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Game Theoretic Models for Profit-Sharing in Multi-fleet Platoons

Alexander Johansson and Jonas Mårtensson

Abstract— Profit-sharing is needed within platoons in order
for competing transportation companies to collaborate in form-
ing platoons. In this paper, we propose distribution models
of the profit designed for vehicles that are located at the
same origin and are operated by competing transportation
companies. The vehicles have default departure times, but
can decide to depart at other times in order to benefit from
platooning. We model the strategic interaction among vehicles
with game theory and consider pure Nash equilibria as the

solution concept. In a numerical evaluation we compare the
outcomes of the games associated with different distribution
models of the profit.

I. INTRODUCTION

The transport sector emitted 24% of the total CO2 emis-

sions due to fuel combustion in 2016 and 74% of the

emissions from the transport sector was emitted from road

transportation [1].

Truck platooning has received attention for its ability

to reduce fuel consumption of road transportation. This is

demonstrated in numerical studies in [2], [3] and by field

experiments in [4], [5], [6], where potential fuel savings of up

to 10% are reported. Truck platooning has other benefits than

reduced fuel consumption, e.g., decreased workload and cost

of drivers, improved safety by reducing the human factor and

reduced traffic congestion. The interested reader is referred

to [7] for a high-level introduction to truck platooning.

Platoon matching is here used to denote the process of

grouping vehicles (out of a pre-defined set of vehicles with

fixed routes) that will form platoons. A review on planning

strategies for truck platooning, including platoon matching,

is given in [8]. When vehicles are operated by the same

transportation company, the company would seek platoon

formations to maximize the total profit from platooning of

all its vehicles. In contrast, when vehicles are operated by

different competing transportation companies, each vehicle

may instead seek its platoon formation individually to max-

imize its own profit from platooning.

Distributing the profit from platooning is crucial for com-

peting transportation companies to collaborate in forming

platoons. This is due to unbalance in the profit of vehicles

within platoons. For example, the platoon leaders’ fuel saving

is small in comparison to its followers’ fuel savings [5].

Therefore, a vehicle needs compensation in order to agree on
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(a) Vehicles are located at the origin where they are commu-
nicating and deciding on their departure times.

(b) Vehicles with the same departure time are forming a
platoon on the route between the origin and the destination.

Fig. 1. Platooning scenario.

being a leader and contributing to the profit of its followers.

The distribution model affects vehicles’ individual profit

given their decided platoon formations which in turn affects

vehicles’ decisions of platoon formations.

A. Related work

Solutions to the platoon matching problem that aim to

maximize the total profit from platooning of all vehicles have

been proposed in the literature, e.g., [9], [10], [11], [12], [13].

Solutions to the platoon matching problem where vehicles

individually seek to maximize their profits from platooning

have been proposed in [14] and [15]. In these solutions, each

vehicle seeks to minimize its traveling cost by deciding on

its departure time from a common origin. The scenario is

modeled as a non-cooperative game and Nash equilibrium

is used as the solution concept. We study a similar scenario

as in [14] and [15], but our focus is to propose different

distribution models of the profit and study how they affect

the total profit and the platoon rate.

The authors in [16] propose a solution to the platoon

matching problem that aims to maximize the total profit of all

vehicles. Then, the profit is distributed such that vehicles will

have no incentive to leave their assigned platoons. Different

to the work in [16], in this work, each vehicle seeks its

platoon formation individually to maximize its own profit

from platooning and the distribution model is known to the

vehicles.

B. Problem formulation

We consider vehicles located at a common origin and with

a common destination. The origin could be, e.g., a ferry

terminal, a freight consolidation center or a parking place.

Each vehicle has a default departure time from the origin but

can decide to depart at other times in order to benefit from
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platooning. Vehicles with the same departure time platoon

with each other from the origin to the destination. The

scenario is illustrated in Figure 1. The vehicles are operated

by different competing transportation companies and each

vehicle seeks its departure time in order to maximize its

own profit. The profit is described by a utility function that

includes the benefit of platooning and the cost of deviating

from the default departure time. The strategic interaction

among vehicles is modeled as a non-cooperative game and

we use Nash equilibrium as solution concept.

The contributions of this work are:

1) Four conceptual models for distributing the platooning

profit among the vehicles in the platoon, denoted even

out, score system, market and cooperative.

2) A game formulation of the platoon matching problem

based on the four models above and their solutions in

terms of pure Nash equilibria.

3) A numerical study of how the four models are affecting

the formation of platoons, the platooning rate, and the

overall profit from platooning.

This paper is structured as follows. The platoon matching

scenario that we consider is defined in Section II. Then,

in Section III, the distribution models are proposed and a

game associated with each distribution model is defined. In

Section IV, the solution concepts for the platoon matching

problems are defined and algorithms for finding the solutions

are presented. The algorithms are then used when comparing

the outcomes of the games associated with the distribution

models in the numerical evaluation in Section V. Finally,

conclusions and future work are given in Section VI.

II. PLATOON MATCHING SCENARIO

Consider the scenario in Figure 1. Vehicles start at a com-

mon location, called origin, and have a common destination.

Each vehicle has its own default departure time from the

origin but can decide to depart at another time in order to

benefit from platooning. The vehicles are enumerated from

1 to N and we define the index set N = {1, ..., N}.

Vehicles’ decisions in the platoon matching scenario are

their departure times. The departure times of vehicles are

represented by integer-valued time-steps. The decided de-

parture time of vehicle i is di ∈ Z+. The set of departure

times of the vehicles in N is denoted d = {di|i ∈ N}.

The default departure time of vehicle i is denoted d⋆i and

the set of default departure times is denoted d
⋆. The set of

departure times of all vehicles except vehicle i is denoted

d−i = d \ {di}.

A vehicle can only depart at one of the default departure

times in d
⋆ and each vehicle i is constrained to not depart

earlier than d⋆i and not later than d⋆i + δi, where δi is the

maximum delay of vehicle i. The set of possible departure

times of vehicle i is Di = {t ∈ d|d⋆i ≤ t ≤ d⋆i + δi}. The

space of possible departure times of the vehicles in N is

D = {d|di ∈ Di, ∀i ∈ N}.

If two or more vehicles decide on the same departure time

they will form a platoon. The index set of vehicles in the

platoon that leaves at time d⋆i is

Ni(d) = {k ∈ N|dk = d⋆i }

and the number of vehicles in the platoon is the cardinality

of the index set, denoted |Ni(d)|. Note that Ni(d) will be

empty for some i when platoons are formed.

The profit from platooning differs for a platoon leader and

its followers. Moreover, we allow the profit to be vehicle

dependent. The profit of vehicle i is Rl
i when it is a platoon

leader between the origin and the destination. The profit of

vehicle i is R
f
i when it is a platoon follower between the

origin and destination. Typically, Rl
i < R

f
i .

There is a cost associated with departing later than the

default time, e.g., due to increased driver cost and cost related

to later arrival of goods. If vehicle i departs at di its time-

penalty is Bi(di). We assume that, Bi(d
⋆
i ) = 0 and Bi(di) ≥

0.

III. DISTRIBUTION MODELS OF THE PROFIT FROM

PLATOONING

In this section we propose four models describing how the

profit from platooning is distributed among vehicles. Each

distribution model results in a model of vehicles’ utility

functions. Since a vehicle’s profit changes whether it is a

leader or a follower, a mechanism for assigning the leaders

associated to each distribution model is proposed.

A. Distribution model 1: even out

In this model, the leader of the platoon receives a monetary

compensation from its followers, according to a standardized

agreement, to even out unbalance in the profit between the

leader and its followers. Moreover, the platoon leader is

assigned randomly.

Vehicles do not have to reveal the actual individual profit

from platooning; this might be information that they want to

keep secret. However, they have agreed on standard values

of the profit from platooning between the origin and the

destination. The standard values of the profit for being a

leader and follower are denoted Rl and Rf respectively. In

a platoon of n > 1 members, the transaction from each

follower to the leader is 1
n
(Rf −Rl). If vehicle i is a leader

in a platoon of n vehicles, its profit from platooning after

the transaction is,

Rl
i +

n− 1

n
(Rf −Rl) (1)

and if vehicle i is a follower its profit is

R
f
i −

1

n
(Rf −Rl). (2)

Remark 1. If Rf = R
f
1 = ... = R

f
N and Rl = Rl

1 = ... =
Rl

N , the profit of a leader equals the profit of its followers

after the transaction. That is, (1) equals (2).

The leader in each platoon is randomly drawn from the

platoon members with equal probability. In a platoon of n

members, the probability of each vehicle to be drawn to be a

follower or the leader are n−1
n

and 1
n

, respectively. Then, if



vehicle i is in a platoon of length n > 1, the expected profit

of vehicle i is

1

n

(

Rl
i +

n− 1

n
(Rf −Rl)

)

+
n− 1

n

(

R
f
i −

1

n
(Rf −Rl)

)

which equals

1

n
Rl

i +
n− 1

n
R

f
i .

Remark 2. Given the random leader assignment, the ex-

pected profit from platooning after the transaction is inde-

pendent of the standard profits Rl and Rf .

Utility function 1 (even out). For each vehicle i ∈ N and
given departure times di = d⋆j and d−i, if vehicle i departs

in a platoon with other vehicles, i.e., |Nj(di,d−i)| > 1, then
the utility function of vehicle i is defined as

u
eo
i (di,d−i) =

1

|Nj(di,d−i)|
R

l
i +

|Nj(di,d−i)| − 1

|Nj(di,d−i)|
R

f
i −Bi(di),

where the two first terms are the expected profit of platooning

and the third term is the time-penalty. If vehicle i departs

alone, i.e., |Nj(di,d−i)| = 1, then ueo
i (di,d−i) = −Bi(di).

B. Distribution model 2: score system

Vehicles have scores that increase every time they are

platoon leaders and decrease every time they are platoon

followers. In each platoon formation, the vehicle with the

lowest score becomes the leader. The idea is that the profit

from platooning is balanced over time by the score system.

The score of vehicle i is denoted si and the set of scores

of the vehicles in N is s = {si|i ∈ N}. It is assumed that

each vehicle has a unique score. If vehicle i departs with

other vehicles, i.e., |Nj(di,d−i)| > 1 and it has the lowest

score in the platoon, i.e., si < sj for all j ∈ Nj(di,d−i),
then vehicle i becomes the leader. Otherwise it becomes a

follower.

The scores of vehicles are updated as follows. If vehicle i

has score si and becomes the leader of the platoon of vehicles

in Nj(di,d−i), its score next time it platoons is

si +∆sl (Nj(di,d−i))

and if vehicle i becomes a platoon follower its score next

time it platoons is

si −∆sf (Nj(di,d−i))

and if vehicle i departs alone its score next time it platoons

is si. Vehicle i valuates each unit of score as βi.

Utility function 2 (score system). Given departure times

di = d⋆j and d−i, and given the scores s, if vehicle i departs

in a platoon with other vehicles, i.e., |Nj(di,d−i)| > 1, and

it becomes the leader according to the score system, then its

utility is

us
i (di,d−i, s) = Rl

i −Bi(di) + βi∆sl(Nj(di,d−i)),

where the first term is its profit from platooning, the second

term is the time-penalty and the third term is its valuation of

the score update. If vehicle i becomes a follower according

to the score system its utility is

us
i (di,d−i, s) = R

f
i −Bi(di)− βi∆sf (Nj(di,d−i)).

If vehicle i departs alone, i.e., |Nj(di,d−i))| = 1, then its

utility is us
i (di,d−i, s) = −Bi(di).

C. Distribution model 3: market

A sub-set of the vehicles are sellers and the rest of the

vehicles are buyers. Each seller offers the buyers to be

platoon followers for a price that the seller decides. The

buyers decide which seller to follow. Then, each seller

seeks the price that maximizes its own profit which is a

combination of its profit for being a leader and the payment

it receives from the followers.

The sellers are in the set Ns ⊆ N and the buyers are

in the set Nb = N \ Ns. The sellers always depart at their

default departure times, more precisely, di = d⋆i for i ∈ Ns.

Moreover, sellers have unique departure times, that is, d⋆i 6=
d⋆j ∀i, j ∈ Ns when i 6= j. The departure times of all sellers

are in the set Ds = {d⋆i |i ∈ Ns}.

The price of seller i is denoted pi. The set of prices of

the sellers in Ns is denoted p = {pi|i ∈ Ns}. The set of

prices of the sellers in Ns except for seller i is denoted

p−i = p \ {pi}. The price of seller i takes values in the

finite set Pi. The space of prices of the sellers in Ns is

P = {p|pi ∈ Pi, ∀i ∈ Ns}.

Given the prices of sellers, each buyer is assumed to follow

the seller that maximizes its profit, or to depart alone at its

own default departure time if that is more profitable. Then,

buyer j decides one of the departure times in the set D∗
j =

(Ds ∩Dj)∪{d⋆j}. If buyer j departs at the default departure

time of seller i its profit is R
f
j − pi − Bj(d

⋆
i ) and if buyer

j departs alone at its own default departure time its profit

is zero which can be written as R
f
j − pj − Bj(d

⋆
j ), where

we define pj = R
f
j and have Bj(d

⋆
j ) = 0. Then, the most

profitable departure time of buyer j, given the prices p, is

dj(p) = argmax
d⋆
i
∈D∗

j

R
f
j − pi −Bj(d

⋆
i ). (3)

In addition, the index set of buyers that follow seller i is

Fi(pi,p−i) = {j ∈ Nb|dj(pi,p−i) = d⋆i }.

Remark 3. The buyers depart according to (3) and the profit

of buyers are solely dependent on the prices of the sellers.

Utility function 3 (market). For each seller i ∈ Ns and

given prices pi and p−i, if seller i is a leader for at least

one buyer, i.e. |Fi(pi,p−i)| > 0, then the utility function of

vehicle i is

um
i (pi,p−i) = Rl

i + |Fi(pi,p−i)|pi

where the first term is the profit for being a leader and the

second term is the received payment from the followers. If

vehicle i departs without followers, i.e., |Fi(pi,p−i)| = 0,

then, um
i (pi,p−i) = 0.



Remark 4. The set of sellers Ns is in many cases not given.

In Section IV an algorithm will be proposed that assigns the

set of sellers.

D. Distribution model 4: cooperative

The distribution models even out, score system and mar-

ket are suitable when the vehicles are operated by different

competing transportation companies. A distribution model

that is suitable when the vehicles are operated by the same

transportation company is proposed in this sub-section. The

transportation company seeks departure times of its vehicles

to maximize the total profit from platooning and minimize

the total time-penalty of its vehicles.

In each platoon, the leader is assigned to maximize the

total profit. That is, in each platoon, the vehicle with the

smallest difference in profit for being a platoon follower and

platoon leader is assigned to be the platoon leader. The profit

from platooning connected to vehicle i is bi(d) = R
f
i if it

is a follower and bi(d) = Rl
i if it is a leader. The profit

connected to vehicle i if it departs alone is bi(d) = 0.

Utility function 4 (cooperative). Given departure times d,

the common utility function of the vehicles in N is

uc(d) =
∑

j∈N

(

bj(d)−Bj(dj)
)

,

which is the sum of the profit of the vehicles and their time-

penalties.

E. Spontaneous platooning

In this model, the vehicles depart at their default depar-

ture times, i.e., d = d
⋆. Thus, the vehicles do not have

any decision to make. Vehicles that have the same default

departure time platoon spontaneously. The individual utility

of vehicle i is ueo
i (d⋆i ,d

⋆
−i), which is the utility function of

the distribution model even out when vehicles depart at their

default departure times.

IV. PLATOON MATCHING GAMES AND THEIR SOLUTIONS

A game associated with each distribution model is defined

in Section IV-A. The games are used to model the rational

behavior of the decision-makers, and their solution decisions

correspond to pure Nash equilibria of the games. The pure

Nash equilibrium is defined, and an algorithm that seeks

for it is proposed in Section IV-B. In the same section, an

algorithm is proposed for assigning the sellers of the game

associated with the distribution model market.

A. Defining the games

The distribution models even out and score system result

in non-cooperative games where the players are the vehicles

and the decisions, decision space and utility functions are de-

fined in Section III. The game associated with the distribution

model even out is Geo = (N ,D,Ueo(d)) where Ueo(d) =
{ueo

i (di,d−i)|i ∈ N}. The game associated with the distri-

bution model score system is Gs = (N ,D,Us(d, s)) where

Us(d, s) = {us
i (di,d−i, s)|i ∈ N}.

The distribution model market results in a non-

cooperative game where the players are the sellers and

decisions variables are their prices. The associated game is

Gm = (Ns,P ,Um(p)), where Um(p) = {um
i (pi,p−i)|i ∈

Ns}.

The distribution model cooperative represents a case

where all vehicles are interested in maximizing a common

utility function uc(d). It is hard to find a global maximizer

to the platoon matching problem due to its combinatorial

structure. Instead we seek for sub-optimal solutions by letting

each vehicle i seek for its departure time di that maximizes

uc(di,d−i). Then, the interaction among vehicles is modeled

by the cooperative game Gc = (N ,D, uc(d)) and we define

uc
i(di,d−i) = uc(di,d−i).

B. Solutions of the games

First, for each of the games Geo, Gs and Gc, and given

the decisions di and d−i, let ui(di,d−i) temporarily denote

the individual utility function of vehicle i. A pure Nash

equilibrium is a decision profile d
∗ ∈ D such that

ui(d
∗
i ,d

∗
−i) ≥ ui(di,d

∗
−i), ∀di ∈ Di, ∀i ∈ N . (4)

The best-response function of vehicle i given d−i is defined

as

Bi(d−i) = argmax
di∈Di

ui(di,d−i). (5)

Remark 5. In (4) and (5), pure Nash equilibria and the best-

response function were defined for the games Geo, Gs and

Gc. However, pure Nash equilibria and the best-response

function can be defined similarly for the game Gm. Pure

Nash equilibria of the game Gm are denoted p∗ and the

best-response function of seller i given the prices p−i is

denoted Bi(p−i).

Algorithm 1 seeks for pure Nash equilibria by letting

each vehicle, one at a time, update its decision according

to its best-response function. The limiting decision profile is

a pure Nash equilibrium and it is used later in the numerical

evaluation as the solution of the games.

Algorithm 2 assigns sellers of the game Gm and seeks

for its pure Nash equilibria. The approach is to first find an

equilibrium (using Algorithm 1) of an initial set of sellers,

possibly all vehicles. Then, one of the sellers that departs

without followers becomes a buyer. Then, an equilibrium is

found considering the reduced set of sellers. This procedure

is repeated until all sellers depart with followers. The limiting

set of sellers N ∗
s is used as the set of the assigned sellers in

the numerical evaluation and the solution of corresponding

game is the limiting pure Nash equilibrium.

V. NUMERICAL EVALUATION

The proposed algorithms in Section IV are used here to

find solutions of the platoon matching games. The games

model the interaction among vehicles when different models

of profit distribution are used. First, the set-up of the nu-

merical evaluation is presented. Second, the outcomes of the

platoon matching games are compared.



Algorithm 1: Seeks for pure Nash equilibria.

input : Initial decisions, d = (d1, ..., dN )
output: Pure Nash equilibrium, d∗ = (d∗1, ..., d

∗
N )

d
old 6= d

while d
old 6= d do

d
old = d

for i ∈ N do
di = Bi(d−i)

end

end

d
∗ = d

Algorithm 2: Select sellers and seeks for pure Nash

equilibria of the game Gm.

input : Initial sellers, Ns = N
Initial buyers, Nb = ∅
Initial prices, p

output: Assigned sellers, N ∗
s

Pure Nash equilibrium, p∗

A = N
while A 6= ∅ do

pold 6= p

while pold 6= p do

pold = p

for i ∈ Ns do
pi = Bi(p−i)

end

end

A = {i ∈ Ns||Fi| = 0}
if A 6= ∅ then

Pick one seller i ∈ A

Ns = Ns ∩ {i}
Nb = Nb ∪ {i}
p = p−i

end

end

N ∗
s = Ns

p∗ = p

A. Set-up of simulation

The considered scenario is illustrated in Figure 1 and

defined in Section II. The distance between the origin and

destination is 200 kilometers. The benefit from platooning

is, in this simulation, considered to be the reduction of

fuel consumption. We assume the percentage of fuel savings

of the platoon followers and leaders to be 10% and 0%,

respectively. Moreover, we assume that each vehicle con-

sumes 0.35 liters of fuel per kilometer and the fuel price is

15 SEK (Swedish Krona) per liter. Then, the profit of the

followers and leaders are R
f
1 = ... = R

f
N = 105 SEK and

Rl
1 = ... = Rl

N = 0, respectively.

Vehicles’ default departure times from the origin are all

within a 30 minutes interval. The default departure time of

each vehicle i is drawn from the set {0, 1, ..., 30} and each

outcome has equal probability, i.e., d⋆i ∼ U{0, 30}. The

maximum time delay of vehicle i is δi = 10 minutes, i.e.,

its possible departure times are in the set Di = {d⋆i , d
⋆
i +

1, ..., d⋆i + 10}.

The vehicles are penalized with 10 SEK for each minute

they deviate from their default departure time. The time-

penalty for each vehicle i is Bi(di) = 10(di − d⋆i ).

In the distribution model score system, in this set-up, it

is assumed that the score update of the leader in a platoon

equals the sum of the score updates of its followers. Then,

for the platoon of the vehicles in Nj(d) the score update of

the leader is ∆sl(Nj(d)) =
|Nj(d)|−1
|Nj(d)|

and the score update

of the followers is ∆sf (Nj(d)) = − 1
|Nj(d)|

. Moreover, the

vehicles valuate each score unit as βi =
Rf

4 .

In the distribution model market, in this set-up,

each seller decides on its price from the set Pi =
{ 1
5105,

2
5105,

3
5105,

4
5105}. Note that it is not reasonable for

a seller to decide a price higher or equal to 105 SEK since

then the price exceeds the profit of platooning of the buyers

and the seller will then get zero followers.

B. Comparison of different distribution models

The outcomes of the games associated with the distribution

models even out, score system, market, cooperative and

the spontaneous platooning presented in Section III-E, are

compared. The number of vehicles N is varied from 1 to

29 in the numerical evaluation and we keep the interval of

the default departure times fixed at 30 minutes. Monte Carlo

simulations are used to approximate the expected outcome

of the games. The simulation was carried out 50 times for

each game and number of vehicles N .

The average individual utility of the distribution models

is shown in Figure 2(a). We see that the highest individual

utility is obtained for the cooperative distribution model.

This is expected since the vehicles aim to maximize the total

utility of all vehicles. Close to the utility of cooperative

distribution is the utility of even out and the utility of score

system is lower than the utility of the even out. This can

be explained by the fact that vehicles with low score have

low incentive to deviate from their default departure time

and platooning opportunities are not exploited. The utility of

market is low in comparison to the other distribution models.

This is explained by the fact that buyers tend to spread

out on sellers even when their default departure times are

close which obtains lower total utility than if they depart in

the same platoon. The spontaneous solution obtained lowest

utility, as expected.

The percentage of followers is shown in Figure 2(b). We

see that when the number of vehicles is greater than 8, the

percentage of followers is higher in the solutions of score

system than in cooperative and even out, even though the

average utility is higher for cooperative and even out. This

is possible because a higher percentage of platoon followers

implies fewer platoons which can lead to higher total time-

penalty and therefore lower utility.



VI. CONCLUSIONS AND FUTURE WORK

Models for distributing the profit from platooning have

been proposed and the interaction among vehicles for each

distribution model was modeled as a game. In a numerical

evaluation it was seen that the highest individual utility

was obtained when all vehicles shared both the profit from

platooning and the time-penalty (cooperative). Moreover, it

was seen that the individual utility was almost as high when

the leaders received profit from its followers to even out the

profit (even out). This suggests that, if the profit is shared in

a fair way, competing companies can obtain a total profit

from platooning that is near the cooperative solution, by

acting selfishly. Moreover, it was seen that the spontaneous

solution obtained a low utility and low platoon rate, which

suggests that active platoon matching is important to increase

vehicles’ profit from platooning.

In future work we will extend the distribution models to

be suitable for cases where the vehicles have different origins

and destinations. Additionally, in our models we will capture

that vehicles’ profits depend on the ordering of vehicles in

the platoons and design suitable profit-sharing models.

ACKNOWLEDGMENT
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