
information of objects, the maximum element value of the 
same spatial position in the twelve feature maps is fused into 
a new feature map, feature_fus , which is expressed as 

follows: 
6 6 256

, , , ,
1 121 1 1

feature_fus max (feature_map )i
x y z x y z

ix y z    
    (1) 

where x , y , z  and i  are the dimensions of the 

concatenated feature map. The new fused feature map is sent 
into the classification network (three fully connected layers). 
According to the number of catenary support component 
states K, a 1 K vector, s , is produced. As shown in 
Table 1, the total number of catenary support component 
states is 16. The softmax function is used to establish the 
object classification function and the loss function. The 
model is optimized by the Adam algorithm [23]. The core 
functions are described below. 

 
1

   for 1, ,
j

k

s

i K s
k

P Y = j X x j K
e
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    (2) 

    = argmaxi i iC P Y = y X x        (3) 

 logi i iL P Y = y X x                 (4) 

where P  denotes the softmax function, iy  is the label of 

sample xi,  ( , )if x Ws   is a learner that can be regarded as 

a composition of K  linear functions, Ci denotes the 
classification, and Li denotes the loss function. 
 

TABLE 1. TYPES AND STATES OF THE CATENARY SUPPORT COMPONENTS 

Type  CSC-D CSC-U RASC-D RASC-U 

  1 2 3 4 

State 

1 
Normal 

(1.1) 
Normal 

(1.2) 
Normal 

(1.3) 
Normal 

(1.4) 

2 
Pin loss 

(2.1) 
Pin loss 

(2.2) 
Pin loss 

(2.3) 
Pin loss 

(2.4) 

3 
Screw loss 

(3.1) 
Screw loss 

(3.2) 
Screw loss 

(3.3) 
Screw loss 

(3.4) 

4 
Screw loose 

(4.1) 
Screw loose 

(4.2) 
Screw loose 

(4.3) 
Screw loose 

(4.4) 
Note: cantilever support connection-down (CSC-D), cantilever support 
connection-up (CSC-U), registration arm support connection-down 
(RASC-D), registration arm support connection-up (RASC-U). 

III. EXPERIMENTS AND RESULTS 

To evaluate the detection performance of the proposed 
approach, evaluation indexes are defined. The experiments 
were conducted in a system with Ubuntu 17.10 platform 
configured with 32 GB RAM, a CPU clocked at 3.7 GHz×12 
and two GeForce GTX 1080Ti GPUs with 11 GB memory. 
TensorFlow [24], a machine learning open source 
framework, was chosen to implement and validate the 
proposed approach. 
 

A. Datasets and Parameter Settings 

Twelve cameras captured the image of catenary support 
components. Under normal circumstances, there are only 
three sets of data to be obtained in a catenary support device 
area. However, the errors caused by the image acquisition 
system and the onboard positioning system can inevitably 
affect the position of the images and then affect the spatial 
geometric features of input objects. To avoid this, this 
experiment took five groups of data at five random locations 
in each area. Finally, fifteen sets of data were generated in 
each catenary support device area. To train, validate and test 
the proposed CNN architecture, there were a total of 50,760 
data points, among which the training dataset was 33,840, 
the validation dataset was 8,460, and the test dataset was 
8,460. The experimental parameter settings were as follows. 
The learning rate as 0.0001, and the parameters of the 
proposed CNNs were initialized with the parameters 
pretrained by the ImageNet1K [25] dataset. 
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Fig. 4. Proposed CNNs for defect detection of catenary support components based on multicamera fusion. 

B. Evaluation Indexes 

The evaluation indexes include the precision, recall rate 
and F1 score for each component state and the detection time 
consumption of input data for each group. 

precision 100%
TP

TP FP
 


     (5) 

recall 100%
TP

TP FN
 


      (6) 

1

2 precision recall

precision recall
F

 



      (7) 

where TP  is true positive, FN  is false negative FP  is 
false positive, and TN  is true negative. 
 

C. Experiments and Results 

In this paper, the experiment consisted of three key steps, 
including fine-tuning, validating and detecting. 

 
1) Fine-Tuning 

The proposed CNN architecture was initialized with the 
model parameters pretrained with the ImageNet1K dataset 
and then fine-tuned 20,000 times with the training dataset of 
3D-fModelDs. 

 
2) Validating 

In general, in the process of training and fine-tuning a 
deep learning network model, to verify the accuracy of the 
model, the validation dataset is evaluated periodically. In 
this study, the period was set to 100. As shown in Fig. 5, the 
curves of validation accuracy of the models based on 
different numbers of cameras were drawn. To accurately 
determine the trend of the accuracy, the results were 
smoothed using the double exponential smoothing (DES) 
method. 

 

3) Detecting 
After the proposed CNNs were trained, the test dataset 

from 3D-fModelDs was used to comprehensively test and 

evaluate the performance of the model. The classification 
accuracy of the model and the time consumed are recounted 
in Table 2. The precision and recall rate are in the confusion 
matrixes shown in Fig. 6 and Fig. 7 for detection based on 
one camera and detection based on twelve cameras, 
respectively. The diagonal values represent the precision of 
each object, and the last row of the graph represents the 
recall rate of each object. To simplify the graph, the matrix 
indexes of the component states in Table 1 were applied to 
plot the confusion matrixes, e.g., 1.1 → (CSC-D, Normal), 
2.1 → (CSC-U, Normal). 

 

TABLE 2. DETECTION RESULTS OF THE CATENARY COMPONENT STATES 

Method 
Training Configuration 

F1 score  Time 
Pretrain Fine-tune C# 

CNN ImageNet1K 3D-fModel 1 78.14% 0.54 ms 

CNN-12 ImageNet1K 3D-fModel 12 87.03% 6.57 ms 

 
 

D. Results Analysis 

For fine-tuning, as the number of cameras increased, the 
accuracy of the proposed CNN model fine-tuned with 
3D-fModelDs gradually increased. The more cameras that 
were used, the more spatial information that was available. 
However, the optimal number of cameras is part of further 
research. It could be the case that although more cameras are 
incorporated to obtain more spatial information, after a 
certain number of cameras, the possibility of data 
interference also increases due to noise and other 
stochasticities. 

 
Next, the performance in the classification of the 

proposed CNN architecture is analyzed. Comparing Fig. 6(a) 
and Fig. 7(a), from the confusion matrixes with different 
numbers of cameras, with the increase in the number of 
cameras, the subtler changes in space were captured, and the 
precision of different states within each type of component 
improved.  

2186



  

 
From Table 2, the number of cameras affected the 

classification accuracy. However, the processing time 
consumed increased with the number of cameras, which will 
affect the detection speed of the system. A trade-off between 
time consumed, number of cameras and precision should be 
further considered. Furthermore, the millisecond time the 
system requires meets the requirements of the normal 
running speed of the inspection vehicle. 

 
According to the confusion matrixes, the defect “screw 

loss” was detected 100% when 12 cameras were used. 
However, for the defect “pin loss”, more cameras did not 
substantially improve the detection results because the pin is 
not symmetrical and on only one side of the cameras. Thus, 
when using the information from both sides of the cameras, 
there was no additional useful information for its detection. 

 

 
(a) 

 
(b) 

Fig. 5. Validation accuracy based on different numbers of cameras. (a) 
Single camera (b) Twelve cameras 

 

  
 

  
 

Fig. 6. Confusion matrix based on a single camera. Cantilever support 
connection-down (CSC-D), cantilever support connection-up (CSC-U), 
registration arm support connection-down (RASC-D), registration arm 
support connection-up (RASC-U). State 1: Normal, State 2: Pin loss, State 
3: Screw loss, State 4: Screw loss. 

 

  
 

  
 

Fig. 7. Confusion matrix based on twelve cameras. Cantilever support 
connection-down (CSC-D), cantilever support connection-up (CSC-U), 
registration arm support connection-down (RASC-D), registration arm 
support connection-up (RASC-U). State 1: Normal, State 2: Pin loss, State 
3: Screw loss, State 4: Screw loss.  
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IV. CONCLUSIONS 

With the new developments of image monitoring 
technology, state-of-the-art methods are being used to solve 
complex problems with value in different industries. The 
methodology proposed in this paper is used for defect 
detection in railway catenary support components using 
multicamera image monitoring. 

 
The methodology can make full use of the spatial 

information of catenary components. A virtual reality 
environment is proposed as a learning environment of 
methodologies, such as CNNs that requires a large quantity 
of training data. The CNN architecture proposed in this 
paper detects screw loss for all the components that were 
studied. For CSC-D and RASC-U, both normal and pin-loss 
images are also fully detected using twelve cameras.  

 
To increase the detection of pin loss for both CSC-U and 

RASC-D, other CNN architectures will be tested. Further 
research will study other catenary support components and 
include the analysis of different CNN architectures. Closing 
the loop between monitoring information and maintenance 
activities is also a challenge [26-27]. The development of 
maintenance strategies for large-scale catenary support 
systems is also a topic for further research. 
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