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Abstract— Centimeter level globally accurate and consis-
tent maps for autonomous vehicles navigation has long been
achieved by on board real-time kinematic(RTK)-GPS in open
areas. However when dealing with urban environments, GPS
will experience multipath and blockage in urban canyon, under
bridges, inside tunnels and in underground environments. In
this paper we present strategies to efficiently register local
maps in geographical coordinate systems through the tactical
integration of GPS and information extracted from precisely
geo-referenced high resolution aerial orthogonal imagery. Dense
lidar point clouds obtained from moving vehicle are projected
down to horizontal plane, accurately registered and overlaid
on aerial orthoimagery. Sparse, robust and long-term pole-
like landmarks are used as anchor points to link lidar and
aerial image sensing, and constrain the spatial uncertainties of
remaining lidar points that cannot be directly measured and
identified. We achieved 15-75cm absolute average global accu-
racy using precisely geo-referenced aerial imagery as ground
truth. This is valuable in enabling the fusion of ground vehicle
on-board sensor features with features extracted from aerial
images such as traffic and lane markings. It is also useful for
cooperative sensing to have an unbiased and accurate global
reference. Experimental results are presented demonstrating
the accuracy and consistency of the maps when operating in
large areas.

I. INTRODUCTION

Despite rapid progresses being made in the field of au-
tonomous vehicles localization and mapping, reliable maps
are generally made by either utilizing high precision GPS,
or in local coordinate systems utilizing on-board relative
sensors. Relative sensors accumulate error and drift pro-
portionally to the distance travelled. Loop closures along
the vehicle route can constrain the growing uncertainty, but
the map still cannot be registered or consistent within a
global coordinate system due to lack of global references.
Furthermore, a single false positive loop closure is enough
to cause catastrophic faults. These two fundamental issues
make loop closures alone not a solution for robust mapping
when working in large areas.

Position information in a global coordinate frame can be
obtained using GPS, and in certain circumstances this can
be in the centimeter range using RTK corrections. When
operating in an urban environment, there are well known
fundamental limitations to GPS localisation due to multipath
effects, and in GPS-denied areas such as urban canyons,
tunnels, underground or indoors. Furthermore, in relatively
open sky areas, GPS accuracy also varies depending on
satellite configuration and atmospheric conditions at the time
of obtaining data. The result of this is an unobservable
amount of error and bias to the estimated position. Therefore
it becomes essential to integrate all forms of GPS and
other absolute information to on-board relative sensors to
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Fig. 1. The lidar point clouds superimposed and projected on horizontal
plane as a layer in GIS is precisely registered and overlaid onto high
resolution orthogonal aerial imagery. The dataset was taken by an electric
vehicle starting from bottom right corner, driving through the University of
Sydney main campus in multiple loops, and back to the starting location.
The electric vehicle is equipped with Velodyne VLP 16 beam lidar and
multiple sensors

be able to localize reliably and with predictable level of
accuracy in global frames, preferably frames consistent with
geographical coordinate systems.

This paper proposes a strategy to georeference a locally
consistent map of lidar based features by first incorporating
correspondences with low quality GPS information (when
available), and finally to integrate high quality feature ob-
servations derived from high resolution aerial imagery. This
approach considers the limitation of GPS but still makes use
of this information to assist with the global registration. It is
well known that standard GPS accuracy in an urban environ-
ment is a minimum of 3 to 5 meters, with statistical outliers
and bias commonly observed. Despite this, the resulting
position and heading are reliable and consistent at large scale
and over long distances. We take advantage of this fact in the
registration strategies described in section IV-A and IV-B. To
fine-tune the map, we also present a method in section IV-C
that utilizes manually labeled landmarks identified from high
resolution aerial orthoimagery as reference points to anchor
other map features whose geographical positions cannot be
directly measured.

Long term stable, robust, sparse landmarks such as poles
and building corners are ubiquitous in urban environments
in any cities around the world. In section III-B a num-
ber of recent works in landmark localization are reviewed.
However there are areas that landmarks are too sparse to
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provide continuous update for localization. In these areas,
dead reckoning and other external sensing capabilities are
needed to fill in the gap. In our previous work[1], metrics
for evaluating update intermittence is presented and directly
related to localization robustness. In the scenario of mapping
and sensor fusion, high level robust landmarks such as poles
can serve as fusion anchors across sensor modalities. These
type of landmarks have been the object of significant research
in previous years. There are very robust detection algorithms
that can work for a variety of landmarks and different sensor
modalities, including laser, vision etc. These algorithms have
utilised lidar pointclouds, semantic segmentation, monocular
and stereo vision. In this paper we explore the use of pole-
like landmarks as anchors to minimize inconsistencies and
biases between lidar features and aerial images. Vehicle tra-
jectories, and dense lidar pointclouds can then be accurately
represented in the global reference frame.

There are a number of benefits for using geographically
accurate landmarks.

• Simplified management of large scale maps utilizing
existing geographic coordinate systems and geographic
information system(GIS) databases. This eliminates the
need for complex sub-maps and hierarchical map struc-
tures.

• Accumulated error resulting in large scale drifts can be
corrected by incorporating observations from a global
coordinate frame.

• Global observations such as from GPS can be integrated
within an online localization and sensor fusion frame-
work. When available, GPS can be used as a coarse
pose prior for initialization and relocalization against a
georeferenced feature map.

• Registration and fusion of any on-board sensor informa-
tion to GIS/aerial imagery, as long as the sensors ex-
trinsic parameters are known. For example, dense visual
features, lidar pointclouds and other sensor information
can be georeferenced.

II. CONTRIBUTIONS
The work proposed in this paper aims to build from

existing work in graph slam by first building correspondences
between features and using vehicle ego sensors to determine
motion. The first contribution is the addition of the weak
correspondences between the sparse GPS based locations
(from the filtered output which rejects outliers) and the graph
slam which is then optimised. The result of this is a globally
referenced map that is reasonably consistent over a large and
has error proportional to the quality of the GPS - including
bias, etc. The second contribution looks to georeference
this information relative to aerial based imagery. Features
are selected (currently manually but future automatically)
from the aerial images that have corresponding lidar fea-
tures in the feature based graph described already. These
correspondences are incorporated into the graph as tight
constraints. The results show that only a small number of
these are required to improve the overall quality of the
position information for the entire map

This paper is organized as follow. Section III presents
an overview of existing work in geographical and landmark
based map creation and localization. Detailed strategies and
steps for registration methodology are described in section
IV. Section V presents quantitative evaluation and result

of fusion accuracy. Section VI concludes this paper with
potential future directions.

III. RELATED WORK
A. Map making methodologies for robot navigation

There are different categories of methodologies to create
and adjust maps for the use of autonomous vehicle localiza-
tion.

First, the methods based on local frame of reference using
relative sensors. These approaches are subject to integrated
error and have only local consistency. They include Slam
variants, visual odometry and can be build with dense or
feature based methods. Although made locally, some of
slam works such as [2] manually scale and transform robot
trajectories and overlay onto a satellite image to visually
validate how well the trajectories follow road and building
structures in public satellite images.

Second, georeferenced maps made from combining high
precision GPS with dense pointclouds or features. [3] utilizes
RTK-GPS which could work well in open areas but will ex-
perience difficulties in urban canyons scenarios, tunnels, and
indoor car parks. There are also works using filters, inertial
measurement unit(IMU), and other sensors to reckon vehicle
poses during outage of GPS signal. [4] localized in urban
Paris using traffic signs detected from geo-referenced images,
but the image geo-registration process is done regardless of
GPS outage and multipath by a navigation system fusing
IMU, wheel odometer and differential GPS readings.

Third, without the high precision GPS, other sources of
global information have to be used to fit locally consistent
maps to global reference. This includes overlaying to satel-
lite, matching to city models, air-borne lidar pointclouds, and
street maps. To correct for the scale and pose drift, [5][6]
registered distorted visual slam map and robot trajectory
by non-rigid ICP matching with coarse geo-referenced 3D
model of the environment provided by GIS database. A
second step then optimizes additional geometric constraints
relative to the 3D model. However public 3D city models
are hardly available and the precision is usually coarse.
[7] globally localized within geo-registered lidar pointclouds
using mobile phone cameras. UTM coordinates of airborne
lidar point clouds are obtained from alignment to 2D polyg-
onal building roof outlines. In [8], particle filter localization
exploits publicly available geo-referenced urban street net-
works, more specifically the route network description file
(RNDF) as prior information. Local RNDF road segments
are converted into grid based maps to constrain the likely
particle assignments. [9] uses zebra line road markings to
finely geo-register images obtained from ground vehicles
to aerial images. [10] also extracted and reconstructed ze-
bra crossings from aerial images. [11] geo-registered video
frames captured by quadcopters shared in community video
websites. This is done by ICP matching visual slam feature
pointclouds extracted from the videos to geo-refenced lidar
pointclouds.

B. Sparse high level landmarks as features for localization
and mapping

Sparse high level landmarks with distinct geometrical
shapes have been widely used in the literature of localization
and mapping. Pole like features are detected from on-board
lidar[12][13][14], stereo camera[15][16] and pole detection



neural networks from monocular camera[17]. [18] showed
its lidar pole detection is more precise than stereo-camera
algorithm. [19] presents a graph-based localization algorithm
using only tree and pillar landmarks. A novel ICP algorithm
is proposed for more efficient and accurate landmark data
association. Building corners[20] and facades[12][21][14],
are also exploited as localization landmarks or references.
Lidar and camera can also detect and localize building
windows[22] and doors[23]. [21] established correspondence
of building facades between oblique aerial/satellite images
and ground robots acquired images.

IV. MAP GEOGRAPHICAL REGISTRATION

A topological map was generated using a graph-based
slam algorithm incorporating correspondences between lidar
based features matched using ICP, and vehicle odometry
from an IMU and wheel encoders. Our operating domain is
the University of Sydney, which is an urban type environment
including tall buildings, open spaces, areas with narrow
roads, an underground carpark and other GPS denied areas.
The relative pose information was incorporated into a graph
structure which was then optimised using the g2o library[24].
The proposed georegistration methods were applied to this
graph structure, though it is possible to use these methods for
other algorithms which provide a map that is only consistent
in a local frame of reference, such as slam variants or visual
odometry.

A. Rigid alignment of local vehicle path to GPS vehicle path

In addition to the relative sensor information, standard
quality GPS positions was also collected at 1Hz. The locally
consistent graph optimised vehicle path, and the path mea-
sured using the GPS appear to have a similar shape despite
their own inaccuracies. They also have known one-to-one
correspondences (though with error and bias) according to
the sensor time stamps. We can directly find the optimal
SE2 transformation by minimizing distances between relative
vehicle poses and their corresponding GPS observations.
The resulting transform is used to translate and rotate both
the map of the features (landmarks) and vehicle path from
vehicle relative coordinate system to a globally referenced
coordinate system.

The rigid alignment of the locally consistent map to the
GPS position treats the relative map as a rigid body. This
is beneficial for a map covering a small area where the
drift from accumulated error is not significant, or where
the GPS is of poor quality. If GPS position information
containing statistically significant outliers was incorporated
directly into the graph optimisation, the result would be a
negative effect on the overall map. The approach of finding
the rigid transform between the locally consistent graph and
the GPS trajectory would reduce the influence of a small
number of outliers.

Figure 2 shows the resulting relative map of lidar land-
marks overlaid on aerial map in GIS visualization software
using this registration method. The middle section of path is
aligned well while the beginning and end depart from their
true locations due to accumulated relative sensor uncertain-
ties.

Fig. 2. Result of rigidly aligned landmark map with GPS vehicle path
overlaid on street map in GIS from method IV-A. Red and yellow dots
are poles and building corners respectively. Blue squares are raw GPS
readings along the vehicle driving path. Noise and discontinuity at the
middle section are due to vehicle entering an underground carpark, where
GPS readings drifted thousands of meters away. The registration is roughly
correct regardless of GPS errors. Landmarks at both ends of driving path
drifted due to accumulated uncertainty.

Fig. 3. Graph structure of method IV-B. Filtered GPS readings are added to
the graph every 10 meters and represented in blue edges. All GPS edges have
a global reference to map origin, which has a fixed offset and same heading
to UTM and is randomly and conveniently chosen for visualization and
numerical efficiency(smaller float numbers instead of UTM coordinates).
Orange edges and remaining blue edges are lidar landmark observations and
dead-reckoning edges obtained from IMU and wheel encoder, respectively.



Fig. 4. Resulting landmark map from method IV-B overlaid on aerial map
in GIS. Drifts are corrected and landmark positions follow road networks.
The improvement is more noticeable at the beginning and end of the run
when compared with previous approach.

B. Loose GPS constraints

In a graph-based slam framework, landmarks and vehicle
poses are modeled as vertices connected by edges that
encode relative sensor observations between poses. We added
additional constraints to a limited number of vehicle pose
vertices by incorporating edges representing GPS correspon-
dences to a fixed map origin, see Figure 3. Due to the
high uncertainty and poorly defined error profile of the GPS
information, these links are considered loose relationships
with the corresponding uncertainty set very high. This high
uncertainty for the GPS means that the existing relative
graph relationships have a larger effect on a local scale in
the resulting map, but the accumulated error of the relative
information means that the GPS information will affect, and
correct, the map on a global scale.

The map origin has a fixed spatial offset from origin
of UTM zone 56S and no directional offset. It is chosen
arbitrarily on campus for the convenience of visualization
and numerical efficiency (smaller floating point numbers
instead of large UTM coordinates). A global optimization
process shifts all vertices in the graph to their optimal global
poses with respect to map origin as this is the only fixed
vertex. The map is then transformed from map coordinates
to UTM frame by simply adding the Easting and Northing
offset. The number of GPS constrained vehicle pose vertices
and GPS edges required can vary according to GPS and local
map quality. For the map in Figure 3, one GPS edge is added
for every 10m of travel and GPS edges have a fixed high
standard deviation of 5m in both Easting and Northing. The
resulting landmark map is shown in Figure 4. The results
are now much more global acccurate as can be seen from
beginning and end of the trajectory when compared to Figure
2

When vehicles do not revisit the same areas multiple times,
there is no opportunity to constrain the growing uncertainty
using loop closure making the resulting trajectory more
susceptible to drift from accumulated error. This deviation
is further amplified by heading errors, as small heading
errors are magnified as spatial drifts over longer distances.
Although it is difficult to model the error profile of a GPS at
a local scale, the uncertainties and biases do not accumulate

Fig. 5. Raw GPS readings and UKF-filtered GPS vehicle path in blue and
orange. Vertical and Horizontal axis are Northing and Easting in UTM zone
56S.

Fig. 6. Close-up look at entrance of underground carpark. As GPS signal
qA blocked underground, GPS readings became extremely unreliable(blue
dots go far away and out of scope of this picture). Vehicle rejected these
GPS outliers when driving in underground carpark and relied on only dead
reckoning. After coming out of underground, GPS signals were in the
proximity of vehicle states again, so vehicle resumed incoporating GPS
updates.

Fig. 7. Resulting landmark map from method IV-B overlaid on aerial
map in GIS. Drifts are constrained by both GPS edges and multiple loop
closures.



Fig. 8. Close-up look of resulting landmark map from method IV-B. Poles
are clearly identifiable and can be accurately labeled. There is a 1.5-2m bias
between lidar map and aerial image.

over distance. This means that the additional constraints of
the GPS can correct for drift over a large map. As the
GPS observations will warp the map towards the globally
consistent position, it is necessary to filter the GPS outliers to
prevent potentially severe distortions of the locally consistent
map. Figure 5 shows raw GPS readings alongside a UKF-
filtered vehicle path of drive around the campus. The GPS
coordinates are represented in EPSG:32756 WGS 84/UTM
zone 56S. The UKF makes predictions using the IMU and
wheel encoder, and uses observations from the GPS to make
updates. The filter also rejects GPS outliers that fall outside
95 % confidence value of chi-square test. Figure 6 illustrates
the rejection of GPS outliers when vehicle drives into an
underground carpark, at which point the filter output relies
only on dead reckoning. The GPS updates to the filter resume
when exiting the carpark. Figure 7 shows the resulting land-
mark map registration. Comparing to Figure 2 from method
IV-A, it shows the usage of loose GPS edges can correct
for drifts in addition to finding the landmark geographical
positions. Multiple loop closures further restricted the level
of uncertainty in this dataset.

The global accuracy from this method can be variable and
will be function of the quality of filtered GPS positions. For
many applications such as the GPS-based initialization and
relocalization using a feature map, this level of accuracy
is sufficient. Nevertheless there are many urban vehicle
application where higher level of accuracy are required that
will mot be able to be assured when working with GPS based
sensors in the typical city type environments.

C. Fine tuning with anchor points in aerial imagery

Aerial images are used in a variety of applications such as
visualisation, mapping, surveying and extracting of features
such as roads and buildings. It is useful to link the feature
map described in the previous sections to aerial imagery in
order to find relationships between vehicles sensors and the
top down aerial view. The method described in the previous
sections generates a georeferenced map with sufficient global
accuracy for many applications. The registration methods
described previously provided sufficient global accuracy for
nearest neighbor data association of anchor points but nev-
ertheless, there are still biases and uncertainties with respect
to the global ground truth. This can be seen when the lidar
features are projected into the aerial images, with an offset
clearly visible as shown in Figure 8. The bias in this figure
could be attributed to either sensor noise in the GPS position

Fig. 9. Positions of 50 labeled pole positions mainly concentrated in main
quadrangle area. Only clearly visible poles are chosen and labeled as aerial
map ground truth pole positions.

Fig. 10. Close up look of accurately registered lidar orthoimage. Inaccura-
cies are mainly in longitudinal direction and when vehicle turning corners.
Colors represent reflectivity.

information, or/and an offset in the registration of the aerial
images.

We obtained from Nearmap[25] an up-to-date orthogonal
aerial images with absolute horizontal accuracy of 28-75cm,
horizontal measurement accuracy of 11.5-15cm within one
photo and 58-76cm between photos. This aerial orthoimagery
has an 80% higher resolution compared to standard satellite
images such as from Google. Unlike standard satellite im-
ages, orthoimagery is strictly top-down view, meaning ver-
tical building facades are lines instead of oblique faces, and
building corners are points instead of lines. Figure 8 shows
the zoom view of pole landmarks obtained from method IV-
B and overlaid on Nearmap aerial image. Since the aerial
picture resolution is high enough, the poles are clearly
identifiable and have an 1.5-2m bias from lidar mapped
poles. The correspondences can be confidently established
through a nearest neighbor approach after the map is roughly
registered by the strategy introduced in Section IV-B. We
labeled and obtained the position of 50 poles identified from
the aerial imagery using a GIS capture tools as shown in
Figure 9. Only highly visible and clearly identifiable poles



are labeled. We do not select poles where the visibility is
compromised due to strong shadow, image blurs, blockage
of trees and building rooftops.

To minimise the error between the aerial images and the
graph based feature map, we added additional graph edges
corresponding to each of the 50 labelled poles using the
image coordinates provided from the georeferences aerial
image. The global graph optimisation was then carried out
using all of the constraints from both local and global edges.
The edges joining the map origin to the aerial pole observa-
tions were added with a very low measurement uncertainty.
This allows the graph to warp towards the hand labelled
pole observations which in turn realigns the entire map. To
visualise the vehicle sensor data using this graph optimised
trajectory, we next project all of the dense lidar pointclouds
using the optimised vehicle poses. These pointclouds are
then projected onto a horizontal plane and overlaid onto the
aerial orthoimage as a GIS layer, as shown in Figure 1. A
close-up view in 10 reveals that the lidar points are aligned
very well in lateral direction (perpendicular to vehicle travel
directions), but less accurate in longitudinal direction. This
could be caused by motion distortion of lidar pointcloud
and suggests future improvements using motion corrected
pointclouds.

V. QUANTITATIVE EVALUATION

To evaluate the effect of increasing the number of tightly
constrained aerial pole features on global map accuracy,
we tied n=0,1,2,...49 lidar map poles to their corresponding
aerial image global positions as shown in Figure 11. Next,
we calculated the mean error/distance of the remaining (50-
n) poles in the labeled pole set. Since we have only 50
highly identifiable poles in total, we are able to exhaustively
evaluate all possible combinations of n constrained poles in
the labeled pole set and compute the average of mean error
of all combinations. When n=0 and no poles are constrained,
the original average accuracy of method IV-B output is
1.8m for 50 labeled poles in dataset. As more labeled poles
are constrained, accuracy improved and plateaus around 57-
75cm.

Because the labeled poles are unevenly distributed and
mostly concentrated around quadrangle area, we compare
the results for both the quadrangle containing 30 labeled
poles, and the extended quadrangle area which contains 40
labeled poles. In quadrangle area, adding graph edges for
any combinations of 29 poles result in a 15cm reduction
in the global error when comparing to the full dataset area.
Adding edges for 29 and 49 poles result in 64cm and 57cm
mean errors respectively. This reduction in error is most
likely a result of the combined aerial image being constructed
from multiple individual images, and while the full dataset
spans more than one image, the quadrangle area resides
within a single image. Crossing image boundaries introduces
additional error due to inconsistencies in the image stitching
process. This is in accordance with the quoted aerial map
horizontal measurement accuracy of 11.5-15cm within the
same image and 58-76cm between images. It may prove to
be a better strategy to optimize on smaller areas/sub-maps
within each aerial image. Figure 12 shows the registration
quality in a sector far from the quadrangle area when all 50
labeled poles are incorporated. It can be clearly seen that

Fig. 11. Absolute global accuracy evaluation. See section V for detailed
discussions.

Fig. 12. Lidar-aerial orthoimagery fusion. Red dots show positions of
poles optimised from method IV-C. Visibility of most poles in this area is
compromised therefore are not captured and constrained. Nonetheless we
can speculate some of pole position from their strong shadows. Visual in-
spection confirms their registration accuracy is within 75cm. Line structures
in lidar point clouds also accurately overlap with building walls, fences and
bushes in aerial imagery. This is in an area far from quadrangle, where most
of labeled ground truth poles are constrained.

map landmarks and laser information have a very accurate
match.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we presented a strategy to georegister
a relative position graph-based feature map with globally
registered aerial imagery. This was achieved by first loosely
coupling the feature map to GPS positions in order to warp
the feature map into a global reference frame with map
quality constrained by the quality of the GPS information.
The correspondences with the aerial imagery were created
by manually labelling the features that could be observed
in both the aerial images and the feature map. We demon-
strate the improvement in map accuracy relative to the area
surrounding the feature correspondences, and overall in the
remainder of the map. The error in the map was reduced with
the introduction of additional correspondences, approaching
the quoted accuracy from the provider of the aerial images.
Automatic detection of poles and other salient features in



the aerial images will improve the scalability and accuracy
of this method.

Aerial oblique views and 3D reconstruction models en-
ables richer feature extraction and make it possible to apply
sensor fusion with ground survey sensors. By mapping the
local features into the coordinate frame of aerial imagery,
lane and road markings extracted from the aerial images can
be incorporated into the feature map, and correspondences
between on board vehicle sensors can be generated. These
additional features can be used to improve the local and
global accuracy of the maps for vehicle navigation.
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