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Abstract— Many road accidents occur due to distracted
drivers. Today, driver monitoring is essential even for the latest
autonomous vehicles to alert distracted drivers in order to
take over control of the vehicle in case of emergency. In this
paper, a spatio-temporal approach is applied to classify drivers’
distraction level and movement decisions using convolutional
neural networks (CNNs). We approach this problem as action
recognition to benefit from temporal information in addition to
spatial information. Our approach relies on features extracted
from sparsely selected frames of an action using a pre-trained
BN-Inception network. Experiments show that our approach
outperforms the state-of-the art results on the Distracted Driver
Dataset (96.31%), with an accuracy of 99.10% for 10-class
classification while providing real-time performance. We also
analyzed the impact of fusion using RGB and optical flow
modalities with a very recent data level fusion strategy. The
results on the Distracted Driver and Brain4Cars datasets show
that fusion of these modalities further increases the accuracy.

I. INTRODUCTION
As vehicles gain intelligence and capabilities, new oppor-

tunities emerge where the vehicle can improve traffic safety
by supervising a driver’s performance, alertness and driving
intentions via a so-called Driver Monitoring System (DMS).

Self-driving technology can create a safer driving environ-
ment by giving autonomous vehicles the capacity to learn
from driving experiences, and avoid human errors. However,
today, driver monitoring systems are still essential to improve
safety even for the latest autonomous vehicles.

In May 2016, the crash in Florida was the first fatal crash
involving a vehicle using sophisticated semi-autonomous
functionalities which was not actively supervised by the
driver. In March 2018, Uber’s self driving car with a backup
driver struck and killed a pedestrian in Arizona. In both
examples, drivers could potentially have avoided the crashes
if they were not distracted.

Distracted driving may cause severe problems as it is
diverting the driver’s attention away from driving. Accord-
ing to the National Highway Traffic Safety Administration
(NHTSA) [1], 3450 people died in the United States in 2016
due to distracted driving. Dangerous maneuvers may also
cause deaths hence anticipating drivers’ movement decisions
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is also very important in order to reduce driver-related
accidents.

Today, crashes can be avoided with technologies that
analyze drivers’ state and alert them via dedicated sensors.
These technologies should provide real-time performance to
prepare the driver to instantly take control of the vehicle in
case of emergency. There are several commercial products
[2], [3], [4], [5] developed for this purpose.

In this paper, we propose a real-time monitoring system
to classify drivers’ distraction level and movement decisions.
The state-of-the-art on distraction level analysis is based on
image classification [6], [7]. We approach this problem as
action recognition from video data. Our approach relies on
features extracted from sparsely selected frames of an action
using CNNs. Temporal information is retrieved by concate-
nating the extracted features from each selected frame. The
results reveal that our approach outperforms the state-of-
the art providing a real-time performance, which is utmost
important in real life to alert distracted drivers on time.

Furthermore, in this study, it is the first time that the im-
pact of fusion of RGB and optical flow modalities on drivers’
state is evaluated with a very recent fusion strategy [8] that is
based on data level fusion of modalities. Our analyses on the
Distracted Driver [7] and Brain4Cars [9] datasets show that
our approach provides considerable classification accuracies
and the fusion process further improves the results for both
datasets. However, since optical flow computation is costly,
it is not very applicable for driver monitoring that has to be
real-time.

Today, it is possible to collect several modalities such
as infrared, depth and RGB even from just one sensor. In
this paper, our motivation for fusion analysis is to show
that the applied fusion strategy can easily be adapted for
these modalities and improved classification accuracies can
be achieved with real-time performances.

The rest of the paper is organized as follows. Section II
presents the related work on driver state monitoring. Section
III introduces the proposed approach. Section IV presents
the experiments and results. Section V includes a discussion
part and finally, Section VI concludes the paper.

II. RELATED WORK

A. Brief History of Commercial Products

In the past years, several commercial products have been
integrated to vehicles to analyze the driver attention state.
Already in 2006, Toyota started to use a near-infrared camera
installed on the top of steering wheel column to monitor
drivers [10]. In 2009, Saab, which was bought by another
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company in 2012, had integrated the Saab Driver Attention
Warning System [11] in their vehicles to detect inattention
and drowsy driving using two miniature infrared cameras.
Lately, we have seen the emergence of additional systems.
FaceLAB is a commercial system of Seeing Machines [2],
which uses a passive pair of stereo cameras mounted on the
car dashboard to monitor drivers and has been used in several
systems [12]. However, stereo-based systems are expensive
to be installed in cars and they require periodic re-calibration
because vibrations cause the system calibration to drift over
time. Similarly, Smart Eye uses a multi-camera system [13]
to generate 3D models of the driver’s head, allowing it to
estimate the gaze direction, head pose, and eyelid status. This
system is also expensive and depends on specific hardware
to be installed.

Today, there are many companies and startups producing
driver monitoring systems [2], [3], [4], [5]. Most of these re-
cent technologies apply deep learning to understand driver’s
attention and alertness. The DMS from Valeo [3] uses a
camera built into the dashboard targeting the driver’s face to
monitor fatigue and attentiveness. The current DMS solution
from Smart Eye, which alerts the driver when drowsiness
or distraction is detected, has been used by some German
car manufacturers [13]. Since 2018, the DMS from Seeing
Machines [2] has been used in the Cadillac CT6 Super Cruise
system from General Motors [14]. This technology monitors
drivers with an infrared camera on the steering wheel column
to determine the driver attention state through the analysis of
head orientation and eyelid movements under both daytime
and night-time conditions even with sunglasses.

B. Research Studies

There have been a limited number of studies that analyze
driver attention state due to the lack of public datasets. In
[15], the authors propose a system that estimates both the
head pose and gaze direction using a camera installed on the
steering wheel and works in real time during day and night.
For night time, they use an infrared illuminator installed on
the car dashboard to capture face of the driver and claim
to achieve 90% accuracy under a variety of illumination
conditions, facial expressions and subjects.

In 2016, State Farm announced a challenge on distraction
level via Kaggle [16]. In this competition, there were 10
driver postures to be classified which includes safe driving
and 9 types of distracted behaviours. This dataset was the
first dataset providing many sets of distractions and publicly
available. Unfortunately, the use of this dataset is restricted
to competition purposes only.

In 2017, Abouelnaga et al. [7] created a new dataset
similar to State Farm’s dataset. The authors apply skin,
face and hand segmentation and propose a genetic algorithm
based approach using weighted ensemble of five different
CNNs. The system provides good classification accuracy
(95.98%) but is computationally complex to be real time. In
[6], the authors use the same dataset and propose an approach
based on applying a modified VGG-16 architecture [17]
with various regularization techniques. The authors achieve

Fig. 1. Flow chart of our approach to classify driver distraction level. An
example from the Distracted Driver dataset for ”Drinking” action.

a classification accuracy of 96.31% for distraction levels
and claim real-time performance. In [18], [19], the authors
analyze driver behaviors also using CNN based approaches.

Recently, in [20], the performances of traditional hand-
crafted features combined with Support Vector Machine
classifier (SVM) [21] are compared to the performances
achieved with deep CNNs using a dataset that includes
samples for 7 distraction classes. The traditional features
used to create Bags of Words [22] are Histogram of Oriented
Gradients [23] and Scale-Invariant Feature Transform [24]
descriptors. The deep convolutional methods use transfer
learning on AlexNet [25], VGG-16 [17], and ResNet-152
[26]. Similar to the outcome of State Farm’s competition, in
[20], better classification accuracies have been achieved with
CNNs compared to the traditional features.

III. PROPOSED APPROACH

The flow chart of our approach is shown in Fig. 1. Initially,
N frames are selected from each action video (N = 4 in Fig.
1) based on sparse selection of frames. This selection process
is explained in Section IV. Next, A CNN, which is pre-
trained on a large scale image dataset, is applied to extract
features from each selected frame. The extracted features are
then concatenated and applied as input for the classification,
which is achieved with a softmax layer to predict class-
conditional driver action probabilities.

A. Pre-Processing

For the fusion analysis of RGB and optical flow modali-
ties, we first compute the flow frames using the RGB video
frames. An optical flow is a set of displacement vector fields
dt between pairs of consecutive frames t and t + 1. In this
study, the estimated horizontal and vertical components of
the vector field, dxt and dyt , are used as the image channels
of the network.

Flow frames are computed with the Brox algorithm [27]
and scaled according to the maximum value appeared in
absolute values of horizontal and vertical components. The
results are then mapped discretely into the interval [0, 255].

B. Data Level Fusion

Fig. 2 shows an example for the data level fusion applied
for optical flow and RGB frames, which is called Motion
Fused Frames (MFFs) in [8]. Flow frames are appended
after each selected RGB frame. The combination of flow



Fig. 2. Data level fusion of optical flow and color modalities showing an
’Adjusting Radio’ action from the Distracted Driver Dataset.

frames with the RGB frame (Fig. 2) provides the information
about which part of the image is in motion and from which
direction the motion is coming.

The input layer of our CNN model is designed to include
three channels of one RGB image. In data level fusion, the
weights of the first convolution layer of the CNN model are
modified to accommodate MFFs. When we append one flow
frame to the RGB frame, it means that in addition to the
three channels of the RGB frame, we have an additional
channel both for the horizontal and vertical components of
the flow frame, which makes 5 channels in total. The weights
across the RGB channels are averaged and assigned as initial
weights for the appended optical flow channels.

In this paper, we analyzed fusion by appending one flow
frame after each selected RGB frame for the experiments
with the Distracted Driver dataset and appending three flow
frames after each selected RGB frame for the experiments
with the Brain4Cars dataset due to the longer duration of the
action videos in this dataset.

C. Training Details

In this study, the aim is to evaluate the effectiveness of
the applied approach on driver state analysis, for which real-
time performance and high accuracy are very critical due to
safety reasons.

For feature extraction, Inception with Batch Normalization
(BN-Inception) [28] pre-trained on ImageNet [29] is applied
similar to [30], [8] due to its good balance between accuracy
and efficiency. Also, the same training strategies of partial-
BN (freezing the parameters of all Batch Normalization
layers except the first one) were used. For the fully connected
(fc) layer and softmax layer in Fig. 1, we used one-layer
multilayer perceptrons (MLPs) with 512 units and class-
number units, respectively. Rectified Linear Units nonlinear-
ity is applied between all convolutional and fc layers.

For data augmentation, random scaling (±20%), random
spatial rotation (±20°), random cropping and temporal aug-
mentation are applied to increase the diversity of training
videos. After this step, the input is resized to 224× 224 for
network training. Temporal augmentation is applied differ-
ently for the Distracted Driver and Brain4Cars datasets due
to their different specifications. For the former, it is applied
by randomly selecting one sample at each epoch and using
the consecutive N frames as input to our network. While for
the latter, it is applied by dividing the video into N segments
(i.e. N clips) and selecting one random frame from each
segment of an action at each epoch as input to our network.

Stochastic gradient descent (SGD) is applied to a mini-
batch of 32 videos with standard categorical cross-entropy

loss. The momentum and weight decay are set to 0.9 and
5 × 10−4, respectively. The learning rate is initialized with
1× 10−3 for all the experiments. For 5-fold cross validation
tests, the learning rate is twice divided by 10, first after
1.6k iterations and then 2.8k iterations and optimization is
completed after 4k iterations. For the experiment using the
predefined train-test split of the Distracted Driver dataset, the
learning rate is twice divided by 10, first after 7k iterations
and then 15k iterations and optimization is completed after
20k iterations.

Several regularization techniques are applied to reduce
over-fitting. Weight decay (γ = 5 × 10−4) is applied on
all parameters of the network. A dropout layer is added
after the global pooling layer (before fc in Fig. 1) of BN-
Inception network. The dropout ratio in this layer is kept at
0.3 throughout the whole training process.

We trained our network using a single NVIDIA Titan Xp
GPU. The applied approach was implemented in the Pytorch
deep learning framework [31].

IV. EXPERIMENTS AND RESULTS

Most of the studies on this topic evaluate their approach
creating their own datasets, which prevents a proper compar-
ison of techniques.

The two publicly available datasets that provide several
distracted driver examples are the Distracted Driver Dataset
[7] and the dataset that is collected by State Farm for a com-
petition in 2016 to analyze driver distraction levels [16]. The
use of State Farm dataset is restricted to competition purpose
only. Hence in this paper, for distraction level classification,
we report the results with the Distracted Driver Dataset only.
For maneuver recognition, we used the Brain4Cars dataset,
which is the only public dataset recorded for that purpose to
the best of our knowledge.

Distracted Driver Dataset: This dataset consists of 10
classes (Fig. 3) recorded from 31 subjects. 4 cars are used
and there are several variations of the drivers and driving con-
ditions such as different lighting like sunlight and shadows.
The dataset consists of 17308 frames, which are extracted
from videos. The number of frames in the training and test
sets are 12977 and 4331, respectively (Table I).

The predefined train-test set split of the dataset contains
images of the same drivers in the test and training sets. Al-
most 25% of extracted frames from each video are assigned
to the test set and the rest to the training set. The selection
of images for test set is not based on a specific order, which
can be considered as random selection.

In this paper, we approach this problem as action recogni-
tion using a CNN based spatio-temporal approach to benefit
from temporal information in addition to spatial information.
However, this dataset has mainly two limitations for our
approach.

1.) The predefined train-test set split does not represent
the common way of splitting. Generally, subjects appearing
in the training set do not appear in the test set.
Solution: Since the state-of-the-art results on this dataset
are reported with this train-test split, we also used this split



Fig. 3. Examples from 10 classes of driver postures in the Distracted Driver Dataset.

to evaluate our approach for comparison purposes with the
existing techniques (Section IV-A). However, in addition to
this experiment, we also reported results with 5-fold cross
validation (Section IV-B) in order to understand if our model
generalizes well to new subjects.

2.) The dataset does not contain video data. It contains still
images that were initially extracted from videos but provided
in a mixed way in the dataset. Thus, the state-of-the art on
this work is based on image classification.
Solution: In order to retrieve temporal information back
from this data, for both train and test sets, we initially created
action categories for each driver. Then we classified each
image under the corresponding action category for both sets
separately, and obtained image sequences to represent each
action instead of still images.

After classifying the images in their corresponding action
categories, in both training and test sets, we initially had
308 action data (in this concept action data refers to image
sequence), where each data contains image sequence from
10 actions of 31 drivers (308 instead of 310 due to the
missing action of two drivers in the dataset). Each action
data contains a different number of frames and in fact does
not contain consecutive frames due to the random selection
of the test and training set images while initially creating
these sets. Our approach for action classification does not
depend on consecutive frames since it retrieves temporal
information from sparsely selected frames. Thus, after this
conversion step, we were able to test the performance of our
spatio-temporal approach using this dataset by preserving the
predefined train-test set split.

Our aim is to make a comparison with existing techniques,
which report their performances for 4331 test images. In our
case, in our test set, we have 308 action data, which contain
exactly the same test set images. Since our network accepts
4 frames as input (Fig. 1), we generated 4-frame sets from
these 308 action data.

4-frame sets are generated by involving each frame to-
gether with the next 3 frames in the same action data in
one set. For the three last frames, we can’t append more
frames than are available so we’re appending the missing
frames from the beginning of each test action data, effectively
looping the frame selection. This process allows our network
to work with the required number of frames and create 4331
test set samples (i.e. 4331 4-frame sets).

Since the original test set images in the Distracted Driver

TABLE I
DATASET FORM AFTER CONVERSION STEPS

Sets Original Dataset After Conversion Final Form
Train 12977 images 308 action data 308 action data
Test 4331 images 308 action data 4331 4-frame sets

Dataset are based on a random selection from video frames,
each of the generated 4-frame sets contains in fact 4 ran-
domly selected chronological frames of an action. After this
process, instead of having 4331 single images or 308 action
data in the test set, we have 4331 sets, each containing 4
frames of an action video. We use these 4-frame sets to
extract spatio-temporal features.

Our network is trained using directly the generated action
data in the training set (308 action data). Training is achieved
by selecting one sample of action data at each epoch and
using the consecutive N frames as input to our network.

Table I shows the dataset form after the applied steps to
convert the dataset into a form that includes spatio-temporal
information by preserving the predefined train-test set split.

Brain4Cars Dataset: This dataset was introduced for an-
ticipating driver maneuvers and contains 594 videos collected
with a frontal view camera from 10 drivers to record their
face. It is annotated with 5 actions, which are driving straight,
changing to left lane and changing to right lane, turning left
and turning right.

We evaluated the performance of our approach on this
dataset due to two main reasons. First, this dataset contains
information about drivers in a real-driving scenario and
has annotations for 5 classes. Being an action classification
based approach, we were able to test the performance of
our approach with this dataset as well to classify drivers’
movement decisions, which is also crucial for driver-related
accidents. The second reason is that the Distracted Driver
dataset was collected with a side view camera, which targets
the driver’s whole body (Fig. 3). Using the Brain4Cars
dataset, which was collected with a frontal view camera, we
were able to analyze the performance of our approach with
data collected from a different viewpoint.

5-fold cross validation is applied to evaluate the perfor-
mance of our approach on the Brain4Cars dataset.

In this section, we evaluate the performance of our ap-
proach using the predefined train-test split provided with the
Distracted Driver set for comparison purposes with existing
techniques [7], [6]. We apply 5-fold cross validation to



TABLE II
COMPARISON OF METHODS APPLIED ON THE DISTRACTED DRIVER

DATASET.

Method Architecture Source Accuracy
(%)

[7] AlexNet Original 93.65
Skin Segmented 93.60

Face 84.28
Hands 89.52

Face+Hands 86.68
[7] Inception V3 Original 95.17

Skin Segmented 94.57
Face 88.82

Hands 91.62
Face+Hands 90.88
GA weighted 95.98

ensemble of all 5
[6] VGG with Original 96.31

regularization
Our Method BN-Inception Original 99.10

analyze if our approach generalizes well to new subjects.
Finally, we use the Brain4Cars dataset [9] to analyze if our
approach performs well on a second dataset and with the
data collected from a different viewpoint.

5-fold cross validation tests also involve data level fusion
analysis of RGB and flow modalities to evaluate the impact
of fusion on drivers’ state analysis. We were not able to
apply data level fusion using the predefined train-test set split
(Section IV-A) due to the randomly selected frames in each
test sample (4-frame set), which prevents an appropriate flow
computation for these samples.

A. Test 1: Evaluation using the predefined train-test split

In this test, we evaluated the performance of our approach
using the predefined train-test split and achieved 99.10%
accuracy for the classification of 10 distraction levels.

Table II shows the comparison results of methods [7],
[6] applied on the Distracted Driver Dataset. In [7], authors
preprocessed the images by applying skin, face and hand
segmentation and proposed a genetic algorithm based ap-
proach using weighted ensemble of five CNNs and reported
95.98% accuracy. In [6], authors propose an approach based
on applying a modified version VGG-16 architecture and
reported a classification accuracy of 96.31%. Both of these
approaches are based on still image classification. The results
show that we have exceeded the state-of-the art performance
with the accuracy of 99.10%, which proves the impact of
temporal information on distraction level classification.

According to the confusion matrix shown in Fig. 4,
the lowest classification rates are evaluated as 97.95% and
98.58% for talking on the phone using left hand (7 of them
classified as texting with left hand) and texting with right
hand actions (3 of them classified as safe driving, 3 of them
as talking on the phone with right hand and 1 of them
classified as texting left hand), respectively. 3 of the actions
in this dataset are classified with 100% accuracy.

1) Distracted Driver Detection: The detection of dis-
tracted drivers is in fact a binary classification problem
including two classes, which are safe driving and distracted
driving. In our dataset, all classes except safe driving action

Fig. 4. Confusion matrix using our approach.

TABLE III
DISTRACTED OR NOT?

Classes True Prediction False Prediction
Safe Driving 887 35
Distracted Driving 3403 6

belong to distracted driving class. Using the predefined train-
test set split, we also analyzed the problem as distracted
driver detection. Table III shows the number of true and false
predictions evaluated after training our approach including
these two classes only.

According to the results in Table III, distracted drivers
can be detected with an accuracy of 99.05%. Since the
number of samples for safe driving and distracted driving is
unbalanced, this accuracy level can be increased by applying
class weights to the loss function. However, what we really
want to achieve is not to miss distracted driving cases
as much as possible. Since the unbalanceness of the sets
naturally leads to less false prediction in distracted driving,
we did not apply any class weight for the loss function in
this experiment, and achieved a recall rate of 99.82%, which
is very critical for safety related tasks.

B. Test 2: 5-fold cross validation results including fusion
analysis for RGB and Flow modalities

In this test, we generated videos by classifying all the
images in the Distracted Driver dataset under corresponding
action class, which makes 308 action videos of 31 drivers. 5-
fold cross validation is applied by assigning the video data of
6 randomly selected subjects out of 31 subjects to test set and
assigning the rest to training set at each fold, which makes
around 60 videos in the test set according to the selected
subjects.

In the real-world, we will most likely encounter drivers
never seen before. The 5-fold cross validation analysis helps
to analyze if our model generalizes well to new subjects. It
is intuitive that it is a much easier task if we have already
seen the driver in the training set.

The videos in our test set contain more samples compared
to the first experiment. Instead of having 4 random frames
in each of 4331 test sets, we have 60 actual action videos
of drivers. Therefore, this time, we applied segment analysis
as in [30] while selecting the test set frames to extract the
features. The action video is split into N segments (N clips).
The middle image in each segment is selected as input data
to our network, which makes N frames from N segments.



TABLE IV
5-FOLD CROSS VALIDATION RESULTS WITH THE DISTRACTED DRIVER DATASET FOR RGB AND RGBFLOW MODALITIES.

# of Segments Modality P1 (%) P2 (%) P3 (%) P4 (%) P5 (%) Average Acc. (%)

4 RGB 93.33 95 91.67 90 93.33 92.67
RGBFlow 95 95 95 91.67 96.67 94.67

8 RGB 90 95 95 93.33 96.67 94
RGBFlow 96.67 95 96.67 93.33 96.67 95.67

12 RGBFlow 96.67 96.67 96.67 95 98.33 96.77

The results in Table IV (Pi represents each partitioning
for i = 1, ..., 5) show that even with the 4 segment analysis,
we can achieve an average accuracy of 92.67% using only
the RGB data. By increasing the number of segments from
4 to 8, the average accuracy improves to 94%. Note that for
8-segment analysis, we added an additional MLP layer for
dimensionality reduction, which contains 2048 units. Adding
this additional layer, the number of features from the 8
frames (512×8) is initially reduced to 2048, which are then
used for classification with a softmax layer.

According to Table IV, the classification accuracy has been
improved by increasing the number of segments for many of
the partitionings. These results also show that our approach
generalizes well to the new subjects, which are not involved
in the training set.

In this test, we also analyze the impact of data level fusion
using RGB and flow modalities. Table IV shows that for
both 4 and 8 segment analyses, the fusion of RGB and
flow improves the classification accuracy for many of the
partitionings compared to using only RGB data.

The real-time performance is critical while detecting dis-
tracted drivers. Since in our study the flow images are
computed offline, we report the computation time using
RGB modality only. The computation times are evaluated
as 10 and 12 ms/video on a single Titan XP GPU with
batch size of 1 (each video represents one individual action)
for the 4 and 8 segment analyses, respectively, which are
real-time performances. Increasing the number of segments
increases the classification accuracy with a slight increase in
computation time. The applied algorithm is based on sparse
selection of frames. The features are extracted from only a
few number of frames representing each action. This is why,
the algorithm is very fast in detecting distracted drivers and
classifying their distraction levels.

C. Test 3: Performance analyses using the Brain4Cars
dataset

The number of samples in 5 action classes from the
Brain4Cars dataset is very unbalanced. Therefore, in Table
V, we report 5-fold cross validation results in terms of both
accuracy and precision. In this test, we appended 3 flow
frames instead of 1 flow frame after each selected RGB frame
since action videos last longer compared to the case with the
Distracted Driver dataset. The results in Table V show that
our approach provides considerable accuracies on a second
dataset and performs well with data collected from a different
viewpoint as well. The impact of fusion for RGB and flow
modalities is also evaluated using this dataset. According to
the results in Table V, fusion of the two modalities enhances

the accuracy for all the partitionings.
There are studies [9], [32] that report precision for antici-

pating driver maneuvers with this dataset using the informa-
tion extracted from internal and external sensing, the vehi-
cle’s dynamics, global position coordinates and street maps.
Table V shows the classification results of our approach using
the data collected from internal sensing only hence a fair
comparison is not possible with these techniques.

V. DISCUSSION

We are aware that it is not a fair comparison with the other
state-of-the-art methods that use only spatial information.
However, in this study, we would like to emphasize the
importance of temporal information on the accuracy. In
Section IV-A, even though we used the same training
data as the other state-of-the-art models, incorporating the
temporal information lets us achieve 2.9% accuracy gain still
providing a real-time performance, which is very important
for safety-critical applications.

Many appearance based approaches are based on the infor-
mation collected from standard cameras providing RGB data.
Alternatively, depth sensing cameras are used, which are
immune to lighting conditions and hence efficient for solving
fundamental computer vision problems. Infrared cameras are
also another alternative to RGB cameras. In industry, infrared
sensors are used for driver monitoring due to their efficiency
in poor lighting conditions.

Since our datasets consist of only RGB modality, a fusion
analysis was possible only with the information extracted
from RGB data, which are flow images in our study. The
advantage of using flow modality for fusion is that it avoids
the need for enhanced sensors providing several modalities
like depth and infrared images. However, in practice, the esti-
mation of flow image has a computational cost and isn’t very
applicable for real-time performance. Today, depth, RGB
and infrared modalities can be collected even from just one
sensor and they do not need extra computation like optical
flow. Being robust to illumination changes, these modalities
are more appropriate for real-time driver monitoring.

In the next steps, we plan to test the performance of
our approach with data level fusion analysis using infrared
and depth modalities by collecting a dataset including these
modalities. Additionally, in the real world, real-time streams
contain transitions from one action to another. We have done
some initial tests with continuous data to understand how our
algorithm classifies the transition times. We will also analyze
how much of a ”reliability gap” there could be during this
time and how we could overcome this by implementing a
post-classification strategy that would account for this.



TABLE V
5-FOLD CROSS VALIDATION RESULTS WITH THE BRAIN4CARS DATASET FOR RGB AND RGBFLOW MODALITIES.

# of Modality P1 P2 P3 P4 P5 Average
Segments Acc./Prec (%) Acc./Prec (%) Acc./Prec. (%) Acc./Prec (%) Acc./Prec (%) Acc./Prec (%)

8 RGB 81.51/83.38 80.83/81.89 82.35/82.22 78.33/83.11 78.99/80.52 80.40/82.22
RGBFlow 82.35/84.99 81.67/82.89 83.19/83.49 80.83/83.23 80.67/82.61 81.74/83.44

VI. CONCLUSION

This paper presents a spatio-temporal analysis based ap-
proach for driver state monitoring, which relies on features
extracted from only 4 selected frames of an action using
convolutional descriptors for feature extraction.

Experiments conducted on the publicly available Dis-
tracted Driver Dataset show that our approach (99.10%)
outperforms the state-of-the art techniques (96.31%) that are
based on still image classification. This result proves that
temporal information provides a considerable improvement
in classification accuracy.

Our approach also provides real-time performance (10
ms/video on a single GPU with batch size of 1, where
each video represents one individual action) while detecting
distracted drivers, which is utmost important in real life.

In this paper, we also analyzed the fusion of RGB and
optical flow modalities with a very recent data level fu-
sion strategy [8]. The results on the Distracted Driver and
Brain4Cars datasets show that the features extracted from
the combination of motion-based and RGB-based inputs
provide better accuracy in drivers’ state analysis. Since the
two datasets were collected from different viewpoints, we
were also able to analyze the performance of our approach
from different viewpoints. Our approach performs well using
data collected from both side view and frontal view cameras.
However, since these datasets are collected for different
purposes and under different conditions, from the results,
it is not possible to decide the best location for the camera
in order to capture more information about drivers.

As future work, our aim is to evaluate the performance
of our approach for more complex datasets. Since it is not
possible to monitor drivers with an RGB camera during night
scenario, we intend to do analysis with infrared and depth
data for real world scenario including a fusion analysis. We
will improve the performance of our approach by further
analyzing temporal information in videos.
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