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Clustering-based methodology for estimating bicycle accumulation levels
on signalized links: a case study from the Netherlands

Giulia Reggiani, Azita Dabiri, Winnie Daamen, Serge Hoogendoorn

Abstract— The number of queued bicycles on a signalised link
is crucial information for the adoption of intelligent transport
systems, aiming at a better management of cyclists in cities.
An unsupervised machine learning methodology is deployed
to produce estimations of accumulation levels based on data
retrieved from a bicycle street of the Netherlands. The use of a
clustering-based approach, combined with a conceptual insight
into the bicycle accumulation process and various data sources,
makes the applied methodology less dependent on sensor errors.
This clustering-based methodology is a first step in bicycle
accumulation estimation and clearly identifies levels of cyclists
accumulated in front of a traffic light.

I. INTRODUCTION

There is an evident increase of bicycles trips in cities [8].
This leads, among other things, to long waiting times at
traffic lights and unsafe situations such that municipalities,
in some countries like the Netherlands, are struggling to
manage bicycle traffic. Intelligent Transportation Systems
(ITS) can mitigate the situation, as already proven effective
in vehicular transport management, by e.g. 1) reducing delay
using adaptive traffic signal controllers [9], or 2) reducing
discomfort by providing real time traffic information [5],
valuable for user’s route choice. In order to deploy such ITS,
real-time and accurate information about bicycle accumula-
tion on urban cycle paths is crucial.

The fundamental difference between car and bike queues,
depends on the unstructured and non lane based behaviour
of cyclists. Consequently, fixed location sensors incorporate
counting errors which have an effect on flow data of bicycles,
leading to growing cumulative errors while estimating accu-
mulation. In vehicle queue estimation studies, the cumulative
error problem is a well-known research topic investigated
in [3] and [11], to name but a few. To the best of the
authors’ knowledge, the cumulative error problem has not
been addressed yet in the bicycle domain.

We propose a clustering-based methodology for bicycle
accumulation estimation, applicable to various kinds of un-
labeled and error prone data. Although, to the best of the
authors’ knowledge clustering has never been applied to bike
accumulation problem, for an overview of its applications in
transport domain see [2], [12]. The use of a clustering-based
method combined with a conceptual insight into the bicycle
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accumulation process and various data sources make the
applied methodology less dependent on sensor errors. The
methodology is tested on field data retrieved from inductive
loop sensors and represents the first step in setting up a
methodology for bike accumulation estimates.

Supervised machine learning techniques require a large
amount of labels (i.e. ground truth), not always available,
to train the models. Instead, the low data requirements of
unsupervised machine learning techniques make this method-
ology attractive and easy to implement for practitioners. The
achieved bicycle accumulation levels can be used as real time
traffic level indicators of edges of a cycle network or as input
for data driven control measures.

This article is organized as follows. Section II presents the
methodology (i.e. the general research approach). Whereas,
section III illustrates, through a case study, the methods
used within the methodology and evaluates the proposed
clustering-based estimation approach, by comparing it with
other estimation techniques. Finally the conclusions are
reported in section IV.

II. RESEARCH METHODOLOGY

Fig.1 shows, on the left side, the general unsupervised
approach for researchers that aim to estimate bicycle accu-
mulation on a signalized link. It consists of seven steps, each
is explained in the following subsections. The grey diagram,
on the right in Fig.1, illustrates the steps performed in the
case study of section III. Practitioners addressing scenarios
similar to the one of the case study (i.e. same data availability
and setting) can estimate bicycle accumulation by applying
steps 4, 5 and 6 of the methodology.

Fig. 1: Steps of the research methodology



Fig. 2: Conceptual model for bicycle accumulation

A. Conceptual model

The conceptual model, as shown in Fig. 2, highlights the
influencing factors for bicycle accumulation and their mutual
relationships. This conceptual model is used to 1) understand
which are the influential factors that can be included as
features in the learning process 2) avoid using available
data without motivated correlation to bicycle accumulation
3) improve the estimation model by identifying which addi-
tional variables to measure in future studies. Only dominant
relationships are included in the figure.

The conceptual model shows, above all, that:

• macroscopic variables have a direct effect on bicycle
accumulation, while individual and external variables
have an indirect effect, since they influence some
macroscopic variables that in turn determine bicycle
accumulation.

• local density, depending on its location (either the
cyclist’s position or the sensor location), can influence
the outflow, individual velocity and queue discharge
rate. If local density can be used to approximate average
density (i.e. number of accumulated cyclists) then it
can also be seen as a direct influencer of bicycle
accumulation.

• inflow and outflow have a direct influence on bicycle
accumulation. Theoretically, inflow and outflow could
fully determine the accumulation through the bicycle
conservation law.

B. Data Availability

This step seeks for data sources that can measure influ-
ential variables of the conceptual model. Data availability in
general depends on the type of sensors road authorities have
deployed. We provide an insight into specific data availability
based on inductive loop sensors, which are used the case
study of section III.

Theoretically, inductive road sensors provide bike counts,
occupancy of the sensor over time, and speeds (from two
loops close to each other). Having bicycle counts upstream
and downstream (i.e. inflow and outflow) we can define
bicycle accumulation, through the bicycle conservation law.

However, as shown in section III-F, using this conserva-
tion law based on bicycle loop sensor signals leads to a
cumulative error due to inaccuracies in the downstream
loop counts1. As a result, we need additional information
either continuously or at specific moments to correct for
the accumulated error. Thanks to the conceptual model, it
is possible to see what other variables to extract from loop
sensors to compensate flow errors while estimating bicycle
accumulation on a link.

C. Feature Definition

In this step, the output from the previous two steps are
combined in order to translate the variables of the conceptual
model into features, defined for each observation period δt.
An observation period is represented by a vector made of
features, that represent the numerical value of one or more
independent variables during the observation period. The
bicycle accumulation, to be estimated, is the number of bikes,
on the link, at the end of each observation period.

D. Feature selection

Feature selection is needed in order to remove irrelevant
or redundant variables. Practical experience with machine
learning shows that reducing features can improve learn-
ing performance by increasing learning accuracy, lowering
computational cost, and improving interpretability [1]. The
improved performance of clustering with less variables is
also confirmed in our case study (see Table II).

Features can be selected by means of a pure data science
approach or by means of traffic engineering domain knowl-
edge. The former approach looks at correlation between
features and between features and a sample of ground truth
accumulation, whereas the latter selects features that are
more meaningful from a theoretical point of view, based on
the conceptual model.

E. Clustering

This is the core step of the methodology that learns
latent patterns within the data without being trained on
the corresponding ground truth (i.e. labels). Unsupervised
approaches, such as clustering, are preferred to supervised
due to the fact that labels are not easily determined for
bicycle accumulation level. If the results are to be sufficiently
reliable for training purposes, such information needs to be
manually extracted from video footage, through a very time-
consuming process. By making use of a clustering technique,
less ground truth data needs to be extracted because labels
are not needed for the training but are only used for the
interpretation, as well as the evaluation, of the results.

F. Interpretation

To interpret the latent clusters found in the previous step,
a limited amount of ground truth is used. The interpretation
step is used to 1) understand if the groups found by the

1Whilst cyclists predominantly pass over the upstream sensor one at a
time, they tend to cycle over the stop-line sensor (when the traffic light
turns green) very close to each other, with a slight sidewise shift.



clustering algorithm have a physical meaning from bicycle
accumulation point of view and 2) give names to the classes,
according to the accumulation level they represent.

G. Evaluation

For the evaluation of the methodology, other estimation
techniques should be used to assess how the clustering
methodology estimates compared to other methods. In this
paper, the comparison is made with methods based on
conservation of bicycle law and a corrected version of it.

III. CASE STUDY

In this section, we use real data to show how unsupervised
machine learning can be applied for estimating bicycle
accumulation. The structure of this section follows the same
steps of the methodology (section II), starting from data
availability. The aim of the case study is twofold: 1) test
if a clustering methodology achieves accurate estimations
of bicycle accumulation and 2) determine if incorporating
transport domain knowledge in the feature selection process
improves the estimations.

A. Data availability

The most common sensor technology on cycle paths
in the Netherlands is inductive loop sensors, usually in a
configuration as shown in Fig. 3. Two sensors are installed,
one 20 meters at the upstream of the traffic light and one
downstream, at the stop-line. Currently this technology is
simply used to request a green light if at least one bike is
on the link, but it does not count the amount of bicycles.

Fig. 3: Loop sensors configuration on cycle paths

The location used as a case study is a signalized in-
tersection, located in the city of Utrecht, the Netherlands,
which has very busy morning peak hours. The upstream loop
sensor reported over one thousand bikes per hour, during the
morning peak. The data from loop sensors were collected
over 5 working days, from Monday to Friday, for 4 morning
hours, from 6.30 a.m. to 10.30 a.m., and 4 afternoon hours,
from 2.30 p.m. to 6.30 p.m.. Overall, 38 hours of loop sensor

data (i.e. on-off continuous signal) and its corresponding
traffic light signal and camera footage of a 4-hour sample,
were made available from the municipality of Utrecht.

B. Feature Definition
Based on the data availability of inductive loop sensors

and the insight on the first order influencial variables (from
the conceptual model), features that carry information on
inflow, outflow, local density, traffic signal and speed have
been defined. In order to deploy the estimations in real-
time applications, we chose δt to be 30 seconds. In total
14 features are defined for each observation period. Table I
lists all the defined features and their corresponding variable
of the conceptual model.

TABLE I: list of defined features and corresponding variables

N. Defined Feature Conceptual model variable
1 Occupancy Up local density
2 Occupancy Down local density
3 Bike Passes Up inflow
4 Bike Passes Down outflow
5 Red Occupancy Down traffic signal & local density
6 Green Occupancy Down traffic signal & local density
7 Switch traffic signal
8 Transit traffic signal
9 Occupancy Up - Green Occupancy Down traffic signal & local densities

10 Bike Passes Up - Bike passes Down inflow & outflow
11 Occupancy Up / Occupancy Down local densities
12 Sum of Speeds local speed
13 Sum of Occupancies approx. avg density
14 Occupancy Up - Occupancy Down local densities

Hereafter, we explain how the fatures in Table I were
obtained:

• Occupancy is the percentage of time, within one ob-
servation period, that the loop sensor is occupied by a
bike passing or standing on top of it.

• Bike passes measures the number of times the sensor
signal has changed within one observation. This is a
lower bound estimation of the number of bikes that have
passed (i.e. bicycle flow).

• Red or Green Occupancy represents occupancy in-
formation when the traffic light is either red or green.
These features are defined only for the downstream loop
because cyclists stop on top of it when the traffic light is
red. This results in a high occupancy level downstream,
during a red light, that does not reflect a high bicycle
density, whereas high occupancy level during the green
signal most probably reflects high bicycle density.

• Switch and Transit features carry information on the
traffic light signal. Switch is a percentage that gives
information on when, during an observation period, the
traffic light last switched from green to red or vice versa.
Transit is a binary feature indicating the traffic light
state, at the end of each observation period.

• Speed feature is a representative approximation of
velocities at the sensor location. Speed can be derived
from the ratio between flow and density [4]. We approx-
imate flow with bike passes and density with occupancy.

To visualize the relation of each defined feature with the
true accumulation of bikes on a signalized link we report



scatter plots with 120 observation periods from one morning
hour, for which the ground truth has been manually extracted.
Above each scatter plot we report the correlation coefficient
between the two variables.

Fig. 4: Relation between features and bicycle accumulation

As expected, Bike passes Up (approximation of inflow)
has positive correlation to bike accumulation and Bike passes
Down (approximation of outflow) a negative one. Upstream
and downstream occupancy and downstream occupancy dur-
ing red light have a positive correlation, since occupancy is
an approximation of local densities. Moreover, features 9 and
10, which respectively represent the difference between up-
stream and downstream densities and the difference between
the inflow and outflow have a strong positive correlation
to the bicycle accumulation. This correlation overview will
serve as a starting point for feature selection.

C. Feature Selection

From our observations, applying a clustering algorithm
directly over all the 14 features does not lead to satisfying
results, and the algorithm is not able to cluster together points
with similar accumulation. A selection is needed to improve
the unsupervised estimation. We propose and implement two
different feature selection approaches: 1) a pure data science
approach and 2) a domain knowledge approach. The aim
is to understand if data driven techniques select the same
features as would traffic engineers and if their selections
perform differently.

Following a data science approach, we have defined some
thresholds, based on observed correlations to bicycle accu-
mulation and among features. This approach first selects the
features with a high correlation to the dependent variable, by
means of a threshold T1 ∈ {0.3, 0.4, 0.5, 0.6}. Then it drops
out all the redundant features by excluding the ones that have
a high correlation, with other selected independent variables,

by means of a second threshold T2 ∈ {0.5, 0.7, 0.9}.
Combinations of selected features are ranked based on the
average silhouette value S [10]. Top ranking combinations
are reported in Table II. The silhouette value is calculated
as:

S =

m∑
i=1

s(i) (1)

s(i) =
b(i)− a(i)

max[a(i), b(i)]
(2)

Where:
• a(i) is the average distance between point i and all

points within its same cluster
• b(i) is the smallest average distance of point i to all

points in any other cluster
• m is the number of all points in all clusters
The silhouette coefficient gives an indication of how

similar a point (i.e. an observation period) is to points within
its own cluster and how different it is compared to points in
other clusters. Hence, this coefficient gives a quality score on
how well each observation period has been clustered, given
the selected features. The silhouette value is also used to find
the best number of clusters, given the selected features.

TABLE II: feature combinations selected based on pure
data science approach (only combinations with S ≥ 0.4 are
reported)
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Alternatively, from a domain knowledge perspective, we
look at the conceptual model (Fig. 2). The model shows
that inflow and outflow have a direct influence on bike
accumulation, for this reason the difference in upstream and
downstream bicycle counts (feature 10) is selected. As seen
in Fig. 2, local densities can influence several variables
including bicycle accumulation. As a feature to represent
densities, feature number 9 is selected because it incorporates
the information of both up and downstream densities and also
part of the traffic signal downstream. In particular, feature
9 defines the difference between the occupancy upstream
and occupancy downstream during a green traffic light.
Including more correlated features did not improve clustering
performances, thus, from now on, when referring to the



features selected through a knowledge-base approach we
refer to features 9 and 10.

D. Clustering

As unsupervised methodology, we apply k-means cluster-
ing. This is the starting point for exploring unsupervised
machine learning in many domains due to its simplicity
and low computation time [7]. K-means algorithm finds a
predetermined number of clusters in a dataset. Data are
grouped into clusters by minimising the distance between
each point and the mean (i.e. centroid) of the assigned
cluster. Many distance functions can be used; however, it
is common practice for the k-means to use the euclidean
distance between points and the centroid. The number of
clusters is decided based on the highest silhouette value for
a given feature data set. The data science approach, tests
2,3,4,5 number of clusters and selects the one that returned
the highest silhouette value.

E. Interpretation

We interpret the unsupervised learning methodology by
using ground truth of 120 observation periods of one morning
hour. This sample of ground truth is an unbiased represen-
tative of our dataset, because it includes a wide range of
accumulation values (0 to 30 accumulated cyclists) and not
only low accumulation values, as it is the case for other hours
within a day.

The interpretation step uses box plots showing bicycle
accumulation values, of a sub sample of the dataset, con-
tained in each identified cluster. Fig. 5 reports box plots
for the best feature combination (i.e. highest S) of the
data-approach and knowledge-approach. The best feature
combination based on the data-approach results to be one
feature: Red occupancy Down. Clustering performed on this
feature vectors results in two classes which have different
mean values, but overlap with respect to the amount of
cyclists, as shown in Fig. 5a. Whereas, the knowledge-based
approach clusters observations into 4 classes (which we name
very low, low,medium and high accumulation) with lower
overlap in values (Fig. 5b).

In general, four classes are more valuable than two, from a
traffic engineering perspective. The knowledge-based feature
selection clearly distinguishes the high and medium bicycle
accumulation class, from other classes (i.e. there is low over-
lap between accumulation in the high and medium classes).
The low and very-low accumulation class represent similar
true accumulation levels. However, from a traffic engineering
perspective it is more crucial to have an accurate estimation
of the high and the medium accumulation class, compared
to the low and very low accumulation. As a fact, it is the
high accumulation levels that require real time ITS solutions.
Comparing the figures, it can be inferred that the better
feature combination is the one selected with a knowledge-
base approach.The data driven feature selection does not
perform as well as the domain knowledge selection. The
reason behind such discrepancy requires further investigation
but one reasoning may be that the data driven approach

selects features that separate points in space better than the
features selected with domain knowledge. However those
points are separated into clusters which do not relate to
bike accumulation but some other, less interpretable, traffic
variable. In the following, we proceed by comparing the
clustering results from the knowledge-based approach with
other accumulation estimation methods.

(a) Data-based feature selection

(b) Knowledge-based feature selection

Fig. 5: Interpretation of the 2 feature selection approaches

F. Evaluation

This section shows how estimation based on the proposed
clustering methodology performs compared to the two fol-
lowing approaches:

• Estimation without correction, which is based on the
conservation of bicycle law:
Acc(i) = Acc(i− 1) + Inflow(i)−Outflow(i)
where i is the i-th 30-sec period and Acc(i) is the
accumulation of bikes at the end of the i-th period.

• Benchmark estimation, which is based on the assump-
tion that all the accumulated cyclists discharge within
the first green light phase they encounter
Acc(i) = Inflow(i)−Outflow(i)

This last assumption is based on empirical observations
indicating that all accumulated cyclists discharge within the
next green light. This means that if we compute estimations
every traffic light cycle (start of the green phase), then the
accumulation can be calculated as inflow minus outflow.
It seems reasonable to extend this assumption to estimate
accumulation over fixed time intervals of 30 seconds.

To evaluate the methodology, clustering estimations are
represented by the mean accumulation value of the cluster



Fig. 6: Evaluation of clustering-based estimation: comparison of 3 accumulation estimation methods

they are part of. Comparison of the methods in Fig. 6
indicates that unsupervised learning methodology has two
advantages: it avoids the cumulative error problem and it
reduces the means square estimation error compared to
the benchmarking method. From Fig. 6 it is evident that
estimation based on conservation of bicycle law, leads to a
huge cumulative error due to the inaccuracies in the down-
stream loop counts. Fig. 6 clearly illustrates how closely the
estimates from the other two methods, benchmark estimation
and clustering-based, follow the ground truth. If we compare
these two methodologies based on the mean square error
(MSE), the clustering methodology overall performs better,
by having MSE=13.75 compared to MSE=17.64 resulted
from the benchmark estimation approach.

IV. CONCLUSIONS

This work proposes a methodology to estimate the bicycle
accumulation levels on a signalized link by using an unsu-
pervised learning technique. The estimation of accumulation
levels based on this unsupervised learning method does not
require large amounts of ground truth to train the model.
Field testing of the methodology on real data indicates an
accurate estimation performance with low data requirements,
which make it an easily applicable estimation method.

Results from the interpretation step show that incorporat-
ing traffic domain knowledge is important to select features
for clustering. Instead, applying a pure data driven feature
selection, based on correlation values and silhouette coeffi-
cient did not show valuable clustering of the data.

Thanks to loop sensor data, which is largely available in
urban cycle paths of the Netherlands, a clustering technique
can identify the levels of bicycle accumulation. Such in-
formation can be used as real time traffic information over
an urban network or transmitted to traffic responsive signal
controlers, in order to optimally determine green and red
light phase of the signal. Clustering can only estimate levels
of accumulation and not the exact amount of accumulated
bikes. However this characteristic makes the method suitable
to be used in many data driven control measures that,
for computation reasons, do not require exact but average
accumulation levels [6].

Future works should assess how the difference between
car and bike data, might affect performance of the method

if applied to car queue estimation. Moreover the number
of clusters and their interpretation highly depends on the
amount and quality of the ground truth data. To overcome
this limitation, it is recomended to apply and evaluate the
methodology to more than one intersection, with different
traffic pattern. Finaly, it is of interest to consider different
unsupervised techniques, such as the fuzzy clustering to
overcome some of the limitations of the k-means method.
So far, our focus is on using largely available data (such as
inductive loop sensors) without the need of deploying new or
more sophisticated bicycle sensor on the roads. However, the
proposed unsupervised approach can be applied in different
settings and with various data sources.

REFERENCES

[1] Salem Alelyani, Jiliang Tang, and Huan Liu. Feature selection for
clustering: A review. In Data Clustering: Algorithms and Applications,
2013.

[2] Mehmet Ali Silgu and Hilmi Berk Çelikoğlu. K-means clustering
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