

Abstract—Today’s Advanced Driver Assistance Systems
(ADAS) adopt an autonomous approach with all instrumentation
and intelligence on board of one vehicle. In order to further
enhance their benefit, ADAS need to cooperate in the future. This
enables, for instance, to solve hazardous situations by
coordinated maneuvers for safety intervention on multiple
vehicles at the same point in time. Our prototyping environment
presented in previous work addresses developing such
cooperative ADAS. Its underlying approach is to either bring
ideas for cooperative ADAS through the prototyping stage
towards plausible candidates for further development, or to
discard them as quickly as possible. This is enabled by an
iterative process of refining and assessment. In this paper, we
focus on handling the application specific parameter space, and
more precisely on the scenario related aspects. As a part of our
iterative prototyping process, defining and tuning scenarios and
application parameters are highly repetitive tasks which needs to
be designed very efficiently. We, therefore, strive to create a
scenario definition methodology, which provides best flexibility
and a minimal expenditure of time on the developer side.

I. INTRODUCTION

Advanced Driver Assistance Systems (ADAS) are
integrated functions of road vehicles, designed to support the
driving process. Today’s ADAS are realized through an
autonomous approach with all instrumentation and intelligence
on board of one vehicle. However, in order to assemble more
of these functions to reach fully autonomous driving in a
complex road network, very expensive sensors and complex
machine intelligence are required [1]. Thus, to further enhance
the area of application for ADAS with reasonable
implementation effort for sensors and intelligence, ADAS need
to cooperate in the future [2]. Such cooperative ADAS will be
enabled by communication between ADAS deployed on
different vehicles and on road infrastructures. For this purpose,
V2X communication [2] is used, e.g. by Cooperative Adaptive
Cruise Control (CACC) [3] to share information in a vehicle
platoon aiming driving efficiency.

ADAS may directly intervene into vehicle control.
Consequently, design and implementation of ADAS is highly
safety-critical and comprehensive evaluation methodologies
[14] are of vital importance for the ADAS development
process. The development of cooperative ADAS, however,
requires new evaluation methods. Due to the complexity of the
addressed traffic scenarios, employing real world vehicles
would require a tremendous effort. Thus, especially for the

early phases of prototyping, simulations will become
increasingly important. In the first stage of prototyping, an idea
e.g. of solving a hazardous situation by a new cooperative
ADAS needs to prove its feasibility. The cooperative aspect
makes the number of parameters to be considered during
prototyping very large. Developers need to handle this large
parameter space, which includes finding and tuning parameters
in a time-consuming trial and error manner, in order to come to
such a verdict about feasibility.

The prototyping environment presented in this paper is
designed to support developers in the first stage of prototyping,
when an idea for a new cooperative ADAS is tested for
feasibility. For this purpose, our prototyping environment
dedicatedly supports handling large parameter spaces inherent
in cooperative ADAS. This parameter space refers to two
aspects: vehicle dynamics related parameters and application
specific parameters. The parameter space explodes, if each
vehicle involved in a cooperative maneuver, needs to consider
these parameters for each of the other vehicles involved. Thus,
the overall number of parameters to be considered grows
superlinear with the number of vehicles involved.

Our prototyping environment tackles the large parameter
space regarding vehicle dynamics by a tradeoff between the
number of vehicles to be simulated at the same time and the
precision of mapping physics realistically below the limits of
driving dynamics. In order to handle the exploding application
specific parameters space, we propose a process to bring an
idea of a new cooperative ADAS through an iterative process
of refining and assessment towards a plausible candidate for
further development. Aligned with this process, developers can
use our prototyping environment in a trial and error manner to
create, refine, and assess. In this way, the candidate cooperative
ADAS can either be brought incrementally through the stage
of prototyping or be discarded as quickly as possible. We
designed our prototyping environment to support this process.

We initially presented our prototyping environment in [14]
aiming on a comprehensive presentation and with a special
focus handling the parameter space regarding vehicle
dynamics. In this paper, we focus on handling the application
specific parameter space, and more precisely on the scenario
related aspects. As a part of our iterative prototyping process,
scenario definition and application parameter tuning are
highly repetitive tasks which needs to be designed very
efficiently. We, therefore, strive to create a scenario definition
methodology, which provides best flexibility and a minimal
expenditure of time on the developer side. As a consequence,
our key design decision is to assume knowledge of Kotlin [15]
programming language by developers of cooperative ADAS
using our prototyping environment. We enable the named
flexibility by providing a lean domain-specific language (DSL)
based programming interface, instead of a complex GUI.

Scenario Definition for Prototyping Cooperative Advanced Driver
Assistance Systems

K. Massow, F. M. Thiele, K. Schrab, B. S. Bunk, I. Tschinibaew, and I. Radusch

K. Massow, F. M. Thiele, and B. S. Bunk are with the Technical
University Berlin / Daimler Center for Automotive IT Innovations, Berlin,
Germany (e-mail: kay.massow, max.thiele, sebastian.bunk@dcaiti.com).

K. Schrab, I. Tschinibaew, and I. Radusch are with Fraunhofer Institute
FOKUS Berlin, Berlin, Germany (e-mail: karl.schrab, iskander.tschnibaew,
ilja.radusch@fokus.fraunhofer.de).

The rest of this paper is organized as follows. In Section II,
we derive the scope for our prototyping environment, which is
the basis for its requirements presented in Section III. We give
a brief overview on how all requirements are derived and put a
focus on the requirements related to the scenario. We present
the design of the overall architecture with a detailed view on
the scenario related part in Section IV. Section V briefly
discusses related work. In Section VI we give an outlook on
current and future work and on our ambitions to go open
source, while Section VII concludes this paper.

II. SCOPE

With the scope of our prototyping environment we define
the class of applications to be addressed, its constraints on
driving dynamics, and the goals of prototyping. As indicated
by Fig. 1, ADAS can be characterized by their level of
automation [4] and cooperation [2]. In order to elaborate this
characterization, Fig. 1 orders different ADAS according to
their specific degree of cooperation and automation [5]. The
prototyping environment described in this work is more useful
to prototype ADAS, which require a high degree of both
dimensions equally. ADAS of this kind are arranged close to
the diagonal in the figure. Thus, the scope of the prototype
environment, indicated by the arrow in the figure, covers the
area around the diagonal and grows with the degree dimensions
from the bottom left to the top right.

In addition to perceiving the vehicle’s environment and
driving conditions, it might also be necessary to be able to
control the vehicle at its dynamic limits, e.g. to enable accident
avoidance maneuvers. Mapping driving dynamics in
simulations in a physically realistic way at or beyond the limits
of driving dynamics, requires complex and highly nonlinear
simulation models. Such models grow in complexity and
computational demand with their precision at the limits of
driving dynamics. This characteristic makes vehicle dynamics
simulation to be a conflicting requirement with simulating
multiple vehicles at the same time. Thus, we need a tradeoff
between the number of vehicles to be simulated at the same
time and the precision of mapping physics realistically.

We address this tradeoff by restricting the scope of our
prototyping environment to the class of applications which are
meant to prevent accidents, not to mitigate them. Therefore, we
can assume a certain safety margin which should always be
regarded by the applications. That excludes e.g. very close

drive-by maneuvers at high speeds or with very high
acceleration forces. For our simulator it is thus sufficient to
map a smaller range of dynamics, as its purpose is to match real
vehicle dynamics up to the limits of driving dynamics only.
Based upon this definition, we can now define a set of reference
applications for our simulator to cover all aspects of the class
of cooperative ADAS within our scope. We use these reference
applications to derive the requirements of the simulator. The
set of selected reference applications and the reasoning of
selection is described in detail in [14]. In summary, this leads
to the following three applications.

 CELC – Cooperative Emergency Lane Change

 CACC – Cooperative Adaptive Cruise Control

 PACE – Parking Autonomously in Cooperative
Environments

III. REQUIREMENTS

Controlling a vehicle by an ADAS requires consideration
of vehicle dynamics including a great number of parameters
related to vehicles and environment [6]. Additionally, an
ADAS deployed on a vehicle needs to regard many application
specific parameters, like those related to situation awareness
[7]. For cooperative ADAS deployed on multiple vehicles
(such as CELC, CACC, and PACE), the number of parameters
to be considered by the simulator might grow superlinear. Each
vehicle might also need to consider the relevant parameters of
multiple other vehicles, they need to interact with. These two
aspects, parameters regarding vehicles dynamics and
application specific parameters, in combination with many
vehicle make the parameter space explode. Towards these two
aspects, we can now define the requirements for our simulator,
described on the basis of the three reference applications (ELC,
CACC, and PACE).

We begin by identifying the originators of the
requirements. These are the cooperative ADAS application to
be deployed in our simulator, the developer using our
simulator, and the scope of our simulator. The first three main
entities of our simulator defined as clusters of requirements are
derived from the DVE model [8], which models the loop of
driver, vehicle, and environment while driving that will be
observed by the application. These three are complemented
with the communication, which addresses the cooperation
aspect, and finally the architecture of the simulator which
needs to fit our scope. In Table 1 the originators are arranged
at the column headers and the requirement clusters at the row
headers. The table cells describe the concrete requirement of an
originator to a requirement cluster. For this work, we focus on
the requirements related to the scenario definition, while a
detailed description of all requirements is given in [14].

1) Vehicle
Sensors and actuators are needed to enable the

applications to interact with the vehicle and sense its
environment. Modelling sensors can be extremely complex and
computational expensive. However, within our scope the
following set of fundamental sensors using simple models with
few parameters should be sufficient for the majority of
cooperative ADAS applications, while offering developers the
possibility to hook up further custom sensors.

Degree of cooperation

D
eg
re
e
o
f
au
to
m
at
io
n

Autonomous Unmanned
Military Vehicles

Adaptive Cruise
Control (ACC)

Cooperative
Adaptive Cruise
Control (CACC)

Platooning

Intersection
Movement Assist

Electronic Emergency
Brake Light

Cooperative Collision
Warning Systems

Autonomous
Warning Systems

Intelligent
Speed Adaption

Automated
Highway Systems

(AHS)

Cooperative
Emergency Lane
Change (CELC)

Parking Autonomously
in Cooperative

Environments (PACE)

In
fo
rm

at
io
n

C
o
n
tr
o
l A

ss
is
t

Fu
ll

A
u
to
m
at
io
n

Figure 1: Usefulness of the prototyping environment for developing
application, depending on their level of automation and cooperation

 Frontal sensor like radar [1], [3] as needed by CACC;

 Side sensors like a blind spot detection system [1] as
needed by CELC;

 Lane detection sensor like a stereo camera [1] as
needed by PACE for precise navigation.

Parametrization - of the vehicle dynamic and sensor
model need to be adaptable by developers. Changing these
parameters during prototyping cooperative ADAS is a highly
recurrent, iterative process and needs to be designed in a way
to enable very short cycles. For this purpose, at this point we
identify the definition of such an iterative prototyping process
as an additional separate requirement.

2) Environment
The environment of the vehicles in our simulator needs to

contain objects that can be perceived by sensors and
infrastructural elements, the vehicles can interact with. This
includes static and moving objects like houses and street
furniture (e.g. traffic lights) as well as obstacles like road users
as e.g. needed by CELC. For the majority of research done on
cooperative ADAS within our scope, the following
environmental features should be sufficient:

 road infrastructure generated procedurally from simple
multi-lane road segments, as well as complex street
grids including mapping of traffic rules;

 properties of objects and infrastructure influencing
vehicle dynamics and perception need to be
parametrable, e.g. road surface or weather conditions;

 location and time bound triggers are needed, e.g. to
move the obstacle in front of the vehicle very closely;

 scriptable procedures are required, e.g. like braking
events, cutting in, or objects entering the road.

Generating and iteratively modifying scenarios including
complex road infrastructures as described, as well as its
parametrization and scripting is a time-consuming job for
developers. Thus, at this point we identify the need for a
scenario definition as an additional, separate requirement,
which enables rapid prototyping in a very time effective way.

3) Driver
A driver model moving vehicles in our simulator is needed

first as input for a cooperative ADAS application deployed on
this vehicle, and second to generate surrounding traffic for
sensor perception. In order to generate driver behavior, the
basic tool fitting our scope are speed annotated routes defined
by developers plus a set of basic driver behaviors and related
features should be provided by our simulator:

 microscopic behaviors [9] regarding traffic, e.g.
stopping in front of red traffic lights, giving way,
regarding speed limits, and avoiding collisions;

 scripted maneuvers defined by developers as part of
the scenario definition, such as speed changes and
braking maneuvers that can be triggered by the
environment, as required by CACC;

 parameterization of the maneuvers that need to be
varied while prototyping, such as the driver reaction
time and randomized behavior (e.g. swaying in the
lane);

 reproducible random seeds to guarantee repeatability.

4) Communication
Similar to the approach of modeling sensors, our simulator

should provide models for V2X and cellular communication
[10] allowing for easy parametrization of at least the following
parameters: delay, packet lost, range, and bandwidth. Again,
we provide the ability to hook up further custom models.

5) Architecture
The most important requirement on the architecture of our

simulator is to maximize the processing power available for
simulation. This can be achieved by designing the architecture
to be able to scale the simulation over multiple instances
running on different machines. From the perspective of
developers, the architecture should further enable:

 visualization of the running simulation;

 provide an open interface to hook up the applications
instead of enforcing a certain technology to this end,
such as MATLAB®/Simulink®;

 support the iterative prototyping process mentioned as
separate requirement and in this context a time
effective parameterization of the simulation;

6) Scenario Definition
The scenario definition must contain all relevant

parameters of the simulation model (vehicle, sensors,
communication), the parameter setting of the applications, as
well as the definition of the environment and the definition of
driver input for a simulation. Thus, the scenario should contain
all information developers need to specify and vary with regard
to the named iterative prototyping process.

7) Prototyping Process
Our prototyping environment should support a process to

enable developers handling the application-specific part of the
related parameter space. Designing our simulator should be
aligned with this process which brings the idea of a cooperative
ADAS through an iterative process of refining and assessment
towards a plausible candidate for implementation.

Table 1: Requirements

 Application Developer Scope

Vehicle Actuators, sensors parameterize models and sensors, validation Tradeoff between precision and computational effort

Environment Perception by sensors Scenario definition (time efficiently) Simple models to address computational effort

Driver Interaction by actuators Define behavior -

Communication Short range V2X Parameterize Simple models to address computational effort

Architecture Deployment Open interfaces, iterative prototyping process,
visualization, time, repeatability

Distribution to increase performance

IV. THE SIMULATOR

In this section, we present the design of the different aspects
of the simulator according to the requirements defined in
previous section. In the context of this paper, we focus on the
key design aspects regarding the scenario definition and related
aspects. A detailed description of the overall design is given in
[14]. Prior to designing the simulator, we first need to define
its underlying prototyping process, since all other aspects are
aligned with this process.

A. Prototyping Process

We propose the following process depicted in Fig. 2 to
bring an idea of a cooperative ADAS through an iterative
process of refining and assessment towards a plausible
candidate for further development. Aligned with this process,
developers can use our simulator in a trial and error manner to
create, refine, and assess their use case. In this way, new
approaches can either be brought incrementally to a certain
stage of maturity or be discarded as quickly as possible.

 Beginning with the implementation of the cooperative
ADAS prototype, developers define a set of working
parameters of the application. An initial set of these parameters
needs to be given by developers in the first step. The same
applies to the simulation scenario and its parameters.
Subsequently, the process iteratively traverses an arbitrary
number of cycles including the three steps, running the
simulations, assessing its results, and tuning the parameters of
scenario and application. This cycle is completed once the
results suggest that the cooperative ADAS application under
research is realizable and effective. Otherwise, the cycle is to
be terminated after a significant number of iterations without
any progress on the expected results, so the idea needs to be
either reconsidered or discarded.

In order to reach either of both verdicts as fast as possible,
the cycle time needs to be minimized. Accordingly, the goal of
the simulator design is to minimize the execution time of one
cycle. The execution time of one cycle depends significantly
on the preferably low complexity of the simulation models
(vehicle, environment, communication) and the scalability of
the simulator architecture. Tuning the parameters of
application and the scenario by developers is highly depending
on a pragmatic scenario description of the simulator. These
aspects will be object of the following sub sections.

B. Architecture

Fig. 3 depicts a high-level view of the architecture of our
simulator consisting of two parts, the Developer
Implementation containing the components developers need to
define and implement, and the Simulation Framework. The

latter contains multiple Simulation Instances which can be
distributed over multiple machines, and the Simulation Main
Instance, which is coupled to the Visualizer. This architecture
and its components are designed towards the following three
underlying paradigms derived from our requirements.

Decoupling Simulation in Time – our architecture
decouples simulation time from real time. Its simulation
models support both, defining fixed simulation speed, as well
as running headless as fast as possible regarding a predefined
fixed simulation step size.

Decoupling Simulation in Space - refers to the idea to
scale out the simulation by splitting the simulation scenario
area in different cohesive sub areas. This enable distributing the
execution of simulation models on different simulation
instances (see Fig. 3) i.e. on multiple machines.

Decoupling Simulation in Complexity - refers to
designing our architecture to run several parts (such as sensor
models) of the simulation remotely (e.g. using
MATLAB®/Simulink®) and allow custom implementation of
these parts by developers by providing open interfaces.

C. Scenario Key Design Aspects

Before describing concept and implementation of our
scenario model, we briefly present its underlying design
decisions. We address the requirements of environment, driver,
and scenario specification regarding simulation performance
and developer’s interaction by the following key aspects:

1) Environment
All objects other than vehicles are modelled by simple

geometrics (polygonal planes, cuboids, and tetrahedrons) to
safe computational effort and human effort for design. Coping
without textures to the greatest extent, our visualization still
allows for an appealing puristic scene rendering using simple
Phong shading techniques (see Fig. 4). Static objects are
procedurally generated from existing map material. The
generated infrastructure can be modified and complemented
by developers. Event triggers and scripted procedures related
to the environment e.g. time bound occurrence of road
geometry changes (see e.g. constructions site in Fig. 4).

2) Driver Input
The definition of driver behavior is based on speed

annotated routes along the road map links (see Fig. 4). In

Figure 3: Iterative prototyping process

Setup
scenario

Tune
parameters

Run
simulation

Setup
application

Asses
results

Idea

Candidate

Figure 2: Architecture

Simulation
(Main Instance)

Simulation
Framework

Developer
Implementation

Visualizer
Simulation
(Main Instance)

Simulation Instance
(Main Instance)

Simulation
Main Instance

Instance Coordination

VehicleVehicle

Environment

Application
Implementation

Custom Models

Scenario
Definition

Scenario Specific Part

Simulation
Control

Vehicle

Simulation Control

Scenario Rendering

Scenario Tooling

Assessment Tooling

Manual Vehicle
Control

Physics Engine

Communication

Dynamics Models

Actuators

Sensor Models

A
p
p
. I
n
te
rf
ac
e

M
o
d
el
 In
te
rf
ac
e

Simulation
Loop

addition to the target speed, developers can attach time or
event triggered, scripted maneuvers to these routes to create
specific situations. The driver behavior in traffic is
automatically realized by an extendable driving controller
hierarchy of various speed and steering controllers.

3) Scenario Definition
The description of a simulation scenario contains all

scenario specific information about environment, driver input,
simulation models and their parameterization. For all position
related elements of a scenario (e.g. placing objects, vehicles,
defining routes), our simulator provides visual tool support. All
scalar elements (e.g. parameterization of vehicle models,
sensors, and randomized behavior on routes like swaying or
driver reaction time) are defined in a set of configuration files.
The scenario definition bundles all that information and
distributes it to all simulation instances by the instance
coordination (see Fig. 4). Optionally a seed set for all
randomized parameters of the simulation models is included.

Remark: As parts of our iterative prototyping process,
scenario (re)definition and application parameter tuning are
highly repetitive tasks which needs to be designed very
efficiently. We therefore, strive to create a scenario definition
methodology, which provides best flexibility and a minimal
expenditure of time on the developer side. As a consequence,
our key design decision is to assume that developers of
cooperative ADAS will use our prototyping environment to
master the Kotlin [15] programming language. Instead of
complex GUI based interfaces, we provide a lean DSL based
programming interface, which enables the named flexibility.

Examples of scenario created for our simulator can be
found in [11] and [14]. Fig. 4 gives an impression of an
example scenario displayed by the visualizer (see Fig. 3). The
scenario near Ernst-Reuter-Platz in Berlin, Germany, was
generated procedurally by the simulator from Open Street Map
(OSM) [12]. A route defined by the developer is depicted as a
blue line. In this example the route has no annotated speeds as
the target speed is taken from the imported OSM map speed
limit.

D. Scenario Model

The scenario model is depicted in Fig. 5. It provides a more
detailed view on the Scenario Specific Part outlined in the
general architecture in Fig. 3. It contains the HD map, which
provides the basic road geometry of each scenario and is
generated procedurally from OSM or imported from HD map
sources such as HD Live Map [19] or Lanelet. Routes,
Triggers (such as the construction site in Fig. 4) and Auxiliary
Objects are geo spatially referenced to the map and connected
via the Event System to the Vehicles and their specific Driver
Models in the scenario. Vehicle Spawners and Vehicle
Despawners deploy and remove vehicles from the scenario at
runtime, according to the scenario specification. The vehicles
contain specific sensors and driver behavior realized by Skills
and Features, which are described in the subsequent
subsection. Skills also realize traffic rule related behavior.

E. Driver Model

1) Motivation of Skills and Features
In order to address handling the complexity of the large,

application related parameter space, we designed a driver
model composed of reusable behavior entities, inspired by the
subsumption architecture [16]. Our driver model is designed
by a flexible and scenario specific composition of Skills. A
Skill is the implementation of a preferably reusable behavior
entity, that is either atomic or a combination of other atomic
Skills. Atomic Skills provide actions, which cannot be broken
further down, as, e.g., lane changing (provided by the lane-
change-skill). Composed Skills provide more complex actions,

Figure 4: Simulator reference implementation – example scenario:
Construction site at round about, Ernst-Reuter-Platz, Berlin, Germany

Figure 5: Scenario Model

Scenario SE

Vehicle Spawners

Mission

Driver Model

Skill 1..nSkill 1..nSkill 1 .. n

Skill 1..nSkill 1..nFeature 1 .. n

Map

Event System

Static Traffic Rules

Triggers

Traffic Lights

Vehicle Despawners

Figure 6: Driver Model – a composition of Skills and Features

(illustrated components required to realize the scenario of Fig. 4)

Driver Model

FeaturesSkills

Mission Skill

Traffic Light Skill

Follow Vehicle
Skill

Others...

Surrounding
Vehicles Feature

Route Provider

Traffic Light
Provider

Output
• Desired Longitudinal Acceleration
• Steering Angle
• Constraints

Others…

which can be achieved by combining multiple atomic Skills,
as e.g., the Intersection-Skill which combines the Traffic-
Light-Skill and the general Traffic-Rule-Skill. Atomic Skills
command their requested actuator control to the vehicle by
desired acceleration and steering angle. For the realization of
such behavior entities, Features are used by the Skills in order
to interact with the environment. Features encapsulate
functionalities required for this purpose. Skills and Features
are designed fully decoupled and work in a self-orchestrated
manner. Thus, at design time of a Skill, there is almost no need
to consider other existing Skills or Skills that will be designed
afterwards. In accordance with our iterative prototyping
process, this enables best flexibility and reduced complexity
for designing complicated, multilayered driving behaviors.

We illustrate this concept in the following, based on the
example of braking at a red traffic light, depicted in Fig. 6. For
the sake of conciseness, we consider a very simple
orchestration of three Skills which determine the longitudinal
acceleration of a vehicle in a self-orchestrated manner. The
regular driving velocity is determined by the Mission-Skill,
which makes a vehicle traverse its route, according to the
speed limits. In case the vehicle is following a slower
predecessor, the regular driving velocity is overridden by the
Follow-Vehicle-Skill. At red traffic lights, both are overridden
by the Traffic-Light-Skill. Braking at red traffic lights is a
fundamental element of all urban driving models. It includes
recognition of the traffic light, deriving a decision whether to
brake and performing a brake if required. The recognition is
realized by the Red-Light-Feature, which continuously checks
the map in front of a vehicle for traffic lights. Their current
phase is then perceived by the Feature either checking the
Auxiliary Object – Traffic Light directly in the scenario, or by
evaluating either a specific camera sensor model, or a
communication device. Accordingly, the Red-Light-Feature
reports a red light and the Traffic-Light-Skill calculates a
desired deceleration regarding the remaining distance.

2) Priorities and Constraints:
In order to achieve the described decoupling of Skills and

to enable their self-orchestrated coordination, we introduce the
concept of priorities and constraints to control lateral and
longitudinal actions. Priorities are used to decide which action
is rendered, in case multiple skills command conflicting
actions. Priorities are assigned to skills at skill design time and
then remain fixed. In order to simplify the decision about what
priority to assign to a certain skill, available priorities reflect
the various importance levels in the driving context: Listing 1.
Fixed skill-priorities are sufficient to orchestrate the various
skill actions in simple situations. However, in certain
circumstances, lowly prioritized skills might need to increase
their priority to avoid rule violations or overcome potentially
dangerous situations. This is achieved by constraints. In
addition to their regular desired action skills can specify
constraints with higher priorities. An example is the mission-
skill: The desired speed output of that skill is of priority
DRIVING_FREE, which is very low, so that other skills, as,
e.g., the follow-vehicle-skill can override that output.
However, vehicles should not exceed the speed limit.
Accordingly, the current speed limit is set as a constraint with
priority RULE_SPEED_LIMIT. Moreover, the mission-skill
knows the upcoming course of the road and can compute
lateral accelerations resulting from vehicle speed and road

curvature. Thus, a second constraint is set with priority
AVOID_COLLISION, which limits the speed to a value which
ensures safe vehicle handling.

Fig. 7 shows the outputs of the three aforementioned skills
in a traffic light situation. For simplicity, the desired speed of
each skill is shown, not its actual demand of acceleration. The
ego vehicle follows a vehicle while approaching a traffic light.
The leading vehicle accelerates in order to pass the traffic
light. The Follow-Vehicle-Skill wants to accelerate to close
the growing gap to the leading vehicle. The result speed is first
limited by the speed limit and then reduced to standstill by the
Traffic-Light-Skill when the traffic light turned red. After
turning green the vehicle continues its way with reduced speed
in order to keep a pleasant speed within the roundabout.

F. Scenario Definition

In the following we present our methodology to define
scenarios using a Kotlin-based scenario domain-specific
language (DSL). An example for a simple scenario definition
is given in Listing 2. Note that this is no pseudocode but a valid
Kotlin program (without the import declarations) that will run
a simulation. Scenarios are defined within the scenario {}
block: An HD map is loaded and a traffic light is generated for
a certain intersection. The traffic light generation function takes
the nearest intersection for the given location and generates
default traffic lights for that intersection. Alternatively, manual
definition of the layout and timing of arbitrary traffic lights is
also possible. Next, a single RouteSpawner is defined, which
spawns ten vehicles on the first lane at the beginning of the
route. The route is computed by a standard A* routing between

public enum Priority {
 NONE(0.0),
 DRIVING_FREE(1.0),
 DRIVING_IN_TRAFFIC(1.1),
 RULE_DEFAULT(2.0),
 RULE_TRAFFIC_SIGN(2.1),
 RULE_TRAFFIC_LIGHT(2.2),
 RULE_SPEED_LIMIT(2.3),
 RULE_EMERGENCY(2.4),
 AVOID_COLLISION(3.0),
 AVOID_COLLISION_SEVERE(3.1),
 FORCED(4.0);

 private final double prio;
 Priority(double prio) {
 this.prio = prio;
 }
 public boolean isHigherThan(Priority other) {
 return prio > other.prio;
 }
 public boolean isHigherOrEqualThan(Priority other) {
 return prio >= other.prio;
 }
}

Listing 1: Available skill priorities

0

10

20

30

40

50

60

70

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10 01:20 01:30

Sp
ee
d
 [
km

/h
]

Time [s]

Speed Limit

Pleasant Speed

Follow Vehicle

Traffic Light

Resulting Speed

Figure 7: Priority graph – longitudinal control near traffic lights

the given control points, specified as geo coordinates. The
behavior of vehicles spawned is defined by adding the desired
set of Skills and Feature. For this example, a minimal set of
three skills is required in order to follow the route (mission-
skill), consider any other vehicle in front (follow-vehicle-skill)
and to stop at red lights (traffic-light-skill). The Skills are
provided with the route and traffic lights by the corresponding
Features. Finally, the despawnOn {} block creates a
Despawner, which removes vehicles that reached the end of
their route. Leaving the scenario {} block starts the scenario.

Similar to the scenario definition, Skills are preferably
written in Kotlin as well, although we have not yet created a
DSL for their definition. Listing 3 gives the source code for a
simplified but working version of the traffic-light-skill. The
class implements the Skill interface and overrides two
containing methods: onSpawn() is called on vehicle creation. It
obtains references to the Features required by the Skill. The
actual logic is defined within takeAction(), called on every
simulation step. It uses the trafficLightProvider to obtain a
reference to the next relevant traffic light. If one is found, the
routeProvider is queried for the distance to the traffic light
along the route. Next, the needed acceleration is computed to
brake to standstill in front of the traffic light. If the traffic light
is not passable and the computed brake acceleration is above a
threshold of 2 m/s², the brake is requested with a priority of
RULE_TRAFFIC_LIGHT. If the traffic light is green or the
distance to it is large enough, the traffic-light-skill performs no
action and lower priority actions control the vehicle.

V. RELATED WORK

A. Subsumption architecture

Our driver model composed of reusable behavior entities,
that are either atomic or a combination of other atomic entities,
is inspired by the subsumption architecture [16]. It addresses
operation of robots in a complex and unpredictable
environment which their designers don't know completely at
design time. Instead of piping complex individual tasks in a
sense-plan-act manner, tasks are split into behaviors elements
and arranged horizontally (and called layers). That means, each

task is enabled to control the robot alone in a minimalistic way.
The horizontal tasks contain all elements of classical sense-
plan-act architectures, however realized in a simplified way so
that each task implements one behavior only. In that way, each
task only needs to handle one manageable problem and instead
of the whole complex process of navigation including
perception and planning. This concept reduces or even spares
direct communications between layers, which decouples the
whole operation of a robot in complexity. However, in order to
arbitrate the access of the separated tasks to the actors of the
robot, determining some kind of priority is required.
Subsumption of low-prior behaviors by higher priorities is hard
to determine, which is a drawback of the approach. For our
prototyping environment, we were able to reduce the
complexity of arbitration compared to navigating a robot. With
our concept of priorities and constraints we were able to tackle
this hurdle within the scope of our prototyping environment.

B. OpenScenario

OpenScenario [17] is an XML based, open format for
describing complex simulation scenarios, adopted by the
standardization organization ASAM. We initially considered
OpenScenario for scenario definition in our prototyping
environment. However, it misses the lightweightness and the
flexibility we need to address our iterative prototyping process.
Indeed, our scenario definition approach emerged from our
early work on binding the OpenScenario description to our
implementation. Finally, we decided to expose our API initially
intended to bind OpenScenario as actual scenario definition
interface. [18] compares OpenScenario with other scenario
specification formats.

VI. OUTLOOK

Our road map for evaluation and implementation is
presented in the following. In this paper we presented our
scenario definition methodology and the initial version of our
scenario DSL. The language enables creation of simulation
scenarios relevant for developing and testing cooperative

class TrafficLightSkill : Skill {
 lateinit var routeProvider: RouteProviderFeature
 lateinit var trafficLightProvider: TrafficLightProviderFeature

 private val brakeAccelThreshold = 2.0

 // Called once on vehicle setup.
 override fun onSpawn(vehicle: ScenarioVehicle) {
 routeProvider = vehicle.features.require(
 RouteProviderFeature::class.java)
 trafficLightProvider = vehicle.features.require(
 TrafficLightProviderFeature::class.java)
 }

 // Called on every simulation step.
 override fun takeAction(vehicle: ScenarioVehicle, deltaT: Double,
 resultAction: DesiredAction) {
 val nextTrafficLight = trafficLightProvider
 .getNextTrafficLight()
 nextTrafficLight?.let { trafficLight ‐>
 val distanceToTrafficLight = routeProvider
 .routeDistanceTo(trafficLight.location)
 val accelToStandstill = AccelerationHelper
 .computeAccelerationForStandstill(
 vehicle.speed, distanceToTrafficLight)

 if (trafficLight.isNotPassable() &&
 accelToStandstill > brakeAccelThreshold) {
 resultAction.brake(accelToStandstill,
 Priority.RULE_TRAFFIC_LIGHT)
 }
 }
 }
}

Listing 3: Traffic Light Skill

fun main() {
 scenario {
 hdMap("maps/ernst‐reuter‐platz_large.lanelet")
 generateTrafficLight(
 AbsoluteLocation(52.510718, 13.314574))

 routeSpawner {
 route = route(
 AbsoluteLocation(52.509964, 13.314440),
 AbsoluteLocation(52.514046, 13.317432),
 AbsoluteLocation(52.516047, 13.316296))

 spawnNVehicles = 10
 spawnLocation = RouteLocation(route, 0)

 vehicleSkills {
 mission()
 followVehicle()
 trafficLight()
 }
 vehicleFeatures {
 staticRouteProvider { route }
 trafficLightProvider()
 }
 }

 despawnOn {
 endOfRoute()
 }
 }
}

Listing 2: An Example Scenario

ADAS. In contrast to OpenScenario, it takes advantage of a
DSL and, if required, allows the user to script their own
extensions directly into the scenario description. As we have
shown, the scenario interface enables to create simulations with
small effort. We want to encourage the community to
contribute their own use cases and ideas in order establish an
open and feature-rich scenario description interface.

Our strategy for field evaluation and improvement of our
scenario definition methodology is to go open source. In that
sense, parts of the implementation of our prototyping
environment called PHABMACS with its presented interfaces
will be made available open-source as part of the new co-
simulation framework Eclipse MOSAIC [13] (see Fig. 8).
MOSAIC allows to couple simulators from further domains,
such as road traffic, V2X communication, electric mobility,
intermodal traffic, traffic management, and the like. This
allows to extend the development and testing of cooperative
ADAS on a broader level, e.g. by integrating the sub-
microscopic simulation of individual vehicles in PHABMACS
with large-scale traffic simulations with thousands of vehicles.

The scenario description interface, together with the API
for the simulator will be made available as part of Eclipse
MOSAIC under the Eclipse Public License 2.0. Fig. 8 depicts
an excerpt of the PHABMACS implementation related to the
parts which will be open source as well as parts on our road
map for further development. We are currently working on
complementing our current physics engine [14] with an nVidia
PhysX based implementation. While our current
implementation already scales out over multiple JVMs on
different machines [14], our new engine enables us to better
scale up on each machine. We are also working on a WebGL
based visualization, which enables running PHABMACS on
multiple instances in the cloud and visualize in a web browser.

VII. CONCLUSION

We presented an environment for rapidly prototyping
cooperative ADAS based on vehicle simulation. Its underlying
approach is to either bring ideas for cooperative ADAS
through the prototyping stage towards plausible candidates for
further development, or to discard them as quickly as possible.
By designing an efficient scenario definition methodology, we
address scenario definition and application parameter tuning
as highly repetitive tasks an iterative prototyping process for
cooperative ADAS. Our scenario definition methodology,
provides best flexibility and a minimal expenditure of time on
the developer side. As a consequence, our key design decision

is to assume knowledge of Kotlin programming language by
developers of cooperative ADAS using our prototyping
environment. Instead of complex graphical or verbose XML
based interfaces, we provide a lean DSL interface, which
enables the named flexibility. In order to address handling the
complexity of large application related parameter spaces, we
designed a driver model based on composing with reusable
behavior entities, inspired by the subsumption architecture
[16]. Our strategy for field evaluation and improvement of our
scenario definition methodology is to open source parts of the
implementation of our prototyping environment called
PHABMACS, as part of the new co-simulation framework
Eclipse MOSAIC [13].

REFERENCES

[1] J. Ziegler et al., "Making Bertha Drive—An Autonomous Journey on a
Historic Route," in IEEE Intelligent Transportation Systems Magazine,
vol. 6, no. 2, pp. 8-20, Summer 2014.

[2] O. Sawade and I. Radusch "A selection process for next generation
cooperative driver assistance systems" Proceedings of the 20th ITS
World Congress pp. 1-9 2013.

[3] S. E. Shladover, et al. "Cooperative Adaptive Cruise Control:
Definitions and Operating Concepts." Journal of the Transportation
Research Board 2489 (2015): 145-152.

[4] SAE International Standard J3016: Taxonomy and Definitions for
Terms related to On-Road Motor Vehicle Automated Driving Systems,
SAE International (2014)

[5] S. E. Shladover, "Cooperative (rather than autonomous) vehicle-
highway automation systems," in IEEE Intelligent Transportation
Systems Magazine, vol. 1, no. 1, pp. 10-19, Spring 2009.

[6] R. Rajamani, Vehicle dynamics and control, Springer Science &
Business Media, 2011.

[7] Z. Papp, "Situational Awareness in Intelligent Vehicles," in Handbook
of Intelligent Vehicles, A. Eskandarian, edt., Springer , 62-78, 2012

[8] A. Eskandarian, " Fundamentals of Driver Assistance," in Handbook of
Intelligent Vehicles, A. Eskandarian, edt., Springer, 493-524, 2012

[9] D. Krajzewicz, et al., "Recent development and applications of
SUMO-Simulation of Urban MObility." International Journal On
Advances in Systems and Measurements 5.3&4 (2012).

[10] R. Protzmann, K. Massow and I. Radusch, "An Evaluation
Environment and Methodology for Automotive Media Streaming
Applications," 2014 Eighth International Conference on Innovative
Mobile and Internet Services in Ubiquitous Computing, Birmingham,
2014, pp. 297-304.

[11] B. Schaeufele et al., "Forward-looking automated cooperative
longitudinal control: Extending cooperative adaptive cruise control
(CACC) with column-wide reach and automated network quality
assessment," 2017 IEEE 20th International Conference on Intelligent
Transportation Systems (ITSC), Yokohama, 2017, pp. 1-6.

[12] M. Haklay, and P. Weber. "Openstreetmap: User-generated street
maps." IEEE Pervasive Computing 7.4 (2008): 12-18.

[13] Eclipse Foundation, Eclipse MOSAIC homepage [Online], https://
eclipse.org/mosaic, accessed Feb 28, 2020.

[14] K. Massow and I. Radusch, "A Rapid Prototyping Environment for
Cooperative Advanced Driver Assistance Systems, "Journal of
Advanced Transportation, vol. 2018, 2018.

[15] Kotlin programming language [online] Available:
https://kotlinlang.org/. Accessed on 15 June 2020.

[16] R. Brooks, "A robust layered control system for a mobile robot," in
IEEE Journal on Robotics and Automation, vol. 2, no. 1, 1986.

[17] M. Dupuis, “Openscenario - bringing content to the road,” in 2nd
OpenSCENARIO Meeting, 06 2016.

[18] C. Pilz, G. Steinbauer, M. Schratter and D. Watzenig, "Development of
a Scenario Simulation Platform to Support Autonomous Driving
Verification," 2019 IEEE International Conference on Connected
Vehicles and Expo (ICCVE), Graz, Austria, 2019, pp. 1-7.

[19] R. Herrtwich, R. (2018). The evolution of the HERE HD Live Map at
Daimler. HERE Technologies. https://360.here.com/the-evolution-of-
the-hd-live-map. Accessed on 15 June 2020. Figure 8: Eclipse Mosaic

PHABMACS – Closed Source

MOSAIC Components (Open Source)

phabmacs-Core

• Map Generation
• Vehicle Components:

Powertrain, ...
• Additional Scenario

SE Extensions
• Advanced Controllers
• Assets (Vehicle

Models, etc.)

phabmacs-API

Simulator API
Visualizer API
Module Manager

phabmacs-Scenario SE

Base Scenario SE Components
Basic Skills (Mission, Traffic-Light, …)
Scenario DSL

phabmacs-Util

Math Functions and Utilities
Geo Functions and Utilities
General Utilities

phabmacs-physics (JBullet)

JBullet based
Rigid Body Dynamics
Custom Vehicle / Tire Physics

phabmacs-Visualizer

OpenGL based visualization

phabmacs-physics (PhysX)

Based on nVidia PhysX
Multi-threaded
Optionally with CUDA

phabmacs-Visualizer Web

WebGL based remote
visualization

phabmacs-Visualizer SE

Improved visual fidelity

