
This work was accepted for presentation at the IEEE Intelligent Transportation Systems Conference (ITSC) 2019.

MultiDepth: Single-Image Depth Estimation via Multi-Task
Regression and Classification

Lukas Liebel, Marco Körner

Computer Vision Research Group, Chair of Remote Sensing Technology
Technical University of Munich, Germany

lukas.liebel@tum.de

We introduce MultiDepth, a novel training strategy and convolutional neural network (CNN) architecture that allows approaching
single-image depth estimation (SIDE) as a multi-task problem. SIDE is an important part of road scene understanding. It, thus,
plays a vital role in advanced driver assistance systems and autonomous vehicles. Best results for the SIDE task so far have been
achieved using deep CNNs. However, optimization of regression problems, such as estimating depth, is still a challenging task. For
the related tasks of image classification and semantic segmentation, numerous CNN-based methods with robust training behavior
have been proposed. Hence, in order to overcome the notorious instability and slow convergence of depth value regression during
training, MultiDepth makes use of depth interval classification as an auxiliary task. The auxiliary task can be disabled at test-time
to predict continuous depth values using the main regression branch more efficiently. We applied MultiDepth to road scenes and
present results on the KITTI depth prediction dataset. In experiments, we were able to show that end-to-end multi-task learning with
both, regression and classification, is able to considerably improve training and yield more accurate results.

1 Introduction

Depth estimation is an important part of scene understanding
in various domains. Traditionally, depth maps are derived from
active sensor measurements, such as light detection and ranging
(LiDAR) point clouds, or from stereo images. However, in the
absence of observations allowing for the explicit reconstruction
of pixel-wise depth values for a corresponding image, methods
for directly estimating depth from a single monocular image
are required. A typical application lies in robotics, most promi-
nently autonomous vehicles, where a high degree of redundancy
is of vital importance. Figure 1 exemplarily shows the result of
single-image depth estimation (SIDE) for a road scene.

Predicting depth from a single image has seen substantial im-
provements due to the rise of deep learning-based methods.
First approaches to SIDE for indoor scenes using deep convolu-
tional neural networks (CNNs) were presented by Eigen et al.
[11, 10]. Ever since then, various methods for the prediction
[28, 35, 30, 34, 21, 53] and evaluation [25] of depth maps for
indoor scenes have been proposed.

SIDE in unstructured outdoor environments poses an even
greater challenge. Annotated training data is hard to obtain,
as RGB-D cameras are not able to provide data at distances
of more than 10 m and their low resolution is not able to cap-
ture scenes crowded with differently sized objects. Available
datasets [14, 9, 22] use measurements from LiDAR sensors to
accumulate depth maps as ground-truth, which are, however,
naturally sparse. They can serve as an additional input for

Figure 1: Depth prediction (bottom) for a single RGB image (top) from the
KITTI depth prediction benchmark [45, 14]. Auxiliary depth interval classifica-
tion result (middle) used during training to support the depth value regression
via optimization of a multi-task objective.

depth completion [7] or as labels for actual depth prediction.
Utilizing stereo image pairs and a photo-consistency loss for
semi-supervised training to estimate disparities is another op-
tion used in recent approaches [15, 47, 27]. The application
of SIDE in advanced driver assistance systems (ADAS) and
autonomous vehicles requires high precision and robustness.
Approaches to this challenging task have been proposed [13, 23,
43, 12, 18, 31, 26, 29, 50], but still require improvement for the
application in autonomous driving [43].

Estimating continuous depth values is a typical regression task.

1

ar
X

iv
:1

90
7.

11
11

1v
1 

 [
cs

.C
V

] 
 2

5 
Ju

l 2
01

9



However, by discretizing depth space into intervals, it can be
cast as a classification problem [1, 19, 12]. While this is less
intuitive, classification methods have been found to converge
faster and more reliably. This was shown by Fu et al. [12], who
advanced this approach by taking into account the ordinal char-
acteristic of depth intervals and achieved top-ranking results in
the KITTI depth prediction benchmark [45, 14]. Combining the
properties of both tasks, i.e., depth regression and classification
of depth intervals, in order to exploit their individual advantages
yields a multi-task problem.

Multi-task learning [3, 2] enables training of CNNs that produce
multiple outputs in a single round of inference. In his review
article, Ruder [40] gives an extensive overview of CNN-based
multi-task learning. Driven by advances in methodology [41,
23, 36, 17, 52], multi-task learning has become increasingly
popular in computer vision. It has successfully been applied
to numerous applications. In road scene understanding, prob-
lems that have been tackled using multi-task learning include
object detection and bounding box regression [44, 6, 4], as
well as SIDE in combination with surface normal estimation or
semantic segmentation [37, 49, 10, 38, 47, 23].

A different approach to employing multi-task learning is the
utilization of auxiliary tasks [33, 8, 46] that merely serve as
additional supervision to the network during training and are
discarded during test-time. This approach can be seen as an
extension to comprehensive regularization terms in loss func-
tions as used by Li et al. [32]. It could be shown that by adding
auxiliary tasks to a network the performance of the main task
increases [33, 8].

Considering this prior work, we approach SIDE by posing it
as a multi-task problem with a main regression task and an
auxiliary classification task. As both tasks use depth measure-
ments as ground-truth, with minor pre-processing applied in
order to segment the continuous depth space into intervals for
classification, the auxiliary supervisory signal does not require
additional annotations. By adding the auxiliary classification
task as a regularizer, we expect training to converge faster and
yield better results. Closely related to the idea of casting SIDE
to a classification task is the deep ordinal regression network
(DORN), proposed by Fu et al. [12]. They do, however, use
ordinal regression instead of classification and, furthermore, do
not treat it as an additional task. Kendall et al. [23] propose
uncertainty-based weighting of individual tasks, which we build
upon, but do not make use of auxiliary tasks. Auxiliary tasks
have been utilized before [33, 8, 46], however not with posing
the same task in two different ways. In contrast to Gurram et al.
[19], who use depth interval classification as pre-training, we
train for regression and classification in an end-to-end manner.

The main contribution of this paper is the proposal of Multi-
Depth, a novel multi-task approach to SIDE which incorporates
both regression and classification. This training strategy facil-
itates fast and robust convergence. We, furthermore, provide
an implementation of the proposed approach based on PSPNet
[51] and uncertainty-based weighting [23] that we used to show
the superiority of training with an auxiliary task as compared to

basic regression.

2 Depth Prediction Using a Multi-Task
Regression and Classification Loss

Predicting depth maps from single images using a CNN requires
learning to estimate continuous depth values for each pixel. This
makes SIDE a prime example for regression tasks. A common
approach to this problem is, thus, optimizing a CNN by the
means of mean squared error (MSE) or one of its variants.
However, it has been found that the convergence is slow and
tends to yield suboptimal results [12].

In contrast to this, SIDE can be posed as a classification problem
using quantized depth values [1, 19, 12]. This allows employ-
ing state-of-the-art semantic segmentation methods. Semantic
segmentation, as another core task of many computer vision
applications, such as autonomous driving, has been successfully
tackled in recent years. State-of-the-art CNN architectures for
semantic segmentation [51] most commonly utilize SoftMax
cross entropy loss which is renowned for its stable convergence
towards well-performing local minima. Exploiting the advanta-
geous properties of semantic segmentation methods for SIDE,
however, comes at the price of inevitable quantization errors.

Combining the advantages of both, regression and classifica-
tion, is a promising approach to the accurate estimation of depth
values with stable convergence. In order to achieve this goal,
we propose MultiDepth, a multi-task training procedure for
jointly learning two representations of a depth map, exemplarily
shown in Figure 1. As network architectures for SIDE often
use encoder-decoder structures, a second branch for the classi-
fication of depth intervals can easily be added as an auxiliary
decoder [33, 8]. The auxiliary decoder is only active during
training and can alternatively be disabled during test-time to
make inference more time and memory efficient, or produce
an additional redundant depth map that can be used to enhance
or verify the regression result. By sharing a major part of the
network weights, a common and robust representation for both
tasks is learned during training. Especially the encoder part,
which is expected to learn a rich representation of the input
data, should be shared in order to encourage this behavior. The
decoders, on the other hand, only contain few layers to extract
and reshape task-specific information from the shared encoded
features. State-of-the-art network architectures often use very
deep classification networks as a backbone for deep feature
extraction in the encoder, which, therefore, usually accounts for
a vast majority of the parameters.

2.1 Efficient Optimization of Depth in Log-Space

In the context of autonomous driving, even small errors in
distance estimates for objects close to the camera—and hence
the vehicle—may prove fatal. Distances for faraway objects, on
the other hand, only need to be estimated with lower accuracy.
This requirement can be considered by estimation in non-linear
space. Modern methods for CNN-based SIDE use sophisticated
loss functions in order to incorporate such desired properties.
One example of an objective function that considers a non-linear

2



3

E
N

C
O

D
E

2048

POOL

CONV

CONV

CONV

CONV

U
PS

A
M

PL
E

4096

SKIP

C
O

N
V,

B
N

,
R

E
L

U
,D

R
O

PO
U

T

512

C
O

N
V

1

POOL

CONV

CONV

CONV

CONV

U
PS

A
M

PL
E

4096
SKIP

C
O

N
V,

B
N

,
R

E
L

U
,D

R
O

PO
U

T

512

C
O

N
V

ncls

Lreg

Lcls

1
1

1
1

W
E

IG
H

T

wreg

W
E

IG
H

T

wcls

Lmt

Shared ResNet-101 Encoder
(majority of parameters)

Task-Specific Decoders Using Pyramid Pooling

(top: main regression task, bottom: auxiliary classification task)

Learned Weighting

(for multi-task loss)

Figure 2: Network architecture for the proposed MultiDepth approach featuring a shared ResNet-101 encoder with dilated convolutions and task-specific decoders
including pyramid pooling for the main regression and the auxiliary classification task. The multi-task loss is constructed from the contributing single-task losses
utilizing learned weighting terms, which represent task uncertainties.

weighting of errors in log-space [11] is commonly used as a
metric for scoring depth estimation results. We use the scale
invariant logarithmic error (SILog)

SILog(D, D?) =
1
n ∑

i,j
(log di,j − log d?i,j)

2

− 1
n2

(
∑
i,j

log di,j − log d?i,j

)2

(1)

for comparing predicted depth maps D? = (d?i,j) with n depth
values to the ground-truth D. Utilizing extensive loss functions
for training often yields superior results over more basic ones,
such as the MSE. The latter, however, are less computationally
expensive thus speeding up the training process. While they
might not directly optimize the final objective, they act as a
proxy of reasonable quality [16].

In order to overcome the limitations of both approaches, we
relocate computationally expensive operations to the data pre-
processing stage. Thanks to parallel pre-loading of batches,
this allows us to optimize our objective more directly while
still maintaining the speed and efficiency of traditional loss
functions. Hence, we transform depth values d in our training
data to normalized log-space during data loading. After globally
defining the upper and lower boundaries dmin and dmax, we
calculate the transformed depth as

dlog =
loge (d− dmin + 1)

loge (dmax − dmin + 1)
. (2)

2.2 Regression of Depth Values

In order to extract the desired information from the encoder
features, task-specific decoders can be added to the network.

For the main task, i.e., regression of continuous depth values,
the decoder directly predicts values in normalized log-space.
Few network layers to condense and reshape information along
all dimensions of the feature map are expected to suffice here,
given the rich representation of the input data provided by the
encoder.

2.3 Classification of Depth Intervals

The auxiliary task, i.e., classification of discrete depth ranges, re-
quires corresponding target labels. In order to partition the con-
tinuous depth space, we set a number of intervals ncls. Choosing
a relatively low number of classes ensures stable convergence
while still preserving enough detail to support the regression
part of the network with basic depth perception. While Fu et al.
[12] report 80 intervals to be the optimum for their ordinal re-
gression method, this is not directly applicable to our approach
in which the classification task merely supports the regression
branch of the network. Hence, trading high quantization errors
for stable convergence and robust performance is desirable in
our case. Following our general concept of estimating non-
linearly scaled depth values and existing approaches [12], we
set our intervals to be uniformly distributed in normalized log-
space.

Apart from different target labels and a necessary change in
the output feature dimension from one to ncls, the decoder for
the classification task closely resembles the structure of the
regression branch. Keeping the task-specific branches shallow,
and thus the ratio of shared vs. individual parameters high en-
courages the learning of high-level features that are suitable for
both tasks.

3



2.4 Multi-Task Optimization

Jointly training both tasks requires combining the individual
losses Ltask to a single multi-task objective Lmt, subject to op-
timization. A naïve approach to this is simply summing up
Lmt = Lreg +Lcls. The range and variance of values produced
by Lreg and Lcls may differ significantly, especially since they
belong to different families of loss functions. Hence, weighting
with wreg and wcls, such that Lmt = wreg · Lreg + wcls · Lcls
allows for adjusting the contribution of each loss. One possible
way of finding appropriate values for the weights is treating
them as hyperparameters to be manually tuned. This is a tedious
process that results in a set of constant weights that might be
suitable in general, but fail to adapt to changes during training.
Therefore, automatically optimizing a set of dynamic parame-
ters is a promising approach.

Existing methods propose to weight tasks with respect to their
homoscedastic uncertainty [23] or difficulty [17]. We follow
the former and introduce weighting parameters wreg = 0.5 ·
exp(−s2

reg) and wcls = exp(−s2
cls) with stask = loge(σ

2
task).

While σtask represent the actual task uncertainties, we optimize
for stask, due to numerical stability, as advised by the original
authors [23]. Since minimizing Lmt = wreg · Lreg + wcls · Lcls
favors the trivial solution wreg = wcls = 0, they furthermore
propose to add regularization terms to the weighted single-task
losses. Adding such terms rtask = 0.5 · stask yields our final
multi-task loss

Lmt = wreg · Lreg + rreg + wcls · Lcls + rcls . (3)

3 Experiments

To evaluate our approach, we implemented a deep CNN and
trained it on a large road scene understanding dataset.

3.1 Network Implementation

As networks for SIDE and semantic segmentation share typical
properties, such as their feed-forward auto-encoder structure,
architectures are often shared across both tasks [28, 30]. Fur-
thermore, our auxiliary pixel-wise depth interval classification
task, in fact, is a segmentation task. Therefore, we deem well-
performing deep CNN architectures for semantic segmentation
suitable as a basis for our implementation.

With its proposed pyramid pooling module, the PSPNet [51]
is able to accumulate information from spatial context. The
very deep ResNet-101 [20] used as a backbone for the feature
encoder, on the other hand, provides the necessary capacity to
learn a rich and robust representation of the input data. The
network also features a natural encoder-decoder structure using
pyramid pooling and dilated convolutions [5, 48] to preserve
high-resolution feature maps up to the output. As a result, the
PSPNet achieves state-of-the-art results on various challenging
semantic segmentation datasets [51].

Since these properties match with our requirements, we re-
implemented their network architecture in PyTorch and adapted
it to our multi-task approach. An overview of our final Multi-
Depth network architecture is shown in Figure 2. The auxiliary

(a)
5 m 80 m

(b)

Ground-truth available: 0% 52%

(c)

2 116
0

2.5

5

2 116
0

2.5

5
·108·108

Depth (in m)

O
cc

ur
an

ce
(i

n
px

)

(d)

Figure 3: Sample from the KITTI depth prediction dataset [45, 14] with RGB
image (a) and sparse ground-truth depth (b). Distribution of (c) available
ground-truth depth values per pixel in the training set with an apparent lack of
measurements in the upper part of the images, and (d) of valid depth values in
the training set.

loss used in the original implementation of Zhao et al. [51] was
not implemented.

Parameters between both tasks are shared through the ResNet
encoder, which accounts for approximately 50% of the total
number of parameters in the network. Sharing a majority of
parameters between both tasks enforces the learning of a com-
mon representation in the 2048-dimensional feature map. Since
both tasks represent a perception of depth, we expect these
features to already contain high-level information that strongly
hints towards the final outputs. This representation needs to be
condensed for each task. The weights of the pyramid pooling
modules, the following blocks containing a single convolution
(along with batch normalization, ReLU activation, and dropout),
and the final convolutional layers for reshaping the intermediate
representation to the required output format are task-specific.
We use skip connections as in the original PSPNet to retain
spatial structure.

3.2 Training and Validation Data

Predicting depth with high robustness, redundancy, and accu-
racy is especially important for autonomous driving. As Multi-
Depth is designed to fulfill these conditions, we chose to train
and evaluate our method on images of road scenes. Amongst the
most popular and comprehensive datasets for road scene under-
standing is the KITTI dataset [14], which provides ground-truth
for several highly relevant tasks. The KITTI depth prediction
dataset [45, 14] provides sparse point clouds, acquired using
LiDAR sensors. The dataset contains roughly 86 000 training
samples. Ground-truth depth values, as exemplarily shown in
Figure 3b, are available for roughly 12% of the pixels in each

4



10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

2

2.2

2.4

10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

2

2.2

2.4

Learning Rate (α)

M
ul

ti-
Ta

sk
L

os
s

(L
m

t)

Figure 4: Experimental estimation of a suitable learning rate. The shaded
interval of learning rates decreases the loss during training, the dashed line
marks the selected learning rate.

image on average. For some samples, however, this number
drops to only 0.8%. Figure 3c shows the unequal spatial distri-
bution of depth measurements with a significant lack of data for
the upper part of the images.

We train on the full set of training images and validate on the
1000 images of the provided “val_selection_cropped” set. Even
though the evaluation of our approach is, naturally, largely based
on relative comparisons and ablation studies, we still want to
evaluate MultiDepth on a challenging dataset with respect to
the state of the art. Hence, we score our final results on the
official KITTI depth prediction benchmark [45].

3.3 Data Augmentation and Scaling

To produce appropriately sized input images for our net-
work, we implemented random cropping with a resolution of
128× 128 px to 256× 256 px, depending on the respective ex-
periment. While both of the used patch sizes are relatively large,
using smaller patches leads to an increasing number of images
with a distinct lack of ground-truth information (cf. Figure 3c).
We refrained from scaling images as a data augmentation mea-
sure. This allows us to exploit the fully-convolutional nature
of our network during inference since the size of objects in the
cropped patches does not differ from the original full-sized im-
ages. Counterintuitively, horizontal flipping appears to improve
results even for road scenes, where differences in the left and
right side of the images are systematic and meaningful [39].

Depth values were scaled according to Equation (2) with
dmin = 2 m and dmax = 125 m, following the distribution
of depth values in the training dataset (cf. Figure 3d). While
the lower bound was tightly set, in order not to waste accuracy
in the critical lower part of the normalized log-space, the up-
per bound is more generous, to allow for higher depth values
which account for very little accuracy in the normalized log-
space. Class-labels for the classification branch of the network
were derived by binning the scaled depth values to intervals in
[dcmin, dcmax], equally spaced in normalized log-space. By set-
ting the lower and upper clipping planes dcmin and dcmax for the
quantization to dcmin > dmin and dcmax < dmax, we simplify
the auxiliary task. As the classification task is only meant to
support training, this helps to keep the auxiliary task sufficiently
easy to train.

0 1 2 3 4 5
0.15

0.2

0.25

0.3

0.35

0.4

0 1 2 3 4 5
0.15

0.2

0.25

0.3

0.35

0.4

Training Iterations (·105)

Pe
rf

or
m

an
ce

(S
IL

og
)

2 4 8 16 32 64ncls =

Single-task classification baseline (ncls = 32)
Single-task regression baseline

0 1 2 3 4 5
0.15

0.2

0.25

0.3

0.35

0.4

0 1 2 3 4 5
0.15

0.2

0.25

0.3

0.35

0.4

Training Iterations (·105)

Pe
rf

or
m

an
ce

(S
IL

og
)

2 4 8 16 32 64ncls =

Single-task classification baseline (ncls = 32)
Single-task regression baseline

Figure 5: Validation results for single-task regression and classification
vs. multi-task training with different ncls for the auxiliary classification task.
The regression baseline diverges quickly at first and converges to an undesirable
local minimum afterward. As expected, the classification baseline converges
fast and stable. Multi-task training with ncls ≥ 2 considerably improves perfor-
mance over both baselines. Best results achieved for ncls ≥ 4.

3.4 Training Procedure

Since ground-truth for both of our tasks is sparse, we imple-
mented a sparse MSE loss for the regression task and a sparse
SoftMax cross entropy loss for the classification task. The multi-
task loss, which is subject to optimization, was constructed as
presented in Equation (3). The weighting parameters for the
multi-task loss were initialized as sreg = scls = 1 and opti-
mized with the network parameters. Kendall et al. [23] point
out the robustness of the weighting parameters with regard to
their initialization, which our experiments confirmed.

Settings for batch and patch sizes are coupled and bound by
each other in terms of GPU memory consumption. Due to the
sparsity of the ground-truth data, larger patches are favorable
here. The optimization procedure, on the other hand, generally
benefits from larger batch sizes. Using a batch size of 32 for
our experiments with a patch size of 128× 128 px realized the
best trade-off in our experiments. We used Adam [24] with
β1 = 0.9 and β2 = 0.999 and a weight decay λ = 0.0001 for
optimization.

The probably most crucial hyperparameter for the optimization
of a deep CNN is the learning rate α [42]. We followed the
approach of Smith [42], who propose to run training for few
iterations, i.e., optimization steps, with increasing learning rate.
By starting from minuscule learning rates and exponentially
increasing them to excessively high values, we cover the full
space of realistic α for training with only 250 steps of opti-
mization. Repeating this experiment starting from different α
and using varying parameters for the exponential scheduler, we
obtained an α vs.Lmt diagram, shown in Figure 4. Four typical
intervals of α can be observed. Too conservative settings with
α < 10−6 result in a stagnation of Lmt. The second interval of
values 10−6 < α < 10−3 yields a decrease of Lmt, marking
the desired range. When surpassing this interval, Lmt no longer
decreases and finally diverges for α > 10−1. From these find-
ings, we deem learning rates in the second interval as suitable
and selected α = 10−4, which is close to the steepest decent of
Lmt, for our experiments. We applied a polynomial scheduler
with γ = 0.9 to slowly decay α to zero over 5 · 105 training

5



0 1 2 3 4 5
0.1

0.15

0.2

0.25

0 1 2 3 4 5
0.1

0.15

0.2

0.25

Training Iterations (·105)

Pe
rf

or
m

an
ce

(S
IL

og
)

Equal Tuned Learned

0 1 2 3 4 50 1 2 3 4 5

Training Iterations (·105)

0–256 m 2–125 m

0 1 2 3 4 50 1 2 3 4 5

Training Iterations (·105)

128 × 128 px 256 × 256 px

(a) (b) (c)
Figure 6: Validation results using different settings for (a) multi-task weights, (b) depth value scaling, and (c) patch size. Models using learned weighting,
normalization bounds adapted to the data distribution, and large patches for training yield best results with weighting being the most important factor.

−10

−5

0

−10

−5

0

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0 2.5 5

0

0.5

1

0 2.5 5

0

0.5

1

0 2.5 5
0

1

2

0 2.5 5
0

1

2

0 2.5 5
−4

−2

0

2

0 2.5 5
−4

−2

0

2

s r
eg s c
ls

·10−4·10−4
α

·10−2·10−2

L r
eg

Training Iterations (·105)

L c
ls

L m
t

0 1 2 3 4 5
0.1

0.15

0.2

0 1 2 3 4 5
0.1

0.15

0.2

Training Iterations (·105)

V
al

id
at

io
n

(S
IL

og
)

Regression Classification

Figure 7: Training results for the final model configuration showing an initial
phase of adjusting the weights stask according to the uncertainty of Ltask fol-
lowed by a continuous decrease of both. The combined Lmt is optimized using
a decaying α. Validation results show the stable convergence of both outputs
with the regression yielding superior results due to quantization errors in the
auxiliary classification output.

iterations, which roughly equals 90 epochs. Note that due to
random cropping of patches from the input data, the number of
epochs is not a very well-suited measure here.

3.5 Ablation Studies

Evaluation of our approach with learned and dynamic weight-
ing between the differently posed depth estimation tasks that
mutually support each other requires a careful protocol. To
analyze the proposed approach, we conducted a number of abla-
tion studies and present the results in the following subsections.
Training was conducted from scratch without using pre-trained
weights for the ResNet encoder. Networks were trained from
scratch on a simple desktop machine, equipped with a single
NVIDIA GeForce 1080Ti GPU, in approximately 5 days.

3.5.1 Number of Classes

To obtain a baseline result, we trained the regression branch of
our network without the additional classification branch. As

seen in Figure 5, the single-task results get better at first but
diverge after iteration 105. Convergence towards an undesirable
local minimum using vanilla regression has also been reported
by Fu et al. [12]. We also trained a model for single-task clas-
sification by removing the regression branch from the network
architecture. As expected, casting SIDE to a depth interval
classification task eliminates the problem of slow and unstable
convergence and yields much better results overall.

Following our MultiDepth approach by adding an auxiliary
classification branch to the regression network helps to stabi-
lize training, even when using as little as two classes. This
result is related to the observations of Li et al. [32], who in-
clude a term for foreground/background separation in their loss
function. Increasing the number of classes further improves
stability during training and the overall performance. However,
using ncls ≥ 4 only yields minor improvements. Another no-
table outcome is that using more classes than necessary does
not significantly degrade results. It does, however, yield a sec-
ondary output that suffers from far lower quantization errors
and could, thus, potentially be used as a redundant signal. An
example of both outputs is shown in Figure 1. Models with
4 ≤ ncls ≤ 64 achieved almost identical results on the valida-
tion set. We selected ncls = 32 for further experiments due to
best convergence.

3.5.2 Multi-Task Weighting

In order to evaluate the influence of learned weights [23] on the
training process, we ran additional experiments with equally
weighted tasks and manually tuned weighting terms. Figure 6a
shows the training progress, evaluated on the validation set, for
configurations with ncls = 32 (cf. Section 3.5.1). The baseline
with fixed and equal weights for both tasks converges to an
unstable local minimum and its best result is significantly worse
than the performance of the model trained with learned weights.
Manually tuned pairs of fixed weights led to much better results
compared to the equally weighted baseline, but still perform sig-
nificantly worse than the learned dynamic weighting, as seen in
Table 1. In our experiments, learned sets of weights always out-
performed manually tuned weights, showing the effectiveness
of this technique. Note that manual tuning becomes increas-
ingly complex when adding more tasks [23, 33], but even for
the limited set of tasks used in our experiments, learning the

6



Figure 8: Qualitative evaluation of our estimation results for unseen KITTI depth prediction test images [45, 14] (first row) with results of the auxiliary
classification task (second row), results of the main regression task (third row) and color coded error images of the regression result compared to the sparse
LiDAR point cloud (fourth row).

weighting terms saves precious computation time while intro-
ducing as little as two additional parameters to the optimization
problem.

3.5.3 Log-Normalization of Depth Values

In the data pre-processing stage, which was done online in paral-
lel threads, we scaled the depth values according to Equation (2).
We conducted dedicated experiments on how setting the limits
dmin and dmax for the normalization influences the quality of
the final results. We set them according to the minimum and
maximum depth present in the dataset (cf. Figure 3d), which is
a good estimate of real-world conditions, and compared them to
scaling from 0–256 m, which are the theoretical bounds for the
depth encoding in the KITTI data format. Again, both training
runs were conducted using ncls = 32 (cf. Section 3.5.1) and
learned task weights (cf. Section 3.5.2). The former outper-
formed the latter, as scaling to the relevant range spreads the
numerical precision with respect to data and application. Note
that this relevant range of depth values might differ for other
applications, such as indoor settings.

3.5.4 Patch Size

In a final study, we trained on different patch sizes. As already
noted earlier, this is especially relevant due to the sparse ground-
truth data. In order to show this, we trained on bigger patches of
256× 256 px and report the results in Figure 6c. Since training
with similar settings as in the preceding experiments but a bigger
patch size is more memory intensive, we ran this experiment
on two NVIDIA 1080Ti GPUs using parallelization with batch
splitting and a batch size of 16. Training using bigger patches
outperformed training on smaller ones, which was expected.
The results achieved using this configuration yielded the best
results in our series of experiments and were thus submitted to
the KITTI depth prediction benchmark for final scoring.

3.6 Final Training Results

Based on our experiments (see Section 3.5), we selected the
model with the highest validation score for submission to the

Table 1: Performance of models covering multiple aspects of MultiDepth on
the validation set. Classification results given for ncls = 32. Regression and
classification predictions were inferred in a single pass for the MultiDepth
models. All configurations (with a negligible exception) outperform the single-
task baselines by far.

Experiment Results (SILog)

Method Patch Size Weighting Classification Regression

Baseline 128× 128 px single-task — 25.96
Baseline 128× 128 px single-task 17.22 —
MultiDepth 128× 128 px equal 17.63 19.56
MultiDepth 128× 128 px man. tuned 15.99 15.75
MultiDepth 128× 128 px learned 15.62 14.65
MultiDepth 256× 256 px learned 13.70 12.27

KITTI depth prediction benchmark. Table 1 lists the perfor-
mance of the most relevant configurations. Figure 7 shows the
training progress including the task weights, the learning rate,
single-task and multi-task losses, and results on the validation
set for the outputs of the regression and classification branch.
Since the task uncertainties differ widely, as seen in Lreg and
Lcls, sreg quickly shifted to a suitable range (note that due to
log-scaling in the weighting function sreg < 0 corresponds to
weights close to zero). After a minor initial increase, scls stabi-
lizes and slowly decreases together with sreg over the course of
training to account for the converging single-task losses. Vali-
dation results show the expected superiority of the regression
over the classification results due to quantization errors, good
convergence, and no signs of overfitting.

Depth maps for the images of the anonymous test set were
predicted using the regression branch of the final model and
submitted to the KITTI depth prediction benchmark where they
scored an SILog of 16.05. Top ranking methods achieve compa-
rable to better scores (DORN [12]: 11.77, VGG16-UNet [18]:
13.41, HGR framework [50]: 15.47). Qualitative results, given
in Figure 8, show that our network is able to infer useful depth
maps overall. Note that we did not implement any pre-training
or post-processing in order to enhance the prediction results
since this might interfere with convergence during training—
thus rendering the observation of relative improvements made
using our method impossible.

7



4 Conclusion

We presented MultiDepth, a method for introducing an auxiliary
depth interval classification task to SIDE networks. An imple-
mentation of our network has been applied to the challenging
problem of SIDE in road scene understanding. In extensive
experiments, we showed the benefits of posing SIDE as a multi-
task problem with additional supervision through automatically
derived ground-truth labels.

The single-task regression and classification baselines were
outperformed by far using our method with 32 classes for the
auxiliary classification branch and learned weighting between
the tasks. MultiDepth achieved an SILog of 16.05 on the anony-
mous KITTI depth prediction test set [45, 14], showing that our
training strategy also yields good results overall.

Source code for all experiments presented in this paper is pub-
licly available online1.

References
[1] Y. Cao, Z. Wu, and C. Shen. “Estimating Depth From Monocu-

lar Images as Classification Using Deep Fully Convolutional
Residual Networks”. In: TCSVT 28.11 (2018), pp. 3174–3182.

[2] Rich Caruana. “Multitask Learning”. In: Machine Learning
28.1 (1997), pp. 41–75.

[3] Richard Caruana. “Multitask Learning: A Knowledge-Based
Source of Inductive Bias”. In: ICML. 1993, pp. 41–48.

[4] Florian Chabot, Mohamed Chaouch, Jaonary Rabarisoa, Celine
Teuliere, and Thierry Chateau. “Deep MANTA: A Coarse-To-
Fine Many-Task Network for Joint 2D and 3D Vehicle Analysis
From Monocular Image”. In: CVPR. 2017, pp. 1827–1836.

[5] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L. Yuille. “Semantic Image Segmenta-
tion with Deep Convolutional Nets and Fully Connected CRFs”.
In: ICLR. 2015, pp. 1–14. arXiv: 1412.7062v4 [cs.CV].

[6] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. “Multi-
View 3D Object Detection Network for Autonomous Driving”.
In: CVPR. 2017, pp. 6526–6534.

[7] Xinjing Cheng, Peng Wang, and Ruigang Yang. “Depth Esti-
mation via Affinity Learned with Convolutional Spatial Propa-
gation Network”. In: ECCV. 2018, pp. 108–125.

[8] Sumanth Chennupati, Ganesh Sistu, Senthil Yogamani, and
Samir Rawashdeh. “AuxNet: Auxiliary tasks enhanced Seman-
tic Segmentation for Automated Driving”. In: VISAPP. 2019,
pp. 1–8. arXiv: 1901.05808v1 [cs.CV].

[9] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Re-
hfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke,
Stefan Roth, and Bernt Schiele. “The Cityscapes Dataset
for Semantic Urban Scene Understanding”. In: CVPR. 2016,
pp. 3213–3223.

[10] David Eigen and Rob Fergus. “Predicting Depth, Surface Nor-
mals and Semantic Labels With a Common Multi-Scale Con-
volutional Architecture”. In: ICCV. 2015, pp. 2650–2658.

[11] David Eigen, Christian Puhrsch, and Rob Fergus. “Depth Map
Prediction from a Single Image using a Multi-Scale Deep Net-
work”. In: NIPS. 2014, pp. 2366–2374.

1https://github.com/lukasliebel/MultiDepth

[12] Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Bat-
manghelich, and Dacheng Tao. “Deep Ordinal Regression
Network for Monocular Depth Estimation”. In: CVPR. 2018,
pp. 2002–2011.

[13] Yukang Gan, Xiangyu Xu, Wenxiu Sun, and Liang Lin.
“Monocular Depth Estimation with Affinity, Vertical Pooling,
and Label Enhancement”. In: ECCV. 2018, pp. 232–247.

[14] A Geiger, P Lenz, C Stiller, and R Urtasun. “Vision meets
robotics: The KITTI dataset”. In: Int. J. Robotics Res. 32.11
(2013), pp. 1231–1237.

[15] Clement Godard, Oisin Mac Aodha, and Gabriel J. Brostow.
“Unsupervised Monocular Depth Estimation With Left-Right
Consistency”. In: CVPR. 2017, pp. 6602–6611.

[16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
Learning. http : / / www . deeplearningbook . org.
MIT Press, 2016.

[17] Michelle Guo, Albert Haque, De-An Huang, Serena Yeung,
and Li Fei-Fei. “Dynamic Task Prioritization for Multitask
Learning”. In: ECCV. 2018, pp. 282–299.

[18] Xiaoyang Guo, Hongsheng Li, Shuai Yi, Jimmy Ren, and Xi-
aogang Wang. “Learning Monocular Depth by Distilling Cross-
domain Stereo Networks”. In: ECCV. 2018, pp. 506–523.

[19] Akhil Gurram, Onay Urfalioglu, Ibrahim Halfaoui, Fahd
Bouzaraa, and Antonio M. Lopez. “Monocular Depth Estima-
tion by Learning from Heterogeneous Datasets”. In: IV. 2018,
pp. 2176–2181.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
“Deep Residual Learning for Image Recognition”. In: CVPR.
2016, pp. 770–778.

[21] Minhyeok Heo, Jaehan Lee, Kyung-Rae Kim, Han-Ul Kim, and
Chang-Su Kim. “Monocular Depth Estimation Using Whole
Strip Masking and Reliability-Based Refinement”. In: ECCV.
2018, pp. 39–55.

[22] Xinyu Huang, Xinjing Cheng, Qichuan Geng, Binbin Cao,
Dingfu Zhou, Peng Wang, Yuanqing Lin, and Ruigang Yang.
“The ApolloScape Dataset for Autonomous Driving”. In: CVPR
Workshops. 2018, pp. 1067–1037.

[23] Alex Kendall, Yarin Gal, and Roberto Cipolla. “Multi-Task
Learning Using Uncertainty to Weigh Losses for Scene Geom-
etry and Semantics”. In: CVPR. 2018, pp. 7482–7491.

[24] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for
Stochastic Optimization”. In: ICLR. 2015, pp. 1–15.

[25] Tobias Koch, Lukas Liebel, Friedrich Fraundorfer, and Marco
Körner. “Evaluation of CNN-based Single-Image Depth Esti-
mation Methods”. In: ECCV Workshops. 2018, pp. 331–348.

[26] Shu Kong and Charless Fowlkes. “Pixel-wise Attentional Gat-
ing for Scene parsing”. In: WACV. 2019, pp. 1024–1033.

[27] Yevhen Kuznietsov, Jorg Stuckler, and Bastian Leibe. “Semi-
Supervised Deep Learning for Monocular Depth Map Predic-
tion”. In: CVPR. 2017, pp. 2215–2223.

[28] Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Federico
Tombari, and Nassir Navab. “Deeper depth prediction with fully
convolutional residual networks”. In: 3DV. 2016, pp. 239–248.

[29] Bo Li, Yuchao Dai, and Mingyi He. “Monocular depth estima-
tion with hierarchical fusion of dilated CNNs and soft-weighted-
sum inference”. In: Pattern Recognit. 83 (2018), pp. 328–339.

8

http://arxiv.org/abs/1412.7062v4
http://arxiv.org/abs/1901.05808v1
https://github.com/lukasliebel/MultiDepth
http://www.deeplearningbook.org


[30] Jun Li, Reinhard Klein, and Angela Yao. “A Two-Streamed
Network for Estimating Fine-Scaled Depth Maps From Single
RGB Images”. In: CVPR. 2017, pp. 3372–3380.

[31] Ruibo Li, Ke Xian, Chunhua Shen, Zhiguo Cao, Hao Lu, and
Lingxiao Hang. “Deep attention-based classification network
for robust depth prediction”. In: ACCV. (ACCV). 2018, pp. 1–
17. eprint: 1807.03959.

[32] Zhengqi Li and Noah Snavely. “MegaDepth: Learning Single-
View Depth Prediction From Internet Photos”. In: CVPR. 2018,
pp. 2041–2050.

[33] Lukas Liebel and Marco Körner. “Auxiliary Tasks in Multi-
task Learning”. In: (2018), pp. 1–8. arXiv: 1805.06334v2
[cs.CV].

[34] Chen Liu, Jimei Yang, Duygu Ceylan, Ersin Yumer, and Yasu-
taka Furukawa. “PlaneNet: Piece-wise Planar Reconstruction
from a Single RGB Image”. In: CVPR. 2018, pp. 2579–2588.

[35] Fayao Liu, Chunhua Shen, and Guosheng Lin. “Deep convolu-
tional neural fields for depth estimation from a single image”.
In: CVPR. 2015, pp. 5162–5170.

[36] Arun Mallya, Dillon Davis, and Svetlana Lazebnik. “Piggyback:
Adapting a Single Network to Multiple Tasks by Learning to
Mask Weights”. In: ECCV. 2018, pp. 72–88.

[37] Xiaojuan Qi, Renjie Liao, Zhengzhe Liu, Raquel Urtasun, and
Jiaya Jia. “GeoNet: Geometric Neural Network for Joint Depth
and Surface Normal Estimation”. In: CVPR. 2018, pp. 283–
291.

[38] Zhongzheng Ren and Yong Jae Lee. “Cross-Domain Self-
Supervised Multi-Task Feature Learning Using Synthetic Im-
agery”. In: CVPR. 2018, pp. 762–771.

[39] E. Romera, L. M. Bergasa, J. M. Alvarez, and M. Trivedi.
“Train Here, Deploy There: Robust Segmentation in Unseen
Domains”. In: IV. 2018, pp. 1828–1833.

[40] Sebastian Ruder. “An Overview of Multi-Task Learning in
Deep Neural Networks”. In: (2017), pp. 1–14. arXiv: 1706.
05098v1 [cs.LG].

[41] Ozan Sener and Vladlen Koltun. “Multi-Task Learning as Multi-
Objective Optimization”. In: NIPS. 2018, pp. 525–536.

[42] L. N. Smith. “Cyclical Learning Rates for Training Neural
Networks”. In: WACV. 2017, pp. 464–472.

[43] Nikolai Smolyanskiy, Alexey Kamenev, and Stan Birchfield.
“On the Importance of Stereo for Accurate Depth Estima-
tion: An Efficient Semi-Supervised Deep Neural Network Ap-
proach”. In: CVPR Workshops. 2018, pp. 1120–1128.

[44] Marvin Teichmann, Michael Weber, J. Marius Zöllner, Roberto
Cipolla, and Raquel Urtasun. “MultiNet: Real-time Joint Se-
mantic Reasoning for Autonomous Driving”. In: IV. 2018,
pp. 1013–1020.

[45] Jonas Uhrig, Nick Schneider, Lukas Schneider, Uwe Franke,
Thomas Brox, and Andreas Geiger. “Sparsity Invariant CNNs”.
In: 3DV. 2017, pp. 11–20.

[46] Dan Xu, Wanli Ouyang, Xiaogang Wang, and Nicu Sebe. “PAD-
Net: Multi-Tasks Guided Prediction-and-Distillation Network
for Simultaneous Depth Estimation and Scene Parsing”. In:
CVPR. 2018, pp. 675–684.

[47] Guorun Yang, Hengshuang Zhao, Jianping Shi, Zhidong Deng,
and Jiaya Jia. “SegStereo: Exploiting Semantic Information for
Disparity Estimation”. In: ECCV. 2018, pp. 660–676.

[48] Fisher Yu and Vladlen Koltun. “Multi-Scale Context Aggrega-
tion by Dilated Convolutions”. In: ICLR. 2016, pp. 1–13.

[49] Zhenyu Zhang, Zhen Cui, Chunyan Xu, Zequn Jie, Xiang Li,
and Jian Yang. “Joint Task-Recursive Learning for Semantic
Segmentation and Depth Estimation”. In: ECCV. 2018, pp. 238–
255.

[50] Zhenyu Zhang, Chunyan Xu, Jian Yang, Ying Tai, and Liang
Chen. “Deep hierarchical guidance and regularization learn-
ing for end-to-end depth estimation”. In: Pattern Recognit. 83
(2018), pp. 430–442.

[51] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang,
and Jiaya Jia. “Pyramid Scene Parsing Network”. In: CVPR.
2017, pp. 6230–6239.

[52] Xiangyun Zhao, Haoxiang Li, Xiaohui Shen, Xiaodan Liang,
and Ying Wu. “A Modulation Module for Multi-task Learn-
ing with Applications in Image Retrieval”. In: ECCV. 2018,
pp. 415–432.

[53] Nikolaos Zioulis, Antonis Karakottas, Dimitrios Zarpalas, and
Petros Daras. “OmniDepth: Dense Depth Estimation for In-
doors Spherical Panoramas”. In: ECCV. 2018, pp. 453–471.

9

1807.03959
http://arxiv.org/abs/1805.06334v2
http://arxiv.org/abs/1805.06334v2
http://arxiv.org/abs/1706.05098v1
http://arxiv.org/abs/1706.05098v1

	1 Introduction
	2 Depth Prediction Using a Multi-Task Regression and Classification Loss
	2.1 Efficient Optimization of Depth in Log-Space
	2.2 Regression of Depth Values
	2.3 Classification of Depth Intervals
	2.4 Multi-Task Optimization

	3 Experiments
	3.1 Network Implementation
	3.2 Training and Validation Data
	3.3 Data Augmentation and Scaling
	3.4 Training Procedure
	3.5 Ablation Studies
	3.5.1 Number of Classes
	3.5.2 Multi-Task Weighting
	3.5.3 Log-Normalization of Depth Values
	3.5.4 Patch Size

	3.6 Final Training Results

	4 Conclusion

