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Abstract— Most intelligent transportation systems use a com-
bination of radar sensors and cameras for robust vehicle
perception. The calibration of these heterogeneous sensor types
in an automatic fashion during system operation is challenging
due to differing physical measurement principles and the
high sparsity of traffic radars. We propose — to the best of
our knowledge - the first data-driven method for automatic
rotational radar-camera calibration without dedicated calibra-
tion targets. Our approach is based on a coarse and a fine
convolutional neural network. We employ a boosting-inspired
training algorithm, where we train the fine network on the
residual error of the coarse network. Due to the unavailability
of public datasets combining radar and camera measurements,
we recorded our own real-world data. We demonstrate that our
method is able to reach precise and robust sensor registration
and show its generalization capabilities to different sensor
alignments and perspectives.

I. INTRODUCTION

Modern intelligent transportation systems (ITS) utilize
many redundant sensors to obtain a robust estimate of
their perceived environment. By using sensors of different
modalities, the system can compensate the weaknesses of
one sensor type with the strengths of another. Especially in
the field of traffic surveillance and ITS, the combination of
cameras and radar sensors is common practice [1], [2], [3].
Reliably fusing measurements from such sensors requires
precise spatial registration and is necessary to construct a
consistent environment model. A precise sensor registration
can be achieved with an extrinsic calibration that results in
the correct transformation between the reference frames of
the sensors in relation to each other and the world. Fig. []
demonstrates the effects of an accurate sensor calibration.
The upper image shows uncalibrated sensors, where the
projected radar detections do not align with the vehicles.
After the extrinsic calibration each detection overlays with
its corresponding object in the image.

Manual sensor calibration is a tedious and expensive
process. Especially in multi-sensor systems automatic cali-
bration is crucial to handle the growing number of redundant
sensors. Here manual calibration does not scale. Additionally,
this technique is infeasible for automatic online recalibration,
which is necessary to account for changes to the sensor
system. These decalibrations occur frequently in real world
applications, for example due to vibrations, wear and tear of

This work has been funded by the German Federal Ministry of Transport
and Digital Infrastructure as part of the project Providentia.

* These authors contributed equally to this work

fortiss GmbH, Munich, Germany

2Technical University of Munich, Munich, Germany

dec

Hgt = (I)_l Hinit

Fig. 1: The problem we solve is to estimate the correction
<I>;elc of the initially erroneous calibration H;,;; that leads
to the true transformation Hg; between the radar and the
camera frame. This aligns the radar’s vehicle detections
(yellow points) with the vehicles in the camera image.

the sensor mounting, or changing weather conditions. Fur-
thermore, these calibration methods should be independent
of explicitly provided calibration targets, as their installation
into such systems or their observed scenes is impractical and
would suffer from deterioration as well.

Calibrating systems with radar sensors and cameras is
challenging due to different physical measurement principles
and the high sparsity of radar detections. For the calibration
without specific targets, a complex association problem be-
tween the sensors’ measurements must be solved. As traffic
radars do not provide visual features, such as edges, corners
or color to easily associate detections with vehicles in the
camera image, this association problem must be solved solely
based on the relative spatial alignment and estimated distance
measures between the vehicles.

In this paper we present — to the best of our knowledge —
the first method for the automatic calibration of radar and
camera sensors without explicit calibration targets. We focus
on the rotational calibration between sensors because of its
high influence on the spatial registration between cameras
and radar sensors in ITS, especially for large observation
distances. On the other hand, the projective error caused
by translational miscalibrations in the centimeter range is
negligible and easy to minimize in static scenarios by



measuring with modern laser distance meters. To solve
the problem of rotational auto-calibration, we propose a
two-stream Convolutional Neural Network (CNN) that is
trainable in an end-to-end fashion. We employ a boosting-
inspired training algorithm, where we first train a coarse
model and afterwards transform the training data with its
correction estimates to train a fine model on the residual
rotational errors. We evaluate our approach on real-world
data, recorded on the German highway A9 and show that it
is able to achieve precise sensor calibration. Furthermore, we
demonstrate the generalization capability of our approach by
applying it to a previously unobserved perspective.

II. RELATED WORK

Much research has been done on calibrating multi-sensor
systems with homogeneous sensors (e.g., camera to camera),
resulting in various state-of-the-art target-based and target-
less calibration methods. However, it is a challenging prob-
lem to calibrate heterogeneous sensors with different phys-
ical measurement principles. While camera images provide
dense data in form of pixels, lidar and even more so traffic
radar sensors only record sparse depth data without color
information. In this case it is difficult to match corresponding
features between the sensors’ measurements for calibration.

Classic approaches for the calibration of camera and laser-
based depth sensors use planar checkerboards as dedicated
calibration targets [4], [5]. These techniques achieve very
precise estimates of the relative sensor poses, but require
prepared calibration scenes. Approaches without physical
targets calibrate the sensors by matching features of the
natural scenes. In manual methods, a human has to pair
the corresponding features in the image and depth data by
hand [6]. For automatic classic approaches the capabilities
regarding decalibration ranges and parameter extraction are
limited [7], [8]. These drawbacks restrict their application
scope and prevent them from being used for automatic
calibration during system operation, which is possible with
our method.

Recently, the task of sensor calibration has been ap-
proached using deep learning techniques. Early applications
of CNNs in this field focus on camera relocalization [9].
With RegNet, Schneider et al. [10] presented the first CNN
for camera and lidar registration, which performs feature
extraction, matching, and pose regression in an end-to-end
fashion on an automotive sensor setup. Their method is
able to estimate the extrinsic parameters and to compensate
decalibrations online during operation. To refine their result
the authors use multiple networks, trained on datasets with
different calibration margins. In contrast, we do not need to
define calibration margins for our networks, as our second
network specializes on the errors of the first network by
design. Liu et al. [11] apply this method to the calibration of
three sensors by first fusing a depth camera and a lidar that
were calibrated with RegNet, and then they use the resulting
dense point cloud for the calibration to a camera. Iyer et
al. [12] propose CalibNet, which they train with a geometric
and photometric consistency loss of the input images and

point clouds, rather than the explicit calibration parameters.
Due to difficulties in estimating translation parameters in a
single run, they first estimate the rotation and use it to correct
the depth map alignment. Then they feed the corrected depth
map back into the network to predict the correct translation.
However, in contrast to our approach these methods use lidar
sensors with relatively dense point clouds compared to the
measurements of traffic radars.

The measurement characteristics of radars cause a lack of
targetless calibration methods. Traffic radars output prepro-
cessed measurement data in form of detected objects. They
lack descriptive visual features and are sparse. Additionally,
measurement noise, missing object detections, and false posi-
tives make the calibration of radars with sensors of different
modality particularly challenging. Existing approaches for
the calibration of multi-sensor systems with radars rely on
dedicated targets, such as corner reflectors or plates, based
on conductive material that ensures reliable radar detec-
tions [13], [14]. Recently, these calibration concepts were
extended towards the combination of radars with other sensor
types. Especially the calibration with cameras is challenging,
as the sensors do not share common features such as color,
shapes or depth. Natour et al. [15] calibrate a radar-camera
setup by optimizing a non-linear criterion, obtained from a
single measurement with multiple targets and known inter-
target distances. However, the targets in the radar and image
data are extracted and matched manually. PerSi¢ et al. [16]
designed a triangular target to calibrate a 3D lidar and an
automotive radar. They experienced variable error margins
in the estimated calibrations due to the sparse and noisy
radar data and the geometric properties of their sensor setup.
As a result, an additional optimization step using a priori
knowledge of the specified radar field-of-view refines these
estimated parameters. Song et al. [17] use a radar-detectable
augmented reality marker for a traffic surveillance system
based on a 2D radar and camera, enabling an analytic
solution of the paired measurements. However, there is a
lack of approaches for automatic and targetless radar-camera
calibration which we address in this work.

III. PROBLEM STATEMENT

To calibrate a radar and camera to each other, the trans-
formation that correctly projects the radar detections into the
camera image must be estimated. This is the case when each
projected detection spatially aligns with its corresponding
object in the image. As we use a traffic radar, the detected
objects are vehicles as shown in Fig. However, our
approach is not limited to the traffic domain.

The described projection of detections into the image can
be computed by
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where € R? is the position of a detected vehicle in the
radar coordinate system, [u,v] are its corresponding pixel
coordinates and z. the straight-line distance of the detected



vehicle to the image plane of the camera, i.e. the depth of the
projected pixel. The projection matrix K € R3*? is based
on the intrinsic camera parameters and H € R**% is the
extrinsic calibration matrix. The latter represents the camera
pose relative to the radar and is defined as
R t } 7 )
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with R € SO(3) being the rotational and ¢ € R3 the
translational component. While K can be estimated in a
controlled calibration setting prior to deploying the sensors,
H must be determined after deployment in situ. In our
work we focus on computing the rotational component as
— compared to the translational component — it is hard to
measure and has a high impact on the quality of the inter-
sensor registration, especially for large observation distances.

Our goal is to estimate the transformation H g, that
describes the true relative pose between the two sensors.
A correct estimate results in the alignment of projected
radar measurements and vehicles in the image. Assuming an
initially incorrect calibration H,,,;;, we need to determine
the present decalibration transformation ® 4. that represents
the error between H,,;; and H,; and thus

Hinit = ‘I’decHgt- (3)

In fact, we directly estimate <I>Jelc, since it can be used

to recover the correct calibration H g without additionally
inverting ® 4.

IV. OUR APPROACH

Our objective is to regress the relative orientation of a
camera with respect to a radar sensor. To achieve this,
an association problem between the radar detections and
the vehicles in the camera image must be solved. This
is a difficult problem, as radar detections do not contain
descriptive features. A neural network can learn how to
solve this association problem based on the spatial alignment
between the projected radar detections and the vehicles in the
image.

Our approach leverages two convolutional neural net-
works, where we train the first coarse network on the initially
decalibrated data and then a fine network on its residual
error. Both models share the same architecture, loss and
hyperparameters. In this section we first explain the model
and then the training process in detail.

A. Architecture

Our model is built as a two-stream neural network, con-
sisting of a rgb-input and a radar-input as shown in Fig. 2]
It outputs a transformation to correct the rotational error
of the calibration between respective camera and radar as
a quaternion.

The rgb-input is a camera image and the radar-input is a
sparse matrix with radar projections. The image is standard-
ized and resized to a resolution of 240 x 150 pixels. It gets
propagated through the rgb stream of our network that starts
with a cropped MobileNet [18] with width multiplier 1.0.

We crop the MobileNet after the third depthwise convolution
layer (conv_dw_3_relu) to extract low-level features, while
preserving spatial information. We use a MobileNet that
has been pre-trained on ImageNet [19], but include the
layers for fine-tuning in further training. The MobileNet is
followed by two MlpConv [20] layers, each consisting of a
2D convolution with kernel size 5 x 5, followed by two 1 x 1
convolutions and 16 filter maps in each component. The task
of the rgb stream is to detect vehicles and to estimate where
radar detections will occur.

The radar-stream receives the projected radar detections
with the same resolution as the camera image as input. Each
projection occupies one cell in the sparse matrix and stores
the inverse depth 1/z. of respective projected detection, as
proposed by [10]. We apply a 2 x 2 max-pooling to reduce the
input dimension to a feasible size and do not use convolutions
in the radar stream to retain the sparse information.

Then we embed each stream into a 50 dimensional latent
vector using a fully-connected layer. This latent vector con-
tains the input information in a dense and compressed format.
The following regression block consists of three layers with
512, 256 and 4 neurons. Between the first two layers we ap-
ply dropout regularization [21]. The four output neurons cor-
respond to the components of the quaternion that describes
the calibration correction. We use linear activations for the
final output layer, and PReLu [22] activations everywhere
else, except in the MobileNet block. This empirically lead
to better performance compared to classic ReLu activations.
The task of the regression block is to estimate the rotational
correction that solves the misalignment between the camera
image and the radar detections.

B. Loss Function

We use the Euclidean distance as the loss function between
the true quaternion q, and the predicted quaternion ¢ that
represents the estimated correction of the decalibration.

The Euclidean distance is a common distance measure to
define a rotational loss function over quaternions [10], [9].
Since this metric is ambiguous and can lead to different
errors for the same rotations [23], we also evaluated the
performance of our approach using the geodesic quaternion
metric .
a
4]l
proposed by [24]. We added a length error term, weighted
by « that we empirically evaluated to 0.005. Without
this additional length term the network’s output diverges
and the learning plateaus. As this loss resulted in similar
performance despite its theoretical superiority, we finally
used the Euclidean distance ||g — || to save an additional
hyperparameter.
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C. Hyperparameters

We use the Adam optimizer [25] with the parameters
proposed by its authors and learning rate 0.002, that we
reduce by a factor of 0.2 once the validation loss plateaus
for five epochs. To initialize our weights we use orthogonal
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Fig. 2: The architecture of our network consists of two input streams, one for radar projections and one for rgb images.
Both streams end in a 50 neuron fully-connected layer to condense information. Then we regress for an output quaternion

g that describes the calibration correction.

initialization [26]. For the dropout we set a probability of 0.5,
use a batch size of 16 and early stopping when the validation
loss does not improve for 10 epochs.

D. Cascaded Residual Learning

To improve the calibration results of our first, coarse
network that we train on the original data, we train a second,
fine network on the remaining residual error. This is inspired
by gradient boosting algorithms [27], where each subsequent
learner is trained on the residual error of the previous one.

This boosting has multiple advantages that lead to more
accurate calibration parameters. During operation, the first
network roughly corrects the initial calibration error and the
sensors are approximately aligned. For the second network
more radar detections can be projected into the camera
image, which leads to a higher number of correspondences
that enable the second network to perform a more fine-
grained correction. Furthermore, the second network implic-
itly focuses on solving the errors in those axes that the first
network performed poorly on. In our case, the fine network
performs much better on solving the roll error, as errors
around the z-axis of the camera cause only relatively small
projective discrepancy, and thus the coarse network focuses
on tilt and pan.

In detail, we train the first network on dataset D, for
which the radar detections of each sample were projected
with a transformation Hj,,;¢ ;, obtained by applying a random
decalibration ®4..; to the true calibration H;. Index i
refers to the sampled decalibration. After the first network’s
training we transform D into a new dataset D’, on which
we train the second network. D’ contains training samples
corrected by the output of the first network. We transform
the samples by converting the output quaternion §; for each
sample to transformation ‘I>; cc,i- Then we compute a new,
corrected extrinsic matrix

Hgt,z - @ ! Hinit,i (5)

dec,i

for each sample and reproject the corresponding radar detec-
tions as described by Eq. [I] We obtain the correction of the
residual decalibration by

Lo l= (I);p(- 1(I)dec s (6)

dec,i

which serves as the new label in the transformed dataset D’.
The second network is then trained on D’.

At inference time we obtain the approximate true calibra-
tion for a new sample by computing

1
Hgt - q’:iec@decH nitsy (7)
where i);; . is the output of the second network and & de .

of the first network. Note that before computing & Ll we
perform a reprojection in the same way as during training.

E. Iterative and Temporal Refinement

In the field of ITS and autonomous driving, sensor data
is usually available as a continuous stream. A single decal-
ibration of the sensor setup is more likely than completely
random decalibrations for each sample. A temporal average
over correction estimates for multiple consecutive samples
can reduce the influence of estimation errors made for
individual samples and thus increase the robustness and
accuracy of our method.

V. EXPERIMENTS

In this section we explain which data we used to train
and evaluate our approach. Furthermore, we explain our
evaluation process in detail and present quantitative, as well
as qualitative results.

A. Dataset

In the field of ITS, public datasets containing data of
radars combined with cameras are not available. Therefore,
we generated our own dataset using sensor setups developed
within the scope of the research project Providentia [3]. Two
identical setups were installed on existing gantry bridges
along the Autobahn A9, overlooking a total of eight traffic
lanes. Our sensor setup is shown in Fig. 3] and consists of
a Basler acA1920-50gc camera with a lens of 25 mm focal
length and a smartmicro UMRR-0C Type 40 traffic radar.

The camera records rgb images with a resolution of
1920 x 1200 pixels, while the radar outputs vehicle detec-
tions as positions. The radar measurements can result in
undetected vehicles, multi-detections for large vehicles like
trucks or buses, and false positives due to measurement noise.



Fig. 3: Our sensor setup with a radar and camera above the
highway.

1) Ground Truth Calibration: Since our approach requires
a reference transformation H, between the sensors, we
put special effort and care on the initial manual calibration.
This is equivalent with manual labeling in other supervised
learning problems.

We calibrated the cameras intrinsically with a checker-
board based method in our laboratory, while the radar is
intrinsically calibrated ex-factory. The translational extrinsic
parameters of the sensor setup were manually measured on-
site with a spirit level and laser distance meter. We estimated
the initial rotation parameters of the sensors with respect to
the road using vanishing point based camera calibration [28]
(one vanishing point, known height above the road and
known focal length) and the internal calibration function
of the radar sensor. Afterwards, we fine-tuned the extrinsic
rotational parameters by minimizing the visual projective
error.

2) Training Data Generation: To obtain the necessary
number of samples to train and evaluate our networks, it
would be infeasible to record with many different sensor
setups and manually determine each groundtruth calibration.
Therefore, we randomly distorted the calibration Hg; for
one sensor setup per measurement point as proposed by
[10]. In particular, we randomly generated 6-DoF decalibra-
tions ®,4.. for each sample and used these decalibrations
to compute initial decalibrated extrinsic matrices H,;,
according to Eq. 3] Afterwards, we projected the radar
detections on the image according to Eq. [T} leading to a
mismatch between the detections and the vehicles in the
image. Besides, we filtered generated samples with less than
10 remaining correspondences. This ensures the exclusion of
training samples without correspondences between camera
and radar projection, with which learning is not possible.

In particular, the decalibration angles were sampled from
a uniform distribution on [—-10°,10°] for the tilt and pan,
and [—5°,5°] for the roll angle. We assumed a smaller roll
decalibration as this angle is easier to measure with a spirit
level. We multiplied resulting matrices into a single rotational
decalibration. Furthermore, we added a translation error with
a standard deviation of 10 cm. Even though translation errors
are minimal as distances are easy to measure, by this we

account for errors during the manual calibration process and
show that our approach is robust to it. Creating our dataset
as described resulted in a total of 37929 samples for the first
sensor setup, of which we used 34137 for training and 3792
for validation. Additionally, we generated an independent test
set 71 with 2536 samples, where we only included images
and radar detections that do not appear in the training data.
We further generated a second test set 7o with 2012 samples
from a different sensor setup on a second gantry bridge in the
same manner to evaluate the generalization of our approach.

B. Evaluation

We trained our models with the boosting-inspired ap-
proach described in Sec. [[V-D|and the dataset generated with
random decalibrations as explained in Sec. [V-A]

1) Random Decalibration: Tab. [[] shows the average an-
gular errors of our networks using test set 7; with random
decalibrations. While the coarse network achieves significant
improvements in the tilt and pan angles, it struggles to
correct the roll. The roll calibration error is weaker correlated
with the input as it has only a small projective influence
over the long distances we work with. However, our fine
model decreases the roll error significantly as it has more
influence on the total remaining projective discrepancy after
the coarse correction step. In total, we achieve a mean error
reduction of 95.3% in tilt, 93.5% in pan and 47.7% in
roll over the initial decalibrations. The remaining errors after
our correction are approximately normally distributed around
zero, which means our approach works reliably with only few
outliers and can be trusted in a real-world setting (Fig. [).

In Fig. [5| we demonstrate qualitative examples of applying
our approach to different decalibration scenarios. The main
task of the coarse network is to find the right correspondences
between radar detections and vehicles in the images. Based
on these correspondences it estimates a rough correction
for the initial decalibration. In case of decalibrations with
only few successfully projected detections, the network’s
correction leads to more projections onto the image plane
that are then provided to the fine network. This effect can be
observed in the first row in Fig. 5] The fine network makes
use of the increased number of correspondences and refines
the calibration as shown in column (c). It is particularly good
at correcting rotational errors in the roll direction. In the
second row (b) it can be observed that the coarse network is
not able to solve the roll error because it has a relatively small
impact on the projection discrepancy. The yellow points in

Tilt Pan Roll Total
Initial 4.45°  4.95°  2.52°  7.90°
Coarse Network  0.46°  0.81° 2.43° 2.78°
Fine Network 0.21° 0.32° 1.32° 1.45°

TABLE I: Mean absolute errors for all axes and in total
initially, after applying the coarse network and after applying
the fine network on the test set 77. The fine model focuses on
correcting the remaining roll error and significantly improves
tilt and pan as well.
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Fig. 4: Initial and resulting errors for each rotation angle on test set 7; with random calibration errors. Note that the positive
shift for the tilt angle errors is a result of filtering the samples with less than 10 projected detections in the image, as
described in Sec. E Tilting the camera downwards likely moves the detections out of the upper image border.

(a) Initial

(b) Coarse Network
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Fig. 5: Each row depicts the application of our model to a decalibrated sample from test set 7;. Blue points represent the
projected radar detections using the ground truth calibration and yellow projections using the calibration at (a) the initial
stage, (b) after applying the coarse network and (c) after applying the fine network. While the coarse network achieves a
reasonable, but still imprecise calibration, the fine model handles the precise adjustment.

the left half of the image are rotated below, and in the right
half of the image above the blue ground truth detections. The
fine network in the second row (c) was able to correct this
residual error.

2) Static Decalibration: We also evaluated our approach
by applying the same decalibration to all samples of the
test set 7. This is a more realistic setting. In this manner
we evaluated 100 different decalibrations. In particular, we
computed the error for each decalibration as the mean error
over all samples. This way our approach achieved on average
decalibration errors of 0.21° for tilt, 0.35° for pan and

1.33° for roll. As shown in Fig. [6] (b), taking the average
over all sample errors with the same static decalibration
significantly reduces the error variance compared to using
only a single frame for calibration like in the random
decalibration setting shown in Fig.[d](b). Our model is able to
reduce the static errors over all samples towards a distribution
with approximately zero mean, as shown for two examples
in Fig. [7] This indicates that temporal averaging of the
estimated decalibration corrections as proposed in Sec. [[V-E|
could be a suitable method to further improve accuracy and
robustness.
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Fig. 7: Resulting error distributions over all 77 test set samples for two different static decalibrations. The means are close
to zero, which shows that a temporal averaging could further improve the performance of our approach.

3) Generalization: To demonstrate the generalization ca-
pability of our approach we applied it to test set 75, which
is obtained from a sensor setup located at a different gantry
bridge that was not included in the training data and has
never been observed before. In this case the trajectory of the
street is different and thus the distribution of vehicles in the
image. Besides, the true extrinsic calibration differs from the
first sensor setup and the perspective of the camera observing
the vehicles changed. Despite these challenges, our approach
achieved reasonable results for random decalibrations with
average errors of 0.36° for tilt, 1.88° for pan and 2.83° for
roll (Fig.[8). While the performance dropped compared to the
sensor setup used for training, it indicates that our approach
is able to generalize if trained on a more diverse dataset
with different perspectives and road segments. Furthermore,
the achieved results already vastly reduce manual calibration
efforts. It can also support other calibration methods in
practice, as the difficulty to match correspondences is greatly
reduced.

VI. CONCLUSION

The manual calibration of sensors in an ITS is tedious
and expensive, especially concerning sensor orientations. For
radars and cameras there is a lack of automatic calibration
methods due to the sparsity and absence of descriptive
features in radar detections. We addressed this problem
and presented the first approach for automatic rotational
calibration of radar and camera sensors without the need
of dedicated calibration targets. Our approach consists of
two convolutional neural networks that are trained with a
boosting-inspired learning regime. We evaluated our method
on a real-world dataset that we recorded on a German
highway. Our method achieves precise rotational calibration
of the sensors and is robust to missing vehicle detections,
multiple detections for single vehicles and noise. We demon-
strated its generalization capability and achieved reasonable
results by applying it on a second measurement point with
a different viewing angle on the highway and vehicles. This
drastically reduces the efforts of manual calibration.
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Fig. 8: Calibration results of applying our approach which was trained on one sensor setup to an unseen sensor setup (test
set 7). Blue points represent the projected radar detections using the ground truth calibration and yellow projections using
the calibration at (a) the initial stage, (b) after applying the coarse network and (c) after applying the fine network. Even
though our model has never observed this perspective during training and the true calibration differs from the one in the
training data, it generalizes and achieves reasonable results.

We expect that in the future the generalization capabilities
of our approach could be further improved by using a more
diverse dataset that includes multiple camera perspectives.
Furthermore, as sensors record a time series, sequences
of frames could be used for iterative calibration with a
recurrent neural network to increase calibration precision
and robustness. As after the application of our approach
the association of radar detections with vehicle detections
in the image can be easily achieved with nearest-neighbor
algorithms, the final results could be revised by solving a
classic, convex optimization problem.
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