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Abstract— During the development of autonomous systems
such as driverless cars, it is important to characterize the
scenarios that are most likely to result in failure. Adaptive
Stress Testing (AST) provides a way to search for the most-
likely failure scenario as a Markov decision process (MDP).
Our previous work used a deep reinforcement learning (DRL)
solver to identify likely failure scenarios. However, the solver’s
use of a feed-forward neural network with a discretized space of
possible initial conditions poses two major problems. First, the
system is not treated as a black box, in that it requires analyzing
the internal state of the system, which leads to considerable
implementation complexities. Second, in order to simulate
realistic settings, a new instance of the solver needs to be run
for each initial condition. Running a new solver for each initial
condition not only significantly increases the computational
complexity, but also disregards the underlying relationship
between similar initial conditions. We provide a solution to both
problems by employing a recurrent neural network that takes
a set of initial conditions from a continuous space as input.
This approach enables robust and efficient detection of failures
because the solution generalizes across the entire space of initial
conditions. By simulating an instance where an autonomous car
drives while a pedestrian is crossing a road, we demonstrate
the solver is now capable of finding solutions for problems that
would have previously been intractable.

I. INTRODUCTION

Simulation can offer an inexpensive complement to field-
testing for evaluating the safety of autonomous vehicles [1]–
[3]. Such simulations can run faster than real-time and can
more easily probe safety critical scenarios that cannot be
obtained in real-world environments due to the rarity of
events, cost incurred with failures, and ethical considera-
tions. However, the space of edge-cases that can cause the
autonomous vehicle to fail is vast [4].

Consider a pedestrian crossing a neighborhood road at
a crosswalk, a problem we use as a running example and
which is shown in Figure 1. A naive approach could be to
assume the pedestrian follows a straight line trajectory across
the road. The scenario could then be simulated thousands
of times with different pedestrian velocities. While this
approach may be tractable, the computational savings come
at the expense of safety. In reality, pedestrians do not only
follow a straight line. Perhaps certain pedestrian paths take
them into a sensor blind-spot, or elicit unsafe behavior from
the test vehicle. Even unlikely collisions are significant due
to the large amount of miles an autonomous fleet will drive.
It is not sufficient to assume other actors will always follow
sensible trajectories. Unfortunately, modeling the behavior
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Fig. 1: Layout of a running example. A car approaches a cross-
walk on a neighborhood road with one lane in each direction. A
pedestrian is attempting to cross the street at the crosswalk.

of other actors leads to an exponential explosion in possible
scenarios and failures. Identifying critical scenarios through a
brute-force search would be intractable due to the dimension-
ality of the search-space. Instead, researchers are focusing
on adaptive methods for adversarially generating critical test
scenarios in simulation [5]–[8].

Adaptive Stress Testing (AST) provides a framework for
finding the most-likely failure scenario of a system in simu-
lation [9]. Knowing the most-likely failure is useful for both
the development and the safety validation of an autonomous
vehicle. In AST, the problem of finding the most-likely
failure of a system is formulated as a Markov decision
process (MDP). Failures can be found using reinforcement
learning techniques. The process of solving an AST problem
is shown in Figure 2. At each time-step, the solver provides
environment actions that control the simulator. The simulator
reports when a failure occurs and outputs the likelihood of
the environment actions. Reinforcement learning techniques
can be used to solve the MDP, with the reward function
depending on the likelihood of actions taken and whether a
failure was found. We recently introduced a deep reinforce-
ment learning (DRL) solver that was able to find failures
in an example autonomous vehicle scenario more efficiently
than an existing Monte Carlo tree search (MCTS) solver [10].
However, there are two major limitations that make using
the solver more challenging: the solver’s dependence on the
simulation state and requirement to be run from a single
initial condition.

The primary limitation of the DRL solver is its dependence
on observing the simulation state, the collection of internal
state variables that fully define the simulation. Many high-
fidelity simulators are large, complicated software suites.
Consequently, exposing the simulation state may be non-
trivial; therefore it is useful to treat the simulator as a
black box. In the current formulation of AST, the method
is able to treat the simulation as a black box by using
the history of actions taken as a substitute for the current
state [9]. The system under test (SUT) must therefore be
deterministic with respect to the environment actions, so that
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Fig. 2: The AST methodology. The simulator is treated as a black
box. The solver optimizes a reward based on transition likelihood
and whether an event has occurred.

an exact mapping from the history of actions to simulation
state exists. The DRL solver represents the AST policy as
a feed-forward neural network, where the simulation state is
used as input. It would be advantageous to use the history
of actions as input, but the solver architecture is not optimal
for such a representation. Instead, an architecture designed
for sequential data would be preferable.

The second limitation of the DRL solver is that it can
only be trained for a single initial condition. Consider again
the pedestrian at the crosswalk. Simulating this scenario
with the car starting 30 m away from the crosswalk could
have a significantly different outcome than if the car started
40 m away. When validating an autonomous vehicle, we are
interested in both of these instantiations, as well as the range
in-between. All of the possible initial conditions comprise a
class of scenarios, and different instantiations could lead to
different failure modes. An ideal validation method would
therefore be able to cover the entire initial condition space.
Unfortunately, we currently would have to discretize the
space of initial conditions and train a new DRL solver for
each bin, as shown in Figure 3a. Even on small problems, the
space of initial conditions can be high-dimensional, making
a discretized representation intractable. Instead, we would
like to train a single DRL solver that can take any initial
condition in the continuum of our defined space.

In order to effectively use AST while validating complex
autonomous vehicles, this paper extends the DRL solver by
changing the policy architecture to a recurrent neural network
(RNN), which has two advantages:

1) RNNs are designed for sequential tasks, therefore the
simulation state is no longer needed as input. The
RNN takes the previous action as input, and uses it to
internally maintain a hidden state. This is analogous to
using the history of actions as the current state.

2) Specific types of RNNs have shown the ability to learn
temporal patterns. This is essential when working with
different initial conditions, since trajectories could end
up in similar states that have different expected values
due to reaching the state different times. Therefore, we
are able to add the initial state as input to the network,
and the network will learn to generalize across the
space of initial conditions.

The new architecture therefore addresses the two major
limitations of the old DRL solver. We will demonstrate the
improvements by roughly discretizing the space of initial
conditions and comparing the performance of the new archi-

tecture against a MCTS solver and the current DRL solver.
Generalization will then be demonstrated by letting the new
architecture sample from the space of initial conditions at
train time. Improving the DRL solver will make autonomous
vehicle validation in simulation more tractable, leading to
vehicles that are more reliable and robust.

II. BACKGROUND

Adaptive stress testing formulates the problem of finding
the most-likely decision as an MDP. Two methods are used
to solve this problem, MCTS and DRL.

A. Markov Decision Process

Markov decision processes (MDPs) are a framework for
formulating sequential decision making problems [11]. In an
MDP an agent chooses an action a in state s. The agent
receives a reward according to the reward function R(s, a).
The agent transitions to the next state s′ according to the
transition probability function T (s′ | s, a). According to
the Markov assumption, the transition only depends on the
current state and action. Neither the transition nor reward
functions need to be deterministic. In some cases, the tran-
sition or reward functions may not be known.

The solution to an MDP is represented by a policy π(s)
that specifies the optimal action to take in a given state. An
optimal action maximizes the expected utility, which can be
found recursively:

V π (s) = R
(
s, π (s)

)
+ γ

∑
s′

T
(
s′ | s, π (s)

)
V π (s′) (1)

where γ is the discount factor that controls the weight of
future rewards. Large MDPs may need to be solved approx-
imately. Two examples of reinforcement learning techniques
for finding the approximate solution to an MDP are Monte
Carlo tree search and deep reinforcement learning.

B. Monte Carlo Tree Search

Monte Carlo tree search (MCTS) [12] is an online
sampling-based reinforcement learning method that has per-
formed well on large MDPs [13]. MCTS builds and main-
tains a tree where the nodes represent states or actions in
the MDP. While executing from states in the tree, MCTS
chooses the action that maximizes

a← arg max
a

Q(s, a) + c

√
log(N(s))

N(s, a)
(2)

where Q(s, a) is the expected value of a state-action pair,
N(s) and N(s, a) are the number of times a state and a
state-action pair have been visited, respectively, and c is a
parameter that controls exploration. When a new state is
encountered, Q(s, a) and N(s, a) are initialized for all of
the available actions, and the state is added to the tree. Then,
Q(s, a) is updated by executing rollouts to a specified depth
and returning the expected value. The algorithm is run until
a stopping criterion is met. This paper uses a variation of
MCTS with double progressive widening [14] to limit the
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(a) The previous version of AST running over a space of initial conditions I. The space must be discretized, and then each initial condition
s0 requires a separate instance of the DRL solver and the simulator. In addition, the solver requires the next simulator state st at each
time-step.
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(b) The new version of AST running over a space of initial conditions I. The continuous space is sampled at random at the start of
each trajectory, therefore only one instance of the solver is needed. The solver does not need access to the simulation state because it is
maintaining a hidden state ht at each time-step. The solver instead uses the previous action at.

Fig. 3: Contrasting the new and old AST architectures. The new solver uses a recurrent architecture and is able to generalize across a
continuous space of initial conditions with a single trained instance. These improvements allow AST to be used on problems that would
have previously been intractable.

branching of the tree, which leads to better performance on
problems with large or continuous action spaces.

C. Deep Reinforcement Learning

Deep reinforcement learning (DRL) represents a policy
as a neural network (NN) parameterized by θ. Recurrent
neural networks (RNN) are a family of NNs designed to
handle sequential inputs. Recurrent neural networks maintain
a hidden state, which propagates information through time.
RNNs factor historical information into their output through
the hidden state. The network maintains a set of weights
for both the hidden state and the output. While RNNs
traditionally can be difficult to train due to the exploding
gradient problem, long-short term memory (LSTM) layers fix
this by introducing gated self-loops which enforce constant
error flow [15].

Trust Region Policy Optimization (TRPO) is a gradient-
based method for improving the policy [16]. TRPO generally
gives monotonic increases in policy performance by con-
straining the KL divergence between policy steps. The policy
gradient can be obtained using generalized advantage estima-
tion (GAE) [17], a method for estimating policy gradients
from batches of simulation trajectories.

III. METHODOLOGY

When validating autonomous systems, stress testing is the
process of eliciting failures to evaluate the robustness of the
system. This section outlines the process involved in using

AST to find the most-likely failure, based on the material
presented above. We also explain the changes made to the
DRL solver to improve the performance and add a new
capability.

A. Adaptive Stress Testing

Adaptive stress testing formulates finding the most-likely
failure of a system as a sequential decision-making problem.
Given a simulator S and a subset of the state space E where
the events of interest (e.g. a collision) occurs, we want to find
the most-likely trajectory s0, . . . , st that ends in our subset
E. Given (S, E), the formal problem is

maximize
a0,...,at

P (s0, a0, . . . , st, at)

subject to st ∈ E

where P (s0, a0, . . . , st, at) is the probability of a trajectory
in simulator S and st = f(at, st−1).

AST requires the following three functions to interact with
the simulator:
• INITIALIZE(S, s0): Resets S to a given initial state s0.
• STEP(S, E, a): Steps the simulation in time by drawing

the next state s′ after taking action a. The function
returns the probability of the transition and an indicator
whether s′ is in E or not.

• ISTERMINAL(S, E): Returns true if the current state of
the simulation is in E, or if the horizon of the simulation
T has been reached.



Unlike previous formulations, the INITIALIZE function now
accepts an initial state. The purpose of this change is to
output a policy that can generalize to different scenario
instantiations.

B. Recurrent Deep Reinforcement Learning Solver

We previously added a new deep reinforcement learning
(DRL) solver to AST [10]. The solver is interchangeable with
the commonly-used MCTS solver. The previous implemen-
tation required the simulation state as input, which was an
undesirable relaxation of the black-box simulator assump-
tion. Treating the simulation as a black box allows easier
implementation for complicated or third-party simulators, for
which the simulator’s internal state may not be accessible.
As such, we have redesigned the DRL solver to meet the
black-box assumption.

The AST agent must control all stochasticity in the sim-
ulation, therefore transitions are deterministic with respect
to the AST agent’s actions. Because the SUT updates are
deterministic, the history of actions and the initial state are
sufficient to represent the current state. Consequently, the
simulator is allowed to be non-markovian. Replacing the
simulation state with the history of actions also fulfills the
black-box assumption, because the simulation state is no
longer needed as input. The previous DRL solver, referred
to hereafter as the MLPDRL solver, used a Gaussian multi-
layer perceptron (MLP) architecture, which does not work
well with this state representation.

Instead of a Gaussian MLP, the policy is now represented
by a recurrent neural net (RNN), using long-short term
memory (LSTM) layers. The network architecture is shown
in Figure 4. An RNN is able to train on a sequence of
inputs while maintaining a hidden state, which is analogous
to using a history of previous actions as the current state.
The output of the policy is a mean action vector for a
multivariate Gaussian distribution. The diagonal covariance
matrix is independent of state and trained separately [16].
The only input to the network is the previous action, hence
xt = at−1. While the simulation state is no longer needed,
this solver can only be run from a single initial condition,
therefore we will refer to it as the discrete recurrent deep
reinforcement learning (DRDRL) solver.

C. Continuous Scenario Generalization

Previous work with AST provided a trajectory from a
discrete initial condition. As discussed earlier, engineers are
often concerned with a scenario that starts from a space of
initial conditions. Even using a coarse grid discretization,
the number of possible initial conditions is still exponential
in the dimension of the initial condition space. Despite the
increased efficiency of AST, running from a large number of
initial conditions for a single class of scenarios would take an
impractical amount of compute time. Instead, we would like
to have a single solver that can find a likely failure trajectory
from any initial condition.

By modifying the INITIALIZE function to accept the initial
state, we hypothesize that AST can learn a policy that

LSTM

xt

yt = [µt+1,Σt+1]

ht+1ht

Fig. 4: The DRL solver architecture. The recurrent neural network
structure takes the hidden state from the previous step, ht, and
outputs the hidden state for the next step ht+1. The input xt is a
concatenation of the initial state s0 and the previous action at. The
output yt is the mean µt+1 and standard deviation Σt+1 of the next
action.

generalizes to the entire space of initial conditions. Our
hypothesis arises because autonomous vehicles test cases
are run on models of the real world. Consequently, light
deviations in position and noise should produce similar
policies. Therefore, training AST across the space of initial
conditions should be far more sample efficient than running
AST for individual instantiations. The architecture is there-
fore modified so the input at each time-step is the concate-
nation of the previous action and the initial condition, hence
xt = [at−1, s0]. During training, each rollout starts from
a randomly sampled intial condition. We will refer to this
architecture as the generalized recurrent deep reinforcement
learning (GRDRL) solver.

IV. EXPERIMENTS

This section outlines the problem used in simulation to
test AST, the hyper-parameters of the DRL solver, and the
reward structure. For bench-marking purposes, we follow the
experiment setup—simulation, pedestrian models, and SUT
model—proposed in our previous work [10]. The problem
has a 5-dimensional state-space and a 6-dimensional action
space, and is run for up to 50 time-steps.

A. Problem Formulation

Our experiment simulates a common neighborhood road
driving scenario, shown in Figure 1. The road has one lane in
each direction. A pedestrian crosses at a marked crosswalk,
from south to north. The y origin is at the center of the
crosswalk, and the x origin is where the crosswalk meets
the side of the road. The speed limit is 25 mph, which is
11.17 m/s.

The inputs to the GRDRL solver include the initial state
s0 = [s0,ped, s0,car, v0,ped, v0,car] where
• s0,ped is the initial x, y location of the pedestrian,
• s0,car is the initial x position of the car,
• v0,ped is the initial y velocity of the pedestrian, and
• v0,car is the initial x velocity of the car.
Initial conditions are drawn from a continuous uniform

distribution, with the supports shown in Table I. Trajectory
rollouts are instantiated by randomly sampling an initial
condition from the parameter ranges.



TABLE I: The initial condition space. Initial conditions are drawn
from a continuous uniform distribution defined by the supports
below.

Variable Min Max

s0,ped,x −1m 1m

s0,ped,y −6m −2m

s0,car −43.75m −26.25m

v0,ped 0m/s 2m/s

v0,car 8.34m/s 13.96m/s

B. Modified Reward Function

AST penalizes each step by the likelihood of the envi-
ronment actions, as shown in Equation (3). Unlikely actions
have a higher cost, so the solver is incentivized to take likelier
actions, and therefore find likelier failures. The Mahalanobis
distance [18] is used as a proxy for the likelihood of an ac-
tion. The Mahalanobis distance is a measure of distance from
the mean generalized for multivariate continuous distribu-
tions. The penalty for failing to find a collision is controlled
by α and β. The penalty at the end of a no-collision case is
scaled by the distance (DIST) between the pedestrian and the
vehicle. The penalty encourages the pedestrian to end early
trials closer to the vehicle and leads to faster convergence.
We use α = −1× 105 and β = −1× 104. The reward
function is modified from the previous version of AST [9]
as follows:

R (s) =


0, s ∈ E
−α− β × DIST

(
pv,pp

)
, s /∈ E, t ≥ T

−M (a, µa,Σa | s) , s /∈ E, t < T
(3)

where M(a, µa,Σa | s) is the Mahalanobis distance between
the action a and the expected action µa given the covariance
matrix Σa in the current state s. The distance between the
vehicle position pv and the closest pedestrian position pp is
given by the function DIST(pv,pp).

C. Solvers

The DRL solver uses the new recurrent architecture shown
in Figure 4. The hidden layer size is 64. Training was done
with a batch size of 5× 105 time-steps. The maximum trajec-
tory length is 50, hence each batch has 1000 trajectories. The
optimizer used a step size of 0.10, and a discount factor of
0.99. The DRL approach was implemented using rllab [19].

V. RESULTS

This section shows the performance of the new solvers on
our running example. First, the solvers ability to train on the
problem are compared to each other. Both solvers are then
compared to baselines to show their improvement.

A. Overall Performance

The goal of AST is to understand failure modes by
returning the most-likely failure. An advantage of the new
architecture is being able to search for the most-likely failure
from a space of initial conditions while training a single
network. Figure 5 demonstrates these benefits by showing
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Fig. 5: The Mahalanobis distance of the most-likely failure found
at each iteration for both architectures. The conservative discrete
architecture runs each of the discrete solvers in sequential order.
The optimistic discrete architecture runs each of the discrete solvers
in a single batch.

the cumulative maximum reward found by the DRDRL and
GRDRL solvers at each iteration. There are two estimates
shown for the DRDRL architecture:
• Sequential: Each discrete AST solver is run sequentially.

The naive approach serves as a lower bound on the
performance of the discrete architecture.

• Batch: The AST solvers are updated as a batch. Each
batch is assumed to still take 32 iterations, but the best
reward of the best solver is known after each update.

The generalized architecture outperforms the discrete ar-
chitecture at every iteration. The generalized version finds a
collision sooner and converges to a solution after about 100
iterations, whereas the discrete architecture is still improving
after 500 iterations. Furthermore, the generalized version is
able to find a trajectory that has a net Mahalanobis distance
of −100.99. In contrast, the discrete version’s most-likely
solution was −114.19. Over the entire space of initial con-
ditions, running the generalized architecture is more accurate
in far fewer iterations than running the discrete architecture
at discrete points.

B. Comparison to Baselines

Table II shows the aggregate results of the new architec-
tures as well as two baselines: the old multi-layer perceptron
architecture and a Monte Carlo tree search (MCTS) solver.
The data was generated by dividing the 5-dimensional initial
condition space into 2 bins per dimension, which resulted
in 32 bins. Such a rough discretization is unsafe, but the
number of bins is equal to b5, where b is the number of bins
per dimension. Using 3 bins per dimension, which is hardly
much safer, would result in training 243 instances of AST.
Even on a toy problem, running AST for a safe number of
discrete points is intractable. However, to demonstrate the
performance benefits of the GRDRL architecture, we ran the
MCTS, MLPDRL, and DRDRL solvers at the center-point
each of the 32 bins. The GRDRL solver was trained on the
entire space of initial conditions, and evaluated in two ways:
1) by executing the GRDRL solver’s policy from the same



TABLE II: The aggregate results of the DRDRL and GRDRL solvers, as well as the MCTS and MLPDRL solvers as baselines, on an
autonomous driving scenario with a 5-dimensional initial condition space. Despite not having access to the simulator’s internal state, the
DRDRL is competitive with both baselines. However, the GRDRL solver demonstrates a significant improvement over the other three
solvers.

MCTS MLPDRL DRDRL GRDRL Point GRDRL Bin

Average Collision Reward −192.92 −229.80 −236.25 −148.48 −133.86

Max Collision Reward −145.80 −139.38 −125.51 −98.85 −91.67

Collisions Found 21 29 30 25 32

Collision Percentage 65.63 90.63 93.75 78.13 100

32 center-points of the other solvers were tested at, referred
to as point evaluation, and 2) by sampling from each bin
in the initial condition space and keeping the best GRDRL
solution, referred to as bin evaluation. The performance of
the DRDRL and GRDRL solvers are discussed below.

1) Discrete Recurrent Deep Reinforcement Learning
Solver: The DRDRL solver performs similarly to both
baselines. The DRDRL solver’s average collision over the
32 bins was slightly worse than the MLPDRL solver and
significantly worse than the MCTS solver. However, the
DRDRL solver found crashes in many more bins than the
MCTS solver, and found the most-likely collision of the three
solvers. Finding the most-likely collision was the primary
goal of the three solvers, therefore the DRDRL solver per-
formed better than both baselines, despite not having access
to the simulation state like the MLPDRL solver.

2) Generalized Recurrent Deep Reinforcement Learning
Solver: The GRDRL solver far outperforms both baselines,
as well as the DRDRL solver. When evaluating over the
entire bin, the GRDRL solver found collisions in every single
bin, and had by far the best average and maximum collision
rewards. The maximum reward in particular demonstrates
both the strength and necessity of the new solver architec-
ture. The most-likely collision was not at one of the 32
points tested, hence a discretization approach does not find
the most-likely trajectory. Surprisingly, though, the GRDRL
solver also outperforms the other solvers at the 32 center-
points. Despite not training from the center-points specifi-
cally, the GRDRL solver has a better average and maximum
collision reward. The only degradation in performance was
in collision percentage, although the GRDRL solver still
outperforms the MCTS solver.

VI. CONCLUSION

This paper presents a new architecture for AST to improve
the validation of autonomous vehicles. The new solver treats
the simulator as a black box and generalizes across a
space of initial conditions. The new architecture is able to
converge to a more-likely failure scenario in fewer iterations
than running the discrete architecture. Future work will
demonstrate performance in a high-fidelity simulator. The
advancements presented in this paper show that AST is a
promising approach for validating autonomous systems.
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