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Abstract— In this paper, we introduce a moving object
detection algorithm for fisheye cameras used in autonomous
driving. We reformulate the three commonly used constraints
in rectilinear images (epipolar, positive depth and positive
height constraints) to spherical coordinates which is invariant
to specific camera configuration once the calibration is known.
One of the main challenging use case in autonomous driving
is to detect parallel moving objects which suffer from motion-
parallax ambiguity. To alleviate this, we formulate an additional
fourth constraint, called the anti-parallel constraint, which aids
the detection of objects with motion that mirrors the ego-
vehicle possible. We analyze the proposed algorithm in different
scenarios and demonstrate that it works effectively operating
directly on fisheye images.

I. INTRODUCTION

Large field-of-view cameras are essential for many com-
puter vision application, such as video surveillance [1],
augmented reality [2], and recently have been of particular
interest in Advanced Driver Assistance Systems (ADAS) and
autonomous driving [3]. In automotive scenarios, rear-view
and surround-view fisheye cameras are commonly deployed
in existing vehicles for viewing applications. While at present
commercial autonomous driving systems typically make use
of narrow field-of-view forward facing cameras full 360◦

perception is now investigated for handling more complex,
short range use cases. Figure 1 shows an example of sensing
network around a vehicle using four fisheye cameras.

The detection and localisation of moving obstacles is
critically important for ADAS and autonomous vehicles, e.g.
for emergency braking, to support decision making for its
next step navigation and to avoid any possible collisions.
From a static observation point (i.e. a standing camera), the
detection of moving obstacles is almost trivial. Any non-
zero optical flow will be due to motion in the scene or
noise in the image. For a moving observer, the problem is
more challenging as the entire scene relative to the camera
is moving. The difficulty then is how to separate a moving
obstacle in the scene from the static features, which are
imaged as moving due to the motion of the camera.

The problem is additionally complicated when we consider
fisheye cameras, which exhibit complex patterns of motion
due to the non-linear projection and distortion of the lens
type. Fisheye cameras have the benefit of extremely wide
fields of view, but at the expense of extreme non-linearity
in the image. Typically, a fisheye camera image cannot be
easily linearised due to the very wide field of view. At
best, interpolation and perspective artifacts dominate and at
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Fig. 1. Sample images from the surround-view camera network showing
near field sensing and wide field of view.

worst it is even theoretically impossible to linearise the entire
image when the field of view exceeds 180◦.

We address this by reformulating the moving object detec-
tion problem in spherical coordinates. This simply assumes
that a mapping between the fisheye image space and the
spherical coordinates exists, which is trivial if we assume an
intrinsically calibrated camera as the spherical coordinates is
simply the corresponding unit vector in camera coordinates
for each image coordinate. That is, it does not matter the
exact model of fisheye distortion used, but it must simply
provide a map between the fisheye and the spherical space.

The remainder of this paper is organised as follows. In
Section II, we give some background on prior work in mov-
ing object detection. All of the geometric constraints require
a mapping from fisheye image to spherical coordinates, and
as such in Section II, the requisite fisheye mapping is also
briefly discussed. In Section III, we provide all the geometric
details of the four constraints discussed, giving some results
in Section IV.

II. PREVIOUS WORK
A. Related Work On Moving Object Detection

Much prior work on the extraction of dynamic obstacles
have focused on custom algorithm for specific applications,
such as overtaking vehicles [4], detection of pedestrians
crossing the street [5], detection of pedestrians and action
classification for surveillance cameras [6]. Other approaches
have included the clustering of regions with similar flow vec-
tors characteristics (angle and/or magnitude, image blocks),
which are then usually fit with an affine model to retrieve the
local motion parameters [7], [8], [9], [10]. These mentioned
studies use a limited number of constraints and a limited
treatment of the associated geometry.

ar
X

iv
:2

00
3.

03
26

2v
1 

 [
cs

.C
V

] 
 6

 M
ar

 2
02

0



There has also been very promising work in using Con-
volutional Neural Networks (CNN) to solve the moving
object detection problem (e.g. MODNet [11], MPNet [12]).
However, these methods require large annotated datasets
to make it scene agnostic and it is difficult to ensure it
detects objects purely based on motion cues and not overfit
to appearance cues of commonly occurring moving objects
like vehicles or pedestrians. That said, it is the opinion of
the authors that geometric constraints will be incorporated
into deep learning models to obtain a hybrid approach that
combines the benefits of rigourously formulated geometry
with the performance of statistical computing.

Others have investigated the use of spherical coordinates.
For example, Nguyen et al. [13] and Nelson [14] utilised
the unit projection sphere. However, they both proposed to
use a local planar projection surface, with Nguyen et al.
extending the prior work by including the P-convex polyline
approximation of the 1D locus on the local image plane. Both
of these, while not explicitly mentioning it, were actually
formulating the reasonably well known epipolar constraint
[15], [16] for the local tangent space of the unit projection
sphere. In contrast, we will reformulate the epipolar con-
straint to natively work on the vectors that constitute the
spherical space, without the need for local tangent space
or the epipolar projection to 1-D locus in fisheye space.
Strydom et al. [17] have also proposed a method for the
detection of moving objects in spherical coordinates based
on the object triangulation. However, their method requires
the knowledge of the object shape, which is assumed to not
change in time, which brings additional complications that
do not pertain to the geometrical treatment.

Perhaps most significantly from the geometric treatment of
moving objects for automotive applications, Klappstein et al.
[18], [19] described two additional geometric constraints for
moving object detection: the positive depth and the positive
height constraint. These approaches have been targeted for
standard field of view cameras, and do not translate di-
rectly to fisheye images. Again, these could be reformulated
to work with local tangent spaces for the image sphere.
However, it is rather simpler to provide similar geometric
constraints natively in spherical coordinates. In following
studies, [20], [21] the approach was extended to binocular
cameras, making use of the depth information available. The
addition of depth information allows the detection of object
with mirror-like motion with respect to the ego-vehicle (e.g.
vehicles approaching in the other lane while the ego-vehicle
is moving forward), which is not resolved for the monocular
case availing only of the geometrical constraints listed so
far. Schueler et al. [22] presented a formulation of the above
constraints in the case of omnidirectional cameras but the
specificity of their treatment of the subject for the detection
of parallel moving objects from the side cameras of a vehicle
limits the overall applicability of their method.

In order to deal with this particular kind of motion, we
add a fourth geometric constraints that is the anti-parallel
constraint. In a manner, it is a more complete constraint, as
it implicates the addition of the last category of motion to

the detectable objects. This is related to a planar homography
based approach for moving object detection [16], with ad-
ditional motion constraints and spherical reformulation, and
suffers from the same limitation that objects significantly off-
the-ground can be erroneously detected as moving objects.

Thus, in this paper, we describe a unified approach to de-
tecting moving obstacles using the four geometric constraints
in monocular fisheye camera systems. Each of the first three
constraints (epipolar, positive depth, positive height) have
classes of feature motion that are not detected. However,
in combination with the anti-parallel approach, we provide a
more complete geometric approach to feature based moving
object detection.

B. Mapping From Fisheye to Projective Sphere

The spherical geometric constraints will be discussed in
detail in the following section. However, for all of the
constraints, what is initially required is an injective map
from the image domain to the unit central projective sphere
embedded in R3

g : I→ S2

where I ⊂ R2 and S2 ⊂ R3, and as such points in I are
represented as a two-vector with the restriction that they must
lie within the bounds of the image, and they map injectively
to points in S2 represented as a three-vector of unit length.

In principle, any appropriate definition for the mapping
function g(u),u ∈ I can be used. For example, if a genuine
pin-hole camera is used, then this function is the inverse of
the projection matrix. In general, however, the function is
multi-step, involving handling of lens effects, mapping of
image height to ray incident angle and generation of three
vector from the resultant pair of angles.

Extending this, there is significant research into the map-
ping functions for fisheye cameras [23], [24]. The function is
injective, as typically the actual image as such does not map
to the entire projective sphere, and rather maps to a subset
of the projective sphere. For the remainder of the paper, it
is assumed that the mapping function exists and is known
for the central projection camera under question. It is quite
unimportant the exact function used, as long as it models the
actual imaging system well.

III. PROPOSED METHOD

In the literature, most of the formulations of the methods
for moving objects detection using the above described
constraints are formulated to be used in the linear image
space, as discussed. However, this excludes the application
to images acquired with fisheye cameras, which are highly
non-linear. Here we propose a formulation of the previously
mentioned constraints that are adapted for fisheye camera,
once the calibration of the camera is known, and the projec-
tion functions discussed in the previous section are available.

The inputs required by our algorithm are:
• Displacement vectors of image points u and u′ between

two images at two time steps (i.e. through feature
correspondences)



• The absolute position of the camera and its rotation in
world coordinates at the two time steps (e.g. through
visual odometry or kinematics available on vehicle
system bus)

The calculations are performed on the vectors that are the
projection of the image points u and u′ to points on the
unit sphere, p and p′ respectively, via the fisheye projection
function g(u). A summary of all the described constraints is
presented in Table I.

TABLE I
SUMMARY OF THE GEOMETRICAL CONSTRAINTS USED

Planar epipolar constraint
Requires knowledge of camera ego-motion
Detected motion crossing objects far from the epipolar plane
Limitations does not detect motion on the epipolar

plane, which is common in road scenarios
Positive depth (cheirality) constraint
Requires knowledge of camera ego-motion
Detected motion objects at higher speed than the ego-speed
Limitations does not help with detection of objects

moving in the opposite direction
Positive height constraint
Requires knowledge of camera ego-motion and rota-

tion of the camera with respect to the road
Detected motion preceding objects on the road with lower

ego-speed
Limitations static points under the road plane level will

be detected as moving as well (e.g. ground
at a lower level beside the road, pot holes),
applies only to points below the horizon line

Anti-parallel constraint
Requires knowledge of camera ego-motion and rota-

tion of the camera with respect to the road
Detected motion approaching objects on the road with spec-

ular motion
Limitations static points above a determined height on

the road plane level will be detected as
moving as well, applies only to points below
the horizon line

A. Planar Epipolar Constraint

Probably the best known constraint that static points
between multiple views have to satisfy is the epipolar con-
straint. In linear image space, the epipolar constaint says
that the image of a static point in a pair of frames must lie
on (or close to, in the presence of noise) the corresponding
epipolar line. In fisheye imagery, however, the epipolar line is
a complex curve that can be difficult to parameterise, depend-
ing on the fisheye model used. Therefore, we reformulate
the restriction as a planar constraint and consider whether
features on the unit projection sphere lie on the epipolar
plane, as demonstrated in Figure 2.

All vectors are defined in a fixed coordinate system,
which is the world coordinate system, and as such the
rotation between the two camera positions is implicitly taken
into account in the following calculations. The rotation and
translation of the camera coordinate systems relative to the
world coordinate system is given by the vehicle odometry.

The epipolar plane can then be defined by the unit normal:

Π : n′ =
p× e′

|p× e′|

Fig. 2. Representation of our formulation of the planar epipolar constraint
with the projection of the points on the sphere

which also lies on the unit projection sphere, and is a pole
of the great circle defined by the intersection of the epipolar
plane with the unit projection sphere.

If the tracked feature corresponds to a feature that is static
in the world, then p′ is co-planar with e′ and p, i.e. lies on
the epipolar plane Π. To check this restriction, the absolute
value of the scalar product of p′ with n′

ξe = |n′ · p′|

is the cosine of the angle between p′ and the epipolar plane,
which is a measure of co-planarity, and so of the planar
epipolar distance. As we’re dealing solely with unit vectors,
the range of the ξe will be in the range [0, 1], where 0
will mean perfect co-planarity up and 1 will mean perfect
perpendicularity. The planar epipolar constraint itself is not
a perfect motion classifier, as it has a limitation that if the
observed feature moves on (or near) the epipolar plane, it
will be misclassified as a static feature.

B. Fisheye Positive Depth Constraint

Another constraint that can be applied requires all imaged
points to lie in front of the camera. It is not possible for
a static point to be reconstructed behind the camera where
it is imaged, hence it must be moving. This is known as
the positive depth or cheirality constraint, and solves a class
of feature motion that is not solved by the planar epipolar
constraint. With reference to Figure 3, if the rays from P and
P′, or their corresponding unit sphere ray p and p′, converge
behind the camera, then the point is moving. We can check
this by first considering the unit vector of the projection of
p′ on the epipolar plane, given by

p′Π = p′ − (p′ · n′)n′

as is shown in Figure 2. Utilising the vector product

pn = p′Π × p

returns a vector that is orthogonal to the epipolar plane,
but may be in the same direction as the previously defined
epipolar plane normal n′, may be in the opposite direction
(relative to the epipolar plane), or may be the zero vector.
The directionality can be checked using the scalar product.
That is, if:
• n′ · pn < 0: the vectors n′ and pn lie in the same

direction, and p′ and p converge in front of the camera



Fig. 3. Representation of our formulation of the positive depth constraint
with the projection of the points on the sphere. The rays pointing to P and
P′

Π, which is the projection of P′ on the epipolar plane, converge behind
the camera position.

• n′ · pn > 0: the vectors n′ and pn lie in opposite
directions, and p′ and p converge behind the camera

• n′ ·pn = 0: pn is the zero vector, and p′ and p do not
converge

Therefore, we can define the positive depth constraint as

ξd =

{
|pn|, n′ · pn > 0
0, otherwise

The non-zero value for ξd the sine of the angle between p′Π
and p, and is in the range [0, 1] since all vectors are unit
vectors.

The positive depth constraint can detect when a feature’s
motion projected to the epipolar plane is greater than the
movement of the camera itself. Roughly speaking, in the
vehicle context, this will detect when the other obstacle is
moving faster than the host vehicle, in the same direction
as the host vehicle (for example, overtaking vehicles, which
fail the planar epipolar check).

C. Fisheye Positive Height Constraint

In addition of these two constraints discussed so far, we
can add further constraints on the position of the points
can be added depending on the characteristics of the scene
that is to be imaged. In the case of a road scenario, it is
reasonable, if heuristic, to assume that all points lie above
the ground level, which corresponds to the road plane. This
assumption allows to introduce another constraint, which is
that a point must lie above the road plane, or, conversely,
if feature vectors converge below the road plane, we can
consider them to be moving in the scene.

For this constraint, we assume we know the height of
the camera from the road plane, ηC , and the rotation of the
camera with respect to the road plane, RC , or the calibrated
rotation matrix of the camera on the vehicle. The positive
height constraint applies only if the observed point at both
the previous and current position is below the horizon line
(Figure 4). The vector defining the horizon plane in camera
coordinates h is the vector perpendicular to the ground plane
in world coordinates, pointing downwards, multiplied by the
rotation matrix RC .

h = RC(0, 0,−1)>

Since h points downwards, the conditions to be met are p′ ·
h > 0 and p · h > 0.

With reference to Figure 4, the vector p′r is the point
on the unit sphere that corresponds to the intersection of
the previous point vector p with the road plane, represented
by P on the road plane, in the current spherical coordinate
system.

p′r = (δr · p) + t

The distance δr can be calculated defining a triangle with
sides ηC · h (vertical from the camera to the road), the
direction of p and the road plane. As the cosine of the angle
between p and h is p · h :

δr =
ηC
p · h

The rays through P and P′Π are below the horizon and cross
below the road plane if p′Π is between p and p′r. The two
conditions are respectively met if n′ ·pn < 0 and n′ ·p > 0.

If these two conditions are met, the positive height devi-
ation is the length of the vector v, where

v = p′Π × p′r

In practice the reconstruction of these vectors might be
affected by errors, e.g. by an erroneous optical flow estimate,
or by points that are actually below the road plane (e.g. holes
in the road, terrain beside the road etc) and would therefore
appear as moving points. To limit these problem, we can
define a threshold λh and estimate the deviation as the length
exceeding the threshold, i.e. we consider an deviation with a
threshold defined by |v|−λh. Our positive height constraint
is therefore

ξh =

 |v| − λh, p′ · h > 0 and p · h > 0 and
n′ · pn < 0 and n′ · p > 0

0, otherwise

The value of λh was set to 0.001, which was found after an
empirical analysis of the scenes presented in the Section IV.

Fig. 4. Representation of our formulation of the positive height constraint,
viewed as a projection onto the epipolar plane (the page can be considered
the epipolar plane). P′

Π and p′
Π are the projection of P′ and p′

respectively.



D. Anti-parallel constraint

A category of moving objects that is going to be missed
from the previous classification is the one of objects whose
motion mirrors the ego-vehicle, which we are going to refer
to as “anti-parallel”. In fact, a point that has motion that is the
opposite of the ego-motion of the vehicle will be completely
missed by the three geometrical constraints above, as its
viewing rays triangulate both in front the of the camera
and above the road plane, which makes this point a possible
static point candidate. This poses a problem in the detection
of approaching vehicles in the opposite lane, since this is
a common situation in road scenarios. To detect this type
of objects, another constraint can be added, i.e. the anti-
parallel constraint. This constraint and its limitations will be
described later.

Referring to the figure 4, in this case we reason in the
opposite way to the positive height constraint. If the vector
p′Π is below the horizon and behind p′r (given n′ ·pn < 0
and n′ · p < 0), then the point triangulates above the road
plane, as shown in Figure 5 and could correspond either to
a static object or to an approaching object. To differentiate
between the two cases, we introduce a threshold value λp.
If the angle between p′road and p′Π is greater than the
threshold, then the difference

ξp = |v| − λp

is defined as the anti-parallel constraint. The value of the
threshold λp can be set as a constant. In our case, a value
of 0.001 was appropriate. An alternative approach can be to
define it locally in the image as being proportional to the
value of v calculated assuming that the feature point P lies
on the road plane. This allows to vary the sensitivity of the
constraints according to the part of the image where it is
applied and can increase the rate of detection for objects
seen closer to the horizon line. A representation of the anti-
parallel constraint is shown in Figure 5.

E. Degenerate Case: Static Camera

For completeness, we include here also the degenerate case
where the camera itself is still. The four other constraints
don’t work in this case, as C and C′ coincide and e′ cannot
be defined. In this case, we define the geometric constraint
deviation as:

ξ = |p′ × p|

Fig. 5. Representation of our formulation of the anti-parallel constraint
calculation, viewed as a projection onto the epipolar plane (the page can be
considered the epipolar plane)

which is simply a measure of optical flow once projected to
the unit sphere.

F. Motion Likelihood Calculation

After the individual deviation components are calculated
for a point in the image for each constraint (ξe, ξd, ξh,
ξp), they are combined into a metric that quantifies the
likelihood that the point is moving rather than static, i.e.
motion likelihood. The final motion likelihood is calculated
as the weighted mean of the four individual deviations
(ignoring the simple degenerate case)

ξ =

∑
i µiξi∑
i µi

where i ∈ {e, d, h, p} and (µe, µd, µh, µp) are the weights
assigned to the constraint deviation components. In our case,
the values of the weights were empirically set to (1.0, 1.0,
0.2, 0.2) in order to assign more importance to the epipolar
and positive depth constraints, which are always true, as op-
posed to the positive height and anti-parallel ones that require
stronger assumptions on the scene. An adaptive approach in
the selection of the weights such as the one used by Frémont
et al. [25], where the skewness of the reconstruction error is
used as an estimate of the noisiness of the distribution, could
be taken into consideration. However, it has to be noted that
the parameters of the constraint deviation distribution can
change because of the scene content (e.g. number of objects,
their direction and speed) and might not reflect the accuracy
of the constraint calculation.

All the individual deviations range from 0 to 1, since they
are all products of unit vectors, and so also the final motion
likelihood will have the same range. A diagram of the whole
process is presented in Figure 6.

IV. RESULTS

In this section we present some preliminary results for
different categories of moving objects. Three different scenes
(two parking scenarios and one low-speed highway scenario)
were recorded with a front-view camera at 15 frames per
second for a total of 5000 frames, with speed of the vehicle
ranging from 0 kph to 50kph. The dense optical flow was
calculated using the Farnebäck algorithm [26] on the frames
of size 640× 480 pixels. As we process consecutive frames
at low vehicular speeds, we do not need to deal with large
displacements in the flow field, and hence the dense optical
flow algorithm is not impacted by the fisheye nonlinearity.
In order to reduce the effects of noise in the optical flow
calculation and to reduce the computational cost of the
spherical vector calculations, the geometrical operations were
performed on the optical flow averaged on a 5×5 pixel grid.
This value was found to be a good compromise between
noise removal and accuracy of the detection, but it can be
changed to suit the needs. Due to the limited detection range
feasible with fisheye camera, only objects within a range of 8
meters of the cameras were considered. The final detection
rates were based on the distribution of the regions of the
images with values of motion likelihood above a threshold.
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Fig. 6. Diagram of the proposed method highlighting the conditions that determine the application of the constraints

A visualization of the results is included in Figure 7.
Row (I) shows the flow vectors on the original frame.
Rows (II)-(V) show the deviation measured by the individual
constraints. Row (VI) shows the final motion likelihood
resulting from the average of the four constraint components.
Even if in theory the values of the motion likelihood extend
between 0 and 1, in practical applications we observed that
it is unlikely that they exceed 0.02 and for this reason we
saturated the colour map at this value for better visualization.
The last row (VII) shows in green the segmentation of the
moving objects from the final motion likelihood. Columns
(a)-(b) correspond to the four types of moving objects.

In column (a), two pedestrians and a vehicle have crossing
motion with respect to the motion of the ego-vehicle and are
seen by the planar epipolar constraint. Both the pedestrians
and the vehicle are detected by the epipolar constraint in
row (II), which constitutes the main constraint component
in the final motion likelihood. In column (b) a motorcycle
is overtaking the ego-vehicle on the left and it is clearly
detected by the deviation from the positive depth constraint
in row (III). On the right lane there is a preceding object with
slower speed, as also in column (c). The preceding vehicles
are detected by the positive height constraint in row (IV)
below the horizon line, where the constraint can be applied.
In column (d) a vehicle is approaching from the opposite
lane while the ego-vehicle is moving forward. This case falls
into the anti-parallel constraint, as the imaged vehicle has
perfectly specular motion with respect to the ego-vehicle. It
can be seen in the motion likelihood map that below the
horizon line the anti-parallel constraint is applied, detecting
very well the motion of the bottom part of the other vehicle.
The need of the anti-parallel constraint and its effectiveness
can be understood by looking at this last column. It can
be seen that the only constraint that is able to detect the
approaching vehicle is the anti-parallel constraint in row

(V), while all the other constraints fail to detect this type
of motion.

Results of the detected objects are presented in Table II.
Detection rate is calculated as the percentage of frames an
object is detected with any coverage, while the coverage rate
is the average coverage achieved by the detections . The case
of the static ego-vehicle (degenerate case) is in a separate
row. It can be seen that preceding and approaching objects,
as they can be detected only with constraints applied below
the horizon line, show lower percentages of coverage than
the other categories.

A drawback of the anti-parallel constraint is that its criteria
are satisfied also by static objects high on the ground and/or
close to the camera (Figure 8). Even with the use of different
threshold values on the image, systematic false positives will
occur in the presence of close static objects whose flow
matches the one of a distant moving object. This is the source
of most of the systematic false positives of our proposal.

It’s hard to give an objective comparison against state of
the art, as we are proposing a method to work on fisheye
cameras. No public automotive fisheye dataset exists with
appropriate ground truth (although we acknowledge that the
fisheye data augmentation on existing large-scale datasets
[27] may alleviate the issue), and existing methods [10],
[11], [25] are designed to work on standard field of view
cameras. However, if we observe the published results of
MODNet [11] we can see that it can sometimes suffer from
similar false positives as our proposal, for example as shown
in Figure 9 1. That is, sometimes non-moving objects are
classified as dynamic. It is likely, however, that these false
positives in MODNet are due to over-emphasis of appearance
cues rather than a geometric misclassification.

1Note that we tried MODNet on fisheye data, but it did not work well,
as it is not trained for fisheye.
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Fig. 7. Frames with representative results for each type of detectable moving object, showing the response of the individual constraints.

Fig. 8. False positive detections caused by the anti-parallel constraint. Both
cars are static, but a response from the anti-parallel constraint can be seen.

Fig. 9. Sample of published MODNet results. Reproduced with permission
of the authors.



TABLE II
RESULTS BY CATEGORY OF OBJECTS

Type # Frames Detection rate Coverage rate

Crossing 3848 72% 64%

Overtaking 2757 98% 81%

Preceding 789 48% 30%

Approaching 224 89% 42%

Static 475 95% 78%

False Positives 5000 13% 2%

V. CONCLUSIONS

In this paper, we presented a spherical coordinate re-
formulation of geometric constraints for the detection of
moving objects previously defined for the common linear
image space. The three constraints that were reformulated
are: the epipolar, the positive depth and the positive height.
In addition, which we added a fourth constraint to detect the
motion of objects with specular motion with respect to the
ego-vehicle (e.g. approaching objects in the opposite lane),
which is loosely inspired from the planar homography ap-
proach to detecting moving objects. Final motion likelihood
is calculated by the weighted mean of all four constraints. We
presented some results for each category of moving objects.

In future work, we aim to test our method on an extensive
number of scenarios and camera configurations and against
ground truth annotations. We also aim to include more
refined filtering of the motion likelihood to limit the false
positive detections caused by inaccuracies in the optical flow.
Furthermore, we aim to incorporate the spherical geometric
constraints into a deep learning model to obtain a hybrid
approach, as the drawbacks of both might be overcome by
the combination of results.
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