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On Maximizing Lateral Clearance of an Autonomous Vehicle in Urban
Environments

Francesco Seccamonte, Juraj Kabzan and Emilio Frazzoli

Abstract— We consider the problem of maximizing distance
to road agents for a self-driving car. To this extent, we
employ a Model Predictive Control (MPC) approach for the
steering tracking control of an Autonomous Vehicle (AV).
Specifically, we first present a traditional MPC controller,
which is then extended to encode the clearance maximization
goal by manipulating its cost function and constraints. We
provide insights on the additional information needed to achieve
such goal, and how this modifies the structure of the original
controller. Furthermore, a connection between commonly used
safety metrics and clearance to road users is established. We
implement the MPC controller using two off-the-shelf numerical
solvers, assessing its computational feasibility. Finally, we show
experimental results of the proposed approach on public roads
in Boston and in Singapore.

I. INTRODUCTION

The execution of actions in a robotics system is often
decomposed into a Planning and Decision-making layer (in
the following, simply the planner), and a Controller module.
The former is responsible for choosing a maneuver to be
performed and for imposing restrictions in speed, time, and
space on how this maneuver shall be executed. The latter
is responsible for the optimal execution of the maneuver
within the bounds supplied by the planner, possibly taking
into account the physical limitations of the dynamical system
as well. Such decomposition is common in Autonomous
Vehicles (AVs), where the actions taken must obey specified
rules and also represent a safe and socially acceptable
behavior. The decision-making process is obviously based
on the output of perception and prediction modules, which
provide information about the current and predicted state
of the world. Sampling-based motion planning algorithms
[1] have become extremely popular in the AV domain as
a solution for the decision-making problem, in particular
the ones able to handle non-holonomic constraints, such as
RRT [2] and its asymptotically optimal variant RRT* [3].
In an urban environment, such algorithms take on great
importance, as they allow to encode safety rules, e.g., in
a minimum-violation fashion [4], [5]. On the downside,
navigating dense urban environments requires a thorough
refinement of the trajectory to be executed.

Fig. [I] shows a narrow road traveled by our AV, with
a construction zone on the right side. In such scenario
it is extremely helpful to finely pick a path farther from
the construction area. Indeed, being too close too it and
interacting with pedestrians potentially moving outside of the
area unexpectedly, or even construction material falling off
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Fig. 1. The nuTonomy R&D platform navigating a road in Singapore. The
AV “sees” a construction zone (right), and deviates from the reference to
keep a higher distance (black arrows on the left).

might endanger safety of the AV’s passengers and of other
road users.

Refining the driven path at the sampling-based planning
level results in a large number of samples needed, dra-
matically increasing its computational complexity. While
speeding up motion planning algorithms is an active area of
research [6], another possibility is lowering their complexity
by deferring to lower layers (such as the controller) the
refinement of trajectories for achieving additional goals. The
second approach is the one we adopt for maximizing lateral
clearance, as optimization over a continuous domain can be
easily attained via gradient-based methods, which are widely
used in control applications.

In a nutshell, such architectureEl considers the combinato-
rial aspect of the decision-making process (e.g., to overtake
a car or to stop for it) tackled at the higher decision-making
level, while the local refinement of the trajectory is handled
in the controller module. The goal of this paper is to present
how the latter is performed; details on the planner employed,
or on the perception and prediction modules used, are outside
the scope of this paper.

IPlease note that the functionality described is not necessarily represen-
tative of current and future products by nuTonomy, Aptiv and their partners.
The scenarios presented are simplified for the purposes of exposition. The
examples discussed are illustrative of the philosophy but not the precise
specification we use. Moreover, we gloss over the extensive verification
and validation processes that are performed before driving on public roads.



A. Related work

Model Predictive Control (MPC) is nowadays the standard
for model-based optimal control. It can be used for both
regulation and tracking problems, and it allows to explicitly
account for constraints on the system. Applications in the
Autonomous Driving domain range from motion planning
for miniature race cars [7], to the investigation of different
models suitable for an AV driving task on full size vehicles
[8], and more recently an MPC-based planner which includes
also a collision avoidance system [9]. This last system,
experimentally demonstrated also on full sized vehicles, does
not lead the AV to choose a safer path (that is, a path with
larger clearance to obstacles): Avoiding the obstacle by 0.1 m
or 10 m is considered equivalent.

Inducing the choice of a safer path can be achieved by
modifying a traditional MPC architecture to specify addi-
tional objectives; Such approach is a fairly recent trend for
autonomous systems. The authors in [10], [11] employ this
framework to maximize targets visibility in drone cinematog-
raphy; authors in [12] similarly encode the additional goal
of keeping a point of interest in sight for a UAV. The MPC
frameworks therein implemented serves as both planner and
controller, given that the drone can simply move from point
A to point B without any specific rule to obey.

In [13], the authors extend an MPC-based planner to
account for visibility maximization while overtaking a static
obstacle in an urban environment. Rule compliance is taken
into account by means of a state machine which selects the
maneuver that the MPC shall deliver. The paper includes
simulation results showing the effectiveness of the approach
in a scenario including only a single parked car. Extensions to
more sophisticated scenarios can become very challenging;
also, it is unclear how many agents such approach can handle
simultaneously.

B. Contribution

Compared to the aforementioned approaches, our work
differs in the way responsibilities are assigned to our AV’s
modules: The planning layer needs to ensure rule com-
pliance, for example according to [14], and provide the
controller a reference trajectory to be followed, as well as a
rule compliant region in the phase space (in the following,
the “tube”). Such region empowers the controller with some
freedom, as it is both collision-free and rule compliant. The
proposed controller is able to track the reference trajectory,
and at the same time to retain the capability of changing
the exact driven path, that is, how the AV performs the
maneuver. It is worth mentioning that the proposed scheme is
compatible with any planning algorithm, as no assumptions
are made on its architecture (e.g., state machine or graph
based). At the controller level, comfort and tracking objec-
tives are then considered jointly with safety related goals, that
is, maximizing clearance to other agents. This combination
of goals requires a trade-off between tracking objective and
clearance maximization goal, resulting in what we refer to
as biasing [15].

Thanks to this additional functionality, the controller does
not only follow the planner’s trajectory, but is also directly
aware of perceived objects. An illustration of this behavior
is depicted in Fig.

Fig. 2. Qualitative paths during an avoidance maneuver (left-hand traffic):
planner’s reference (blue) and controller’s biased (red). The “tube” consists
of the shaded green region.

Similarly to related approaches in the literature, an MPC
control framework is chosen mostly for its ability to handle
constraints, which are a key component to enable biasing
functionality.

The contribution of this paper is threefold: Firstly, the
MPC control framework is presented (Section [[I), together
with its clearance maximization extension (Section [[V).
Insights on how to allow the MPC layer to consume objects
information, as well as a connection between clearance to
such objects and commonly used safety metrics, are given
in Section [V] Secondly, the resulting optimization problem
is implemented using two different off-the-shelf numerical
solvers, and its computational tractability is assessed (Section
[VI). Finally, extensive experimental results are shown using
the nuTonomy R&D platform, demonstrating the validity of
the proposed approach in real-world scenarios.

II. MATHEMATICAL NOTATION

We denote vectors with bold letters, and the column
vector given by [x7,yT]T as (x,y). The time derivative
of the function f(t) is denoted as f(t). The sampling time
of the system is denoted as T,. We use xp = z(kTy)
to represent the k-th prediction step of variable x, where
k=1{0,1,...,N}.

I1I. MPC FORMULATION

In this section the design of the lateral tracking controller
is presented.

A. Vehicle’s model

The first component of an MPC algorithm is a model of
the dynamical system to be controlled. Since the operational
domain considers an AV driving in urban scenarios, the max-
imum achievable speed is low (around 14ms~! depending
on the regulations); similarly, acceleration is low as well.
As highlighted in [8], in low speed and acceleration regimes
the usage of a higher fidelity model does not provide any
substantial benefit over a kinematic one. Hence, we choose
to model the AV with a kinematic bicycle model [16] [17].
Denoting by z,y, 0 the position and heading of the AV at
the center of the rear axle in a global inertial frame, by v
the speed at the rear axle, by § its ground steering angle,
we express the heading angle dynamics as a function of



speed and curvature at the rear axle «, using the relation
k(t) = tan(o(t))/b, with b denoting the wheelbase. Given
the physical limits of the system, we can directly recover
the ground steering angle 0(t) as §(t) = arctan(k(t)b).
Moreover, we model the actuation dynamics as a first-
order dynamical system with time constant 7 (with 7 being
a parameter identified using standard system identification
techniques [18]), hence adding the additional variable kges
denoting the desired curvature. This results in the following
system of differential equations:

z(t) = v(t) cos(6(t)), (1a)
y(t) = v(t) sin(6(t)) , (1b)
(t) = v(t)k(t), (Ic)
(1) = = (rae(6) — (1) (1)
Faes () = u(t) . (le)

In order to be employed in an MPC scheme, the contin-
uous time differential equations need to be discretized,
and the Explicit Runge-Kutta numerical scheme is employed.
Stacking together the state variables, we write the state vector
x = (z,9,0, K, Kaes)- Eq. shows the input u being the
desired curvature rate. The model is depicted in Fig. [3]

Fig. 3. Kinematic bicycle model of a car.

Remark 1: The proposed scheme is a steering tracking
controller, hence the speed v(¢) in Eq. [1|is an uncontrollable
parameter and not an optimization variable.

B. Cost function

The proposed control architecture aims at addressing a
tracking problem, hence the objective function is written in
terms of tracking error. By denoting the reference trajectory
vector at stage k as z = (Zj, Yk, Ok, Fr), the cost to be
minimized is the sum of the tracking error at each prediction
step £ = 0,...,N, with N being the prediction horizon
length (in time steps), that is

N

Joom = 3 (alxtr2) + () + plxwo 7). @)
k=0

[

The quantity zg, k = {0,..., N} is obtained by discretiz-
ing the continuous planner’s reference trajectory, using the

predicted speed v; the AV will drive at the corresponding

time instants (which comes from a different module).
Similarly to what is performed in contouring control [7],

we compute the lateral error at each prediction step k as

ek = — (1, — T) sin(Ox) + (yx — Gi) cos(br) ,

and penalize it in the cost function.

Hence, by employing a quadratic cost function, the term
q(Xp,zx) corresponds to

Qe + @20k — k) + as(k — Ri)?

with ¢1,¢2,93 > 0. The term p(xy,zy) is structured
analogously (with different weights only), and the stage input
cost is r(ug) = Ru?, R > 0.
C. Constraints

The following constraints are imposed on the system:

w<up < Vk=1{0,....,N—1}, (3a)
k<kp <Rk Vk={0,...,N}, (3b)
ek < €k < €ak Vhk={0,...,N}. (3¢)

Constraints (3a) and (3b) bound curvature rate and curva-
ture taking into account physical limits; constrains the
(signed) lateral error to lie within time-varying bounds. In
order to ensure feasibility, the inequalities are expressed
as soft constraints, through the addition of a slack variable
€k,€x > 0, which is also penalized in the cost function by
means of linear and quadratic penalties [19].

IV. MAXIMIZING LATERAL CLEARANCE WITHIN MPC

In this section, we extend the previously derived MPC
controller by manipulating its cost function and constraints.

A. Safety related auxiliary variable

Since we aim at maximizing lateral clearance in appro-
priate circumstances (e.g., in the proximity of agents whose
motion might change unpredictably), as well as minimizing
the tracking error, a natural approach is to extend the cost
function by adding suitable terms. The simple and intuitive
observation is the following: The higher distance a vehicle
has with respect to other objects, the lower the likelihood of
incurring accidents, hence the higher safety. More formally
speaking, incrementing clearance increases the commonly
used Time-To-React (TTR) metric quantity [20].

To this extent, we introduce the auxiliary optimization
variable s representing achievable safety, that is, an empirical
measure of the attainable safety to be correlated to the
clearance given to objects. For ease of exposition, the case
with one object on the right of the reference trajectory is
considered first (illustration in Fig. [d); the case of one object
on the left is analogous, and how to handle multiple road
agents is described in Section

We denote by d, rr the lateral distance from the reference
to the object on its right. Such distance accounts for the
car’s footprint, and is non-negative. The actual distance from
the AV to the agent is denoted as d,., and is computed as



dy = dy et + e1a. The lateral error e, is a signed quantity.
For this reason, the case of the object being on the left side
results in d; = dj rer — €14 Fig. E| depicts such quantities.

Fig. 4. Both longitudinal d,. 1o, and lateral d,. s distances are computed
from the discretized planner’s reference (axes origin) to the object O
and account for the car’s and object’s footprints. Biasing (dashed green
rectangle) increases the actual lateral distance by ejy.

The cost function (2) is extended via
N

Joias = Z (Sk - Slarget)2 , €]
k=0
with Suree being a constant representing the target safety.
Safety and lateral distances are linked through the
clearance-dependent safety constraint function f5(d). Hence,
the following constraint is added:

S S fs(dr) + Sr,lon - (5)

The safety term s, jon is related to the longitudinal distance
drion via the function fion(dion). Such function is non-
increasing in (—o0,0) and non-decreasing in [0, c0), with
fion(0) = 0. Since d,on is an uncontrollable real time
parameter, the term s, jon is computed outside of the MPC
controller.

The function f,(d) is a function of the lateral clearance d
and also non-decreasing; additional details are given below.

B. Shaping the clearance-dependent safety function

Depending on how the clearance-dependent safety func-
tion is shaped, the extent to which the car deviates from
the reference will be different. We can use functions taking
values in the range [O,S[arget}: by relating safety to Time-
To-React (TTR), a negative TTR (hence safety) relates to
unavoidable collision states only. However, thanks to the
Planner outputting collision-free tubes only, we can neglect
the cases where TTR < 0. Moreover, safety cannot grow
unbounded, since after a certain threshold a higher TTR
does not provide any additional benefit. We employ sigmoid-
like functions, e.g., fs(d) = %, for both the lateral
and longitudinal terms. Figure [3] depicts the value of the
cost function (@) (for one time step only) associated to the
scenario drawn in Fig. [

C. Control law

Putting together the dynamics equations (I) (in the form
of equality constraints), the cost functions (2) and (@) and
the constraints (3) and (3) (whose resulting feasible sets are
compactly denoted as X and U), we extend the state variables
by adding the safety term, that is, X = (x, s). Note that s has
no dynamics, hence the equality constraints deriving from

Jbias

lat

Fig. 5. Value of the cost function J;,s for the example in Fig. EI The green
shaded area defines the tube, while the blue cube represents the obstacle.

(T) are unchanged. Finally, denoting the sequence of inputs
{ug,...,uny—1} at time steps {0,...,N — 1} as u we can
write the full optimization problem:

min Jnom + anias (63)
s.t. xo=x(t), (6b)
Xk+1 :f(xk,uk), V/{Z:{O,...,N—l}, (60)
%, € X, Vk={0,...,N}, (6d)
ug € U, Vk={0,...,N—1}. (6e)

The factor « > 0 is a tuning parameter used to trade
off between tracking performance and clearance maximiza-
tion. At each time step, problem (6] is initialized with the
measured state x(¢) as initial condition (constraint (6D)).
The new reference trajectory z; as well as the distances
dl,ref,ka dr,ref,ka dl,lon,ka dr,lon,ka Vk = {07 cee >N}5 are also
updated. An optimal solution of (6) is J*, with associated
optimizer u* = {uf, ..., u}_,}. Problem (@) is solved in a
receding horizon fashion [19], and only the first input ug is
applied to the system.

Remark 2: Given that constraints are soft, problem
(@) is always feasible. This comes from the fact that con-
straints (3b) are related to physical limits of the vehicle
(hence always feasible provided a feasible initial condi-
tion (6b)), and constraints (3a) and () limit optimization
variables with no dynamics (thus they can vary freely and
instantaneously). Such property is extremely important for
the real-world deployment of the MPC controller.

V. CONSTRAINTS COMPUTATION

In this section we present details on the lateral error
bounds (i.e., the “tube”) and the bias-inducing terms. The
tracked objects information (measured and predicted for the
future k steps) are obtained from separate perception and
prediction layers, which do not belong to the scope of this

paper.
A. Examples of tube computation

The role of constraints is of paramount importance:
They are needed to specify the maximum lateral error
the AV can tolerate due to biasing. For this reason, such
“tube” has to represent a collision-free region around the
reference trajectory, where the car can freely move without



endangering safety or violating specifications. To this extent,
all the available informations are used for tube derivation:
offline (i.e., map-based) and online (i.e., perception-based).
Moreover, in some situations a narrower tube is advisable:
this is the case, for instance, of the AV navigating an
intersection, and is due to the fact that the lane boundaries
are often not well defined, and other cars do not follow
their prescribed paths but tend to “cut”. In such situations
the tube is shrunk progressively as the AV approaches the
maneuver requiring superior tracking performance to avoid
abrupt swerves that would greatly impact comfort, or even
endanger safety.

b@-

(V]

Qa

Fig. 6. Planner’s trajectory (blue) and collision-free tube (green) accounting
for a static (a) and a moving (b) obstacles, as well as road boundaries.

An example of the tube is depicted as the green shaded
area in Fig. [

B. Handling multiple objects

In urban driving, it is not uncommon to have multiple
road agents that the AV needs to account for. To this extent
we introduce the notion of most constraining object on the
left and on the right, o; and o,, respectively: that is, at each
prediction time step k£ the object that constrains the safety
variable s; the most, for a fixed ej,; = 0. Note that the most
constraining object at time step (k+ 1) is not necessarily the
same as at time step k, given its predicted motion.

Such objects are found via

Ok = arg min (fS (dé,ref,k) + S;‘,lon,k) ’

ie€{l,...,L} (7)
Or = arg min (fs(dil,ref,k) + s:},lon,k) .
he{l,....M}

Consequently, the distances used in the MPC controller are
Ol k
dl,ref,k = dl,ref,k )
Or, k
dT‘JCﬂk‘ - dl,ref,k ’
Ol k
i jon,k = di jon 1 »

O,k
dr,lon,k = drjlon,k :

The proposed approach is therefore able to handle as many
objects as the perception/prediction layers can process.

C. Diversifying the behavior for different classes of objects

In case the perception system provides classified objects
(e.g., car, bicycle, pedestrian), we may want to diversify the
behavior depending on the object the AV deals with. To this
extent and since the number of classes is finite, extending
the proposed framework is straightforward by adding as
many constraints (3) as the number of classes and use
different functions f(d) (or the same function with different
parameters) for different classes.

VI. RESULTS

We show experimental results obtained using the nuTon-
omy R&D platform (Renault Zoe). The experiments assume
left-hand traffic (Singapore/UK regulations).

A. Comparison with MPC without biasing
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;\\ Q o B '
4 o T
£ e | e t
“4 i / |
< "‘ ' ; |

(a) No biasing (b) Biasing

Fig. 7. Comparison of the normal MPC and the extended version for
a scenario with two pedestrians (blue boxes). The continuous blue line
represents the driven path.

In the extended version, the parameters a,b > 0 in
the clearance-dependent safety function (3) are tuned in
simulation and verified through real car testing. In case no
road agent is present, the values djy, djon are set to oo and 0,
respectively. This causes the cost {@) to equal 0. Similarly, if
object ¢ results in f?(drer) + i, > Starger (that is, is located
very far), it is not accounted in Eq. (7). The parameter «
in Eq. (6a) was tuned by simulating different scenarios, and
refined through real-world testing.

The prediction horizon employed is N = 60, correspond-
ing to a time prediction of 3s. MPC controllers with longer
prediction horizons (i.e., 70— 80 time steps) were also tested,
without particular benefits in terms of performance.

Fig. [/| shows a real-world experiment consisting of our
car driving with two pedestrians on the sides of the lane. In
the first picture the simple MPC controller is used, and
the car only follows the reference path. The closest lateral
distance from its footprint to the pedestrian is about 1m.
In the second picture the extended MPC controller is
employed. Additionally to following the reference trajectory,
the car also maximizes lateral clearance to both pedestrians,
and results in driving an S-shaped path (the blue line in
the figure). The closest lateral distance from its footprint to
the pedestrian is about 1.4m, that is 40 % larger than in



Without maximizing clearance

300 -

200

# occurrences

100 |-

0 |-| ! ! ! !
0o 05 1 15 2 25 3

Lateral distance [m]

Maximizing clearance

200 -

150 -

100

# occurrences
]

50 |-

(0 el ! 1

!
0 0.5 1 1.5 2 2.5 3
Lateral distance [m]

Fig. 8. Comparison of lateral clearance to other road agents during public road driving; the MPC with auxiliary goal (histogram on the right) consistently

achieves higher lateral clearance.

the nominal case. In terms of input magnitude, there are no
substantial differences, resulting in the same comfort level
for passengers (same yaw rate and acceleration).

A video showing experimental results can be found at
https://vimeo.com/348076680/be686d1397. For public road
driving, the histograms in Fig. [8] show the lateral distance
given to other road agents (pedestrians, bicyclists, cars)
for both the MPC controllers. Such lateral distances are
measured once the longitudinal displacement is equal to zero.
It is evident that the extended MPC shows an increased
lateral clearance for a large number of occurrences.

B. Numerical solvers used

In order to numerically solve problem (@), two off-the-
shelf solvers tailored to MPC applications were tested,
namely the ACADO [21] suite paired with QPOASES [22],
and a proprietary Nonlinear Programming (NLP) solver.
Both frameworks provide the possibility to automatically
discretize the continuous time system dynamics in Eq. (I);
the Explicit Runge-Kutta method of order 4 with a sampling
time of 50ms, is employed. Even though both generate a
high performing, tailored implementation of the MPC solver
in C, they largely differ in terms of numerical algorithms
employed. The analysis and comparison of such numerical
algorithms are beyond the scope of this paper.

C. Solver comparison

Table shows the performance in terms of solvetime
of the numerical solvers tested by comparing the traditional
MPC tracking controller and its extended version with bi-
asing functionality. Both solvers were compiled with all the
optimizations turned on and tested in identical conditions,
running on a 4.6 GHz i7 processor and sharing resources
with other AV-relevant processes (perception, planning, etc.).

TABLE I
SOLVETIME OF THE TWO SOLVERS TESTED, WITH AND WITHOUT
BIASING FUNCTIONALITY. HORIZON LENGTH N = 60.

Average Maximum
Proprietary NLP 2.1ms 3.7ms
Proprietary NLP (biasing) 2.3 ms 5.4ms
ACADO+QPOASES 1.9ms 3.9 ms
ACADO+QPOASES (biasing) 2.0 ms 5.0 ms

It is evident that both solvers are capable of finding a
locally optimal solution to the problem within the time
bounds provided (sampling time 75 = 50 ms), despite the
extended MPC being a higher dimensional problem.

VII. CONCLUSION AND FUTURE WORK

This paper presents an approach enabling the specification
of additional tasks in an MPC tracking controller of an AV.
In particular, such task involves maximizing clearance to
other road users, resulting in an increase of safety based on
the TTR metric. Moreover, extensive experimental results
are showed as well as comparisons with traditional MPC
tracking controllers. The computational feasibility is assessed
using two different numerical solvers.

Future development includes the implementation of the
lane biasing functionality within a control framework com-
manding both speed and steering, as envisioned in [15]. The
tractability of the resulting higher dimensional problem needs
to be assessed, although the numerical results presented in
Table [VI-BJare encouraging. Moreover, correlating the safety
variable s with the maximum attainable speed might be
an interesting extension, allowing to drive faster in case
of larger clearance and consequently mimicking observed
human behaviors [23] and achieving a more human-like



driving experience.
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