
  

 

Abstract—Today’s Advanced Driver Assistance Systems 
(ADAS) adopt an autonomous approach with all instrumentation 
and intelligence on board of one vehicle. In order to further 
enhance their benefit, ADAS need to cooperate in the future. This 
enables, for instance, to solve hazardous situations by 
coordinated maneuvers for safety intervention on multiple 
vehicles at the same point in time. Our prototyping environment 
presented in previous work addresses developing such 
cooperative ADAS. Its underlying approach is to either bring 
ideas for cooperative ADAS through the prototyping stage 
towards plausible candidates for further development, or to 
discard them as quickly as possible. This is enabled by an 
iterative process of refining and assessment. In this paper, we 
focus on handling the application specific parameter space, and 
more precisely on the scenario related aspects. As a part of our 
iterative prototyping process, defining and tuning scenarios and 
application parameters are highly repetitive tasks which needs to 
be designed very efficiently. We, therefore, strive to create a 
scenario definition methodology, which provides best flexibility 
and a minimal expenditure of time on the developer side. 

I. INTRODUCTION 

Advanced Driver Assistance Systems (ADAS) are 
integrated functions of road vehicles, designed to support the 
driving process. Today’s ADAS are realized through an 
autonomous approach with all instrumentation and intelligence 
on board of one vehicle. However, in order to assemble more 
of these functions to reach fully autonomous driving in a 
complex road network, very expensive sensors and complex 
machine intelligence are required [1]. Thus, to further enhance 
the area of application for ADAS with reasonable 
implementation effort for sensors and intelligence, ADAS need 
to cooperate in the future [2]. Such cooperative ADAS will be 
enabled by communication between ADAS deployed on 
different vehicles and on road infrastructures. For this purpose, 
V2X communication [2] is used, e.g. by Cooperative Adaptive 
Cruise Control (CACC) [3] to share information in a vehicle 
platoon aiming driving efficiency. 

ADAS may directly intervene into vehicle control. 
Consequently, design and implementation of ADAS is highly 
safety-critical and comprehensive evaluation methodologies 
[14] are of vital importance for the ADAS development 
process. The development of cooperative ADAS, however, 
requires new evaluation methods. Due to the complexity of the 
addressed traffic scenarios, employing real world vehicles 
would require a tremendous effort. Thus, especially for the 

early phases of prototyping, simulations will become 
increasingly important. In the first stage of prototyping, an idea 
e.g. of solving a hazardous situation by a new cooperative 
ADAS needs to prove its feasibility. The cooperative aspect 
makes the number of parameters to be considered during 
prototyping very large. Developers need to handle this large 
parameter space, which includes finding and tuning parameters 
in a time-consuming trial and error manner, in order to come to 
such a verdict about feasibility.  

The prototyping environment presented in this paper is 
designed to support developers in the first stage of prototyping, 
when an idea for a new cooperative ADAS is tested for 
feasibility. For this purpose, our prototyping environment 
dedicatedly supports handling large parameter spaces inherent 
in cooperative ADAS. This parameter space refers to two 
aspects: vehicle dynamics related parameters and application 
specific parameters. The parameter space explodes, if each 
vehicle involved in a cooperative maneuver, needs to consider 
these parameters for each of the other vehicles involved. Thus, 
the overall number of parameters to be considered grows 
superlinear with the number of vehicles involved.  

Our prototyping environment tackles the large parameter 
space regarding vehicle dynamics by a tradeoff between the 
number of vehicles to be simulated at the same time and the 
precision of mapping physics realistically below the limits of 
driving dynamics. In order to handle the exploding application 
specific parameters space, we propose a process to bring an 
idea of a new cooperative ADAS through an iterative process 
of refining and assessment towards a plausible candidate for 
further development. Aligned with this process, developers can 
use our prototyping environment in a trial and error manner to 
create, refine, and assess. In this way, the candidate cooperative 
ADAS can either be brought incrementally through the stage 
of prototyping or be discarded as quickly as possible. We 
designed our prototyping environment to support this process.  

We initially presented our prototyping environment in [14] 
aiming on a comprehensive presentation and with a special 
focus handling the parameter space regarding vehicle 
dynamics. In this paper, we focus on handling the application 
specific parameter space, and more precisely on the scenario 
related aspects. As a part of our iterative prototyping process, 
scenario definition and application parameter tuning are 
highly repetitive tasks which needs to be designed very 
efficiently. We, therefore, strive to create a scenario definition 
methodology, which provides best flexibility and a minimal 
expenditure of time on the developer side. As a consequence, 
our key design decision is to assume knowledge of Kotlin [15] 
programming language by developers of cooperative ADAS 
using our prototyping environment. We enable the named 
flexibility by providing a lean domain-specific language (DSL) 
based programming interface, instead of a complex GUI. 
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The rest of this paper is organized as follows. In Section II, 
we derive the scope for our prototyping environment, which is 
the basis for its requirements presented in Section III. We give 
a brief overview on how all requirements are derived and put a 
focus on the requirements related to the scenario. We present 
the design of the overall architecture with a detailed view on 
the scenario related part in Section IV. Section V briefly 
discusses related work. In Section VI we give an outlook on 
current and future work and on our ambitions to go open 
source, while Section VII concludes this paper.  

II. SCOPE 

With the scope of our prototyping environment we define 
the class of applications to be addressed, its constraints on 
driving dynamics, and the goals of prototyping. As indicated 
by Fig. 1, ADAS can be characterized by their level of 
automation [4] and cooperation [2]. In order to elaborate this 
characterization, Fig. 1 orders different ADAS according to 
their specific degree of cooperation and automation [5]. The 
prototyping environment described in this work is more useful 
to prototype ADAS, which require a high degree of both 
dimensions equally. ADAS of this kind are arranged close to 
the diagonal in the figure. Thus, the scope of the prototype 
environment, indicated by the arrow in the figure, covers the 
area around the diagonal and grows with the degree dimensions 
from the bottom left to the top right.  

In addition to perceiving the vehicle’s environment and 
driving conditions, it might also be necessary to be able to 
control the vehicle at its dynamic limits, e.g. to enable accident 
avoidance maneuvers. Mapping driving dynamics in 
simulations in a physically realistic way at or beyond the limits 
of driving dynamics, requires complex and highly nonlinear 
simulation models. Such models grow in complexity and 
computational demand with their precision at the limits of 
driving dynamics. This characteristic makes vehicle dynamics 
simulation to be a conflicting requirement with simulating 
multiple vehicles at the same time. Thus, we need a tradeoff 
between the number of vehicles to be simulated at the same 
time and the precision of mapping physics realistically. 

We address this tradeoff by restricting the scope of our 
prototyping environment to the class of applications which are 
meant to prevent accidents, not to mitigate them. Therefore, we 
can assume a certain safety margin which should always be 
regarded by the applications. That excludes e.g. very close 

drive-by maneuvers at high speeds or with very high 
acceleration forces. For our simulator it is thus sufficient to 
map a smaller range of dynamics, as its purpose is to match real 
vehicle dynamics up to the limits of driving dynamics only. 
Based upon this definition, we can now define a set of reference 
applications for our simulator to cover all aspects of the class 
of cooperative ADAS within our scope. We use these reference 
applications to derive the requirements of the simulator. The 
set of selected reference applications and the reasoning of 
selection is described in detail in [14]. In summary, this leads 
to the following three applications. 

 CELC – Cooperative Emergency Lane Change 

 CACC – Cooperative Adaptive Cruise Control 

 PACE – Parking Autonomously in Cooperative 
Environments 

III. REQUIREMENTS 

Controlling a vehicle by an ADAS requires consideration 
of vehicle dynamics including a great number of parameters 
related to vehicles and environment [6]. Additionally, an 
ADAS deployed on a vehicle needs to regard many application 
specific parameters, like those related to situation awareness 
[7]. For cooperative ADAS deployed on multiple vehicles 
(such as CELC, CACC, and PACE), the number of parameters 
to be considered by the simulator might grow superlinear. Each 
vehicle might also need to consider the relevant parameters of 
multiple other vehicles, they need to interact with. These two 
aspects, parameters regarding vehicles dynamics and 
application specific parameters, in combination with many 
vehicle make the parameter space explode. Towards these two 
aspects, we can now define the requirements for our simulator, 
described on the basis of the three reference applications (ELC, 
CACC, and PACE).  

We begin by identifying the originators of the 
requirements. These are the cooperative ADAS application to 
be deployed in our simulator, the developer using our 
simulator, and the scope of our simulator. The first three main 
entities of our simulator defined as clusters of requirements are 
derived from the DVE model [8], which models the loop of 
driver, vehicle, and environment while driving that will be 
observed by the application. These three are complemented 
with the communication, which addresses the cooperation 
aspect, and finally the architecture of the simulator which 
needs to fit our scope. In Table 1 the originators are arranged 
at the column headers and the requirement clusters at the row 
headers. The table cells describe the concrete requirement of an 
originator to a requirement cluster. For this work, we focus on 
the requirements related to the scenario definition, while a 
detailed description of all requirements is given in [14]. 

1) Vehicle 
Sensors and actuators are needed to enable the 

applications to interact with the vehicle and sense its 
environment. Modelling sensors can be extremely complex and 
computational expensive. However, within our scope the 
following set of fundamental sensors using simple models with 
few parameters should be sufficient for the majority of 
cooperative ADAS applications, while offering developers the 
possibility to hook up further custom sensors. 
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Figure 1: Usefulness of the prototyping environment for developing 
application, depending on their level of automation and cooperation 



  

 Frontal sensor like radar [1], [3] as needed by CACC; 

 Side sensors like a blind spot detection system [1] as 
needed by CELC; 

 Lane detection sensor like a stereo camera [1] as 
needed by PACE for precise navigation. 

Parametrization - of the vehicle dynamic and sensor 
model need to be adaptable by developers. Changing these 
parameters during prototyping cooperative ADAS is a highly 
recurrent, iterative process and needs to be designed in a way 
to enable very short cycles. For this purpose, at this point we 
identify the definition of such an iterative prototyping process 
as an additional separate requirement.  

2) Environment 
The environment of the vehicles in our simulator needs to 

contain objects that can be perceived by sensors and 
infrastructural elements, the vehicles can interact with. This 
includes static and moving objects like houses and street 
furniture (e.g. traffic lights) as well as obstacles like road users 
as e.g. needed by CELC. For the majority of research done on 
cooperative ADAS within our scope, the following 
environmental features should be sufficient:  

 road infrastructure generated procedurally from simple 
multi-lane road segments, as well as complex street 
grids including mapping of traffic rules;  

 properties of objects and infrastructure influencing 
vehicle dynamics and perception need to be 
parametrable, e.g. road surface or weather conditions; 

 location and time bound triggers are needed, e.g. to 
move the obstacle in front of the vehicle very closely;  

 scriptable procedures are required, e.g. like braking 
events, cutting in, or objects entering the road. 

Generating and iteratively modifying scenarios including 
complex road infrastructures as described, as well as its 
parametrization and scripting is a time-consuming job for 
developers. Thus, at this point we identify the need for a 
scenario definition as an additional, separate requirement, 
which enables rapid prototyping in a very time effective way. 

3) Driver 
A driver model moving vehicles in our simulator is needed 

first as input for a cooperative ADAS application deployed on 
this vehicle, and second to generate surrounding traffic for 
sensor perception. In order to generate driver behavior, the 
basic tool fitting our scope are speed annotated routes defined 
by developers plus a set of basic driver behaviors and related 
features should be provided by our simulator:  

 microscopic behaviors [9] regarding traffic, e.g. 
stopping in front of red traffic lights, giving way, 
regarding speed limits, and avoiding collisions; 

 scripted maneuvers defined by developers as part of 
the scenario definition, such as speed changes and 
braking maneuvers that can be triggered by the 
environment, as required by CACC; 

 parameterization of the maneuvers that need to be 
varied while prototyping, such as the driver reaction 
time and randomized behavior (e.g. swaying in the 
lane); 

 reproducible random seeds to guarantee repeatability. 

4) Communication 
Similar to the approach of modeling sensors, our simulator 

should provide models for V2X and cellular communication 
[10] allowing for easy parametrization of at least the following 
parameters: delay, packet lost, range, and bandwidth. Again, 
we provide the ability to hook up further custom models. 

5) Architecture 
The most important requirement on the architecture of our 

simulator is to maximize the processing power available for 
simulation. This can be achieved by designing the architecture 
to be able to scale the simulation over multiple instances 
running on different machines. From the perspective of 
developers, the architecture should further enable: 

 visualization of the running simulation;  

 provide an open interface to hook up the applications 
instead of enforcing a certain technology to this end, 
such as MATLAB®/Simulink®; 

 support the iterative prototyping process mentioned as 
separate requirement and in this context a time 
effective parameterization of the simulation; 

6) Scenario Definition 
The scenario definition must contain all relevant 

parameters of the simulation model (vehicle, sensors, 
communication), the parameter setting of the applications, as 
well as the definition of the environment and the definition of 
driver input for a simulation. Thus, the scenario should contain 
all information developers need to specify and vary with regard 
to the named iterative prototyping process. 

7) Prototyping Process 
Our prototyping environment should support a process to 

enable developers handling the application-specific part of the 
related parameter space. Designing our simulator should be 
aligned with this process which brings the idea of a cooperative 
ADAS through an iterative process of refining and assessment 
towards a plausible candidate for implementation.  

Table 1: Requirements 

 Application Developer Scope 

Vehicle Actuators, sensors parameterize models and sensors, validation Tradeoff between precision and computational effort 

Environment Perception by sensors Scenario definition (time efficiently) Simple models to address computational effort 

Driver  Interaction by actuators Define behavior - 

Communication Short range V2X  Parameterize Simple models to address computational effort 

Architecture Deployment Open interfaces, iterative prototyping process, 
visualization, time, repeatability 

Distribution to increase performance 



  

IV. THE SIMULATOR 

In this section, we present the design of the different aspects 
of the simulator according to the requirements defined in 
previous section. In the context of this paper, we focus on the 
key design aspects regarding the scenario definition and related 
aspects. A detailed description of the overall design is given in 
[14]. Prior to designing the simulator, we first need to define 
its underlying prototyping process, since all other aspects are 
aligned with this process. 

A. Prototyping Process 

We propose the following process depicted in Fig. 2 to 
bring an idea of a cooperative ADAS through an iterative 
process of refining and assessment towards a plausible 
candidate for further development. Aligned with this process, 
developers can use our simulator in a trial and error manner to 
create, refine, and assess their use case. In this way, new 
approaches can either be brought incrementally to a certain 
stage of maturity or be discarded as quickly as possible. 

 Beginning with the implementation of the cooperative 
ADAS prototype, developers define a set of working 
parameters of the application. An initial set of these parameters 
needs to be given by developers in the first step. The same 
applies to the simulation scenario and its parameters. 
Subsequently, the process iteratively traverses an arbitrary 
number of cycles including the three steps, running the 
simulations, assessing its results, and tuning the parameters of 
scenario and application. This cycle is completed once the 
results suggest that the cooperative ADAS application under 
research is realizable and effective. Otherwise, the cycle is to 
be terminated after a significant number of iterations without 
any progress on the expected results, so the idea needs to be 
either reconsidered or discarded.  

In order to reach either of both verdicts as fast as possible, 
the cycle time needs to be minimized. Accordingly, the goal of 
the simulator design is to minimize the execution time of one 
cycle. The execution time of one cycle depends significantly 
on the preferably low complexity of the simulation models 
(vehicle, environment, communication) and the scalability of 
the simulator architecture. Tuning the parameters of 
application and the scenario by developers is highly depending 
on a pragmatic scenario description of the simulator. These 
aspects will be object of the following sub sections. 

B. Architecture 

Fig. 3 depicts a high-level view of the architecture of our 
simulator consisting of two parts, the Developer 
Implementation containing the components developers need to 
define and implement, and the Simulation Framework. The 

latter contains multiple Simulation Instances which can be 
distributed over multiple machines, and the Simulation Main 
Instance, which is coupled to the Visualizer. This architecture 
and its components are designed towards the following three 
underlying paradigms derived from our requirements.  

Decoupling Simulation in Time – our architecture 
decouples simulation time from real time. Its simulation 
models support both, defining fixed simulation speed, as well 
as running headless as fast as possible regarding a predefined 
fixed simulation step size. 

Decoupling Simulation in Space - refers to the idea to 
scale out the simulation by splitting the simulation scenario 
area in different cohesive sub areas. This enable distributing the 
execution of simulation models on different simulation 
instances (see Fig. 3) i.e. on multiple machines.  

Decoupling Simulation in Complexity - refers to 
designing our architecture to run several parts (such as sensor 
models) of the simulation remotely (e.g. using 
MATLAB®/Simulink®) and allow custom implementation of 
these parts by developers by providing open interfaces.  

C. Scenario Key Design Aspects 

Before describing concept and implementation of our 
scenario model, we briefly present its underlying design 
decisions. We address the requirements of environment, driver, 
and scenario specification regarding simulation performance 
and developer’s interaction by the following key aspects: 

1) Environment 
All objects other than vehicles are modelled by simple 

geometrics (polygonal planes, cuboids, and tetrahedrons) to 
safe computational effort and human effort for design. Coping 
without textures to the greatest extent, our visualization still 
allows for an appealing puristic scene rendering using simple 
Phong shading techniques (see Fig. 4). Static objects are 
procedurally generated from existing map material. The 
generated infrastructure can be modified and complemented 
by developers. Event triggers and scripted procedures related 
to the environment e.g. time bound occurrence of road 
geometry changes (see e.g. constructions site in Fig. 4). 

2) Driver Input 
The definition of driver behavior is based on speed 

annotated routes along the road map links (see Fig. 4). In 
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addition to the target speed, developers can attach time or 
event triggered, scripted maneuvers to these routes to create 
specific situations. The driver behavior in traffic is 
automatically realized by an extendable driving controller 
hierarchy of various speed and steering controllers. 

3) Scenario Definition 
The description of a simulation scenario contains all 

scenario specific information about environment, driver input, 
simulation models and their parameterization. For all position 
related elements of a scenario (e.g. placing objects, vehicles, 
defining routes), our simulator provides visual tool support. All 
scalar elements (e.g. parameterization of vehicle models, 
sensors, and randomized behavior on routes like swaying or 
driver reaction time) are defined in a set of configuration files. 
The scenario definition bundles all that information and 
distributes it to all simulation instances by the instance 
coordination (see Fig. 4). Optionally a seed set for all 
randomized parameters of the simulation models is included. 

Remark: As parts of our iterative prototyping process, 
scenario (re)definition and application parameter tuning are 
highly repetitive tasks which needs to be designed very 
efficiently. We therefore, strive to create a scenario definition 
methodology, which provides best flexibility and a minimal 
expenditure of time on the developer side. As a consequence, 
our key design decision is to assume that developers of 
cooperative ADAS will use our prototyping environment to 
master the Kotlin [15] programming language. Instead of 
complex GUI based interfaces, we provide a lean DSL based 
programming interface, which enables the named flexibility. 

Examples of scenario created for our simulator can be 
found in [11] and [14]. Fig. 4 gives an impression of an 
example scenario displayed by the visualizer (see Fig. 3). The 
scenario near Ernst-Reuter-Platz in Berlin, Germany, was 
generated procedurally by the simulator from Open Street Map 
(OSM) [12]. A route defined by the developer is depicted as a 
blue line. In this example the route has no annotated speeds as 
the target speed is taken from the imported OSM map speed 
limit.  

D. Scenario Model 

The scenario model is depicted in Fig. 5. It provides a more 
detailed view on the Scenario Specific Part outlined in the 
general architecture in Fig. 3. It contains the HD map, which 
provides the basic road geometry of each scenario and is 
generated procedurally from OSM or imported from HD map 
sources such as HD Live Map [19] or Lanelet. Routes, 
Triggers (such as the construction site in Fig. 4) and Auxiliary 
Objects are geo spatially referenced to the map and connected 
via the Event System to the Vehicles and their specific Driver 
Models in the scenario. Vehicle Spawners and Vehicle 
Despawners deploy and remove vehicles from the scenario at 
runtime, according to the scenario specification. The vehicles 
contain specific sensors and driver behavior realized by Skills 
and Features, which are described in the subsequent 
subsection. Skills also realize traffic rule related behavior.  

E. Driver Model  

1) Motivation of Skills and Features 
In order to address handling the complexity of the large, 

application related parameter space, we designed a driver 
model composed of reusable behavior entities, inspired by the 
subsumption architecture [16]. Our driver model is designed 
by a flexible and scenario specific composition of Skills. A 
Skill is the implementation of a preferably reusable behavior 
entity, that is either atomic or a combination of other atomic 
Skills. Atomic Skills provide actions, which cannot be broken 
further down, as, e.g., lane changing (provided by the lane-
change-skill). Composed Skills provide more complex actions, 

Figure 4: Simulator reference implementation – example scenario:  
Construction site at round about, Ernst-Reuter-Platz, Berlin, Germany 
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which can be achieved by combining multiple atomic Skills, 
as e.g., the Intersection-Skill which combines the Traffic-
Light-Skill and the general Traffic-Rule-Skill. Atomic Skills 
command their requested actuator control to the vehicle by 
desired acceleration and steering angle.  For the realization of 
such behavior entities, Features are used by the Skills in order 
to interact with the environment. Features encapsulate 
functionalities required for this purpose. Skills and Features 
are designed fully decoupled and work in a self-orchestrated 
manner. Thus, at design time of a Skill, there is almost no need 
to consider other existing Skills or Skills that will be designed 
afterwards. In accordance with our iterative prototyping 
process, this enables best flexibility and reduced complexity 
for designing complicated, multilayered driving behaviors. 

We illustrate this concept in the following, based on the 
example of braking at a red traffic light, depicted in Fig. 6. For 
the sake of conciseness, we consider a very simple 
orchestration of three Skills which determine the longitudinal 
acceleration of a vehicle in a self-orchestrated manner. The 
regular driving velocity is determined by the Mission-Skill, 
which makes a vehicle traverse its route, according to the 
speed limits. In case the vehicle is following a slower 
predecessor, the regular driving velocity is overridden by the 
Follow-Vehicle-Skill. At red traffic lights, both are overridden 
by the Traffic-Light-Skill. Braking at red traffic lights is a 
fundamental element of all urban driving models. It includes 
recognition of the traffic light, deriving a decision whether to 
brake and performing a brake if required. The recognition is 
realized by the Red-Light-Feature, which continuously checks 
the map in front of a vehicle for traffic lights. Their current 
phase is then perceived by the Feature either checking the 
Auxiliary Object – Traffic Light directly in the scenario, or by 
evaluating either a specific camera sensor model, or a 
communication device. Accordingly, the Red-Light-Feature 
reports a red light and the Traffic-Light-Skill calculates a 
desired deceleration regarding the remaining distance.  

2) Priorities and Constraints:  
In order to achieve the described decoupling of Skills and 

to enable their self-orchestrated coordination, we introduce the 
concept of priorities and constraints to control lateral and 
longitudinal actions. Priorities are used to decide which action 
is rendered, in case multiple skills command conflicting 
actions. Priorities are assigned to skills at skill design time and 
then remain fixed. In order to simplify the decision about what 
priority to assign to a certain skill, available priorities reflect 
the various importance levels in the driving context: Listing 1. 
Fixed skill-priorities are sufficient to orchestrate the various 
skill actions in simple situations. However, in certain 
circumstances, lowly prioritized skills might need to increase 
their priority to avoid rule violations or overcome potentially 
dangerous situations. This is achieved by constraints. In 
addition to their regular desired action skills can specify 
constraints with higher priorities. An example is the mission-
skill: The desired speed output of that skill is of priority 
DRIVING_FREE, which is very low, so that other skills, as, 
e.g., the follow-vehicle-skill can override that output. 
However, vehicles should not exceed the speed limit. 
Accordingly, the current speed limit is set as a constraint with 
priority RULE_SPEED_LIMIT. Moreover, the mission-skill 
knows the upcoming course of the road and can compute 
lateral accelerations resulting from vehicle speed and road 

curvature. Thus, a second constraint is set with priority 
AVOID_COLLISION, which limits the speed to a value which 
ensures safe vehicle handling.  

Fig. 7 shows the outputs of the three aforementioned skills 
in a traffic light situation. For simplicity, the desired speed of 
each skill is shown, not its actual demand of acceleration. The 
ego vehicle follows a vehicle while approaching a traffic light. 
The leading vehicle accelerates in order to pass the traffic 
light. The Follow-Vehicle-Skill wants to accelerate to close 
the growing gap to the leading vehicle. The result speed is first 
limited by the speed limit and then reduced to standstill by the 
Traffic-Light-Skill when the traffic light turned red. After 
turning green the vehicle continues its way with reduced speed 
in order to keep a pleasant speed within the roundabout. 

F. Scenario Definition  

In the following we present our methodology to define 
scenarios using a Kotlin-based scenario domain-specific 
language (DSL). An example for a simple scenario definition 
is given in Listing 2. Note that this is no pseudocode but a valid 
Kotlin program (without the import declarations) that will run 
a simulation. Scenarios are defined within the scenario {} 
block: An HD map is loaded and a traffic light is generated for 
a certain intersection. The traffic light generation function takes 
the nearest intersection for the given location and generates 
default traffic lights for that intersection. Alternatively, manual 
definition of the layout and timing of arbitrary traffic lights is 
also possible. Next, a single RouteSpawner is defined, which 
spawns ten vehicles on the first lane at the beginning of the 
route. The route is computed by a standard A* routing between 

public enum Priority {
    NONE(0.0), 
    DRIVING_FREE(1.0), 
    DRIVING_IN_TRAFFIC(1.1), 
    RULE_DEFAULT(2.0), 
    RULE_TRAFFIC_SIGN(2.1), 
    RULE_TRAFFIC_LIGHT(2.2), 
    RULE_SPEED_LIMIT(2.3), 
    RULE_EMERGENCY(2.4), 
    AVOID_COLLISION(3.0), 
    AVOID_COLLISION_SEVERE(3.1), 
    FORCED(4.0); 

 

    private final double prio; 
    Priority(double prio) { 
        this.prio = prio; 
    } 
    public boolean isHigherThan(Priority other) { 
        return prio > other.prio; 
    } 
    public boolean isHigherOrEqualThan(Priority other) { 
        return prio >= other.prio; 
    } 
} 

Listing 1: Available skill priorities 
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Figure 7: Priority graph – longitudinal control near traffic lights



  

the given control points, specified as geo coordinates. The 
behavior of vehicles spawned is defined by adding the desired 
set of Skills and Feature. For this example, a minimal set of 
three skills is required in order to follow the route (mission-
skill), consider any other vehicle in front (follow-vehicle-skill) 
and to stop at red lights (traffic-light-skill). The Skills are 
provided with the route and traffic lights by the corresponding 
Features. Finally, the despawnOn {} block creates a 
Despawner, which removes vehicles that reached the end of 
their route. Leaving the scenario {} block starts the scenario. 

Similar to the scenario definition, Skills are preferably 
written in Kotlin as well, although we have not yet created a 
DSL for their definition. Listing 3 gives the source code for a 
simplified but working version of the traffic-light-skill. The 
class implements the Skill interface and overrides two 
containing methods: onSpawn() is called on vehicle creation. It 
obtains references to the Features required by the Skill. The 
actual logic is defined within takeAction(), called on every 
simulation step. It uses the trafficLightProvider to obtain a 
reference to the next relevant traffic light. If one is found, the 
routeProvider is queried for the distance to the traffic light 
along the route. Next, the needed acceleration is computed to 
brake to standstill in front of the traffic light. If the traffic light 
is not passable and the computed brake acceleration is above a 
threshold of 2 m/s², the brake is requested with a priority of 
RULE_TRAFFIC_LIGHT. If the traffic light is green or the 
distance to it is large enough, the traffic-light-skill performs no 
action and lower priority actions control the vehicle.  

V. RELATED WORK  

A. Subsumption architecture 

Our driver model composed of reusable behavior entities, 
that are either atomic or a combination of other atomic entities, 
is inspired by the subsumption architecture [16]. It addresses 
operation of robots in a complex and unpredictable 
environment which their designers don't know completely at 
design time. Instead of piping complex individual tasks in a 
sense-plan-act manner, tasks are split into behaviors elements 
and arranged horizontally (and called layers). That means, each 

task is enabled to control the robot alone in a minimalistic way. 
The horizontal tasks contain all elements of classical sense-
plan-act architectures, however realized in a simplified way so 
that each task implements one behavior only. In that way, each 
task only needs to handle one manageable problem and instead 
of the whole complex process of navigation including 
perception and planning. This concept reduces or even spares 
direct communications between layers, which decouples the 
whole operation of a robot in complexity. However, in order to 
arbitrate the access of the separated tasks to the actors of the 
robot, determining some kind of priority is required. 
Subsumption of low-prior behaviors by higher priorities is hard 
to determine, which is a drawback of the approach. For our 
prototyping environment, we were able to reduce the 
complexity of arbitration compared to navigating a robot. With 
our concept of priorities and constraints we were able to tackle 
this hurdle within the scope of our prototyping environment.  

B. OpenScenario  

OpenScenario [17] is an XML based, open format for 
describing complex simulation scenarios, adopted by the 
standardization organization ASAM. We initially considered 
OpenScenario for scenario definition in our prototyping 
environment. However, it misses the lightweightness and the 
flexibility we need to address our iterative prototyping process. 
Indeed, our scenario definition approach emerged from our 
early work on binding the OpenScenario description to our 
implementation. Finally, we decided to expose our API initially 
intended to bind OpenScenario as actual scenario definition 
interface. [18] compares OpenScenario with other scenario 
specification formats. 

VI. OUTLOOK 

Our road map for evaluation and implementation is 
presented in the following. In this paper we presented our 
scenario definition methodology and the initial version of our 
scenario DSL. The language enables creation of simulation 
scenarios relevant for developing and testing cooperative 

class TrafficLightSkill : Skill { 
    lateinit var routeProvider: RouteProviderFeature 
    lateinit var trafficLightProvider: TrafficLightProviderFeature 
 
    private val brakeAccelThreshold = 2.0 
 
    // Called once on vehicle setup. 
    override fun onSpawn(vehicle: ScenarioVehicle) { 
        routeProvider = vehicle.features.require( 
                  RouteProviderFeature::class.java) 
        trafficLightProvider = vehicle.features.require( 
                  TrafficLightProviderFeature::class.java) 
    } 
 
    // Called on every simulation step. 
    override fun takeAction(vehicle: ScenarioVehicle, deltaT: Double,  
                            resultAction: DesiredAction) { 
        val nextTrafficLight = trafficLightProvider 
                                       .getNextTrafficLight() 
        nextTrafficLight?.let { trafficLight ‐> 
            val distanceToTrafficLight = routeProvider 
                        .routeDistanceTo(trafficLight.location) 
            val accelToStandstill = AccelerationHelper 
                        .computeAccelerationForStandstill( 
                             vehicle.speed, distanceToTrafficLight) 
 
            if (trafficLight.isNotPassable() && 
                           accelToStandstill > brakeAccelThreshold) {
                resultAction.brake(accelToStandstill,  
                                   Priority.RULE_TRAFFIC_LIGHT) 
            } 
        } 
    } 
} 

Listing 3: Traffic Light Skill 

fun main() { 
    scenario { 
        hdMap("maps/ernst‐reuter‐platz_large.lanelet") 
        generateTrafficLight( 
            AbsoluteLocation(52.510718, 13.314574)) 
 
        routeSpawner { 
            route = route( 
                AbsoluteLocation(52.509964, 13.314440), 
                AbsoluteLocation(52.514046, 13.317432), 
                AbsoluteLocation(52.516047, 13.316296)) 
 
            spawnNVehicles = 10 
            spawnLocation = RouteLocation(route, 0) 
 
            vehicleSkills { 
                mission() 
                followVehicle() 
                trafficLight() 
            } 
            vehicleFeatures { 
                staticRouteProvider { route } 
                trafficLightProvider() 
            } 
        } 
 
        despawnOn { 
            endOfRoute() 
        } 
    } 
} 

Listing 2: An Example Scenario 
 



  

ADAS. In contrast to OpenScenario, it takes advantage of a 
DSL and, if required, allows the user to script their own 
extensions directly into the scenario description. As we have 
shown, the scenario interface enables to create simulations with 
small effort. We want to encourage the community to 
contribute their own use cases and ideas in order establish an 
open and feature-rich scenario description interface.  

Our strategy for field evaluation and improvement of our 
scenario definition methodology is to go open source. In that 
sense, parts of the implementation of our prototyping 
environment called PHABMACS with its presented interfaces 
will be made available open-source as part of the new co-
simulation framework Eclipse MOSAIC [13] (see Fig. 8). 
MOSAIC allows to couple simulators from further domains, 
such as road traffic, V2X communication, electric mobility, 
intermodal traffic, traffic management, and the like. This 
allows to extend the development and testing of cooperative 
ADAS on a broader level, e.g. by integrating the sub-
microscopic simulation of individual vehicles in PHABMACS 
with large-scale traffic simulations with thousands of vehicles.  

The scenario description interface, together with the API 
for the simulator will be made available as part of Eclipse 
MOSAIC under the Eclipse Public License 2.0. Fig. 8 depicts 
an excerpt of the PHABMACS implementation related to the 
parts which will be open source as well as parts on our road 
map for further development. We are currently working on 
complementing our current physics engine [14] with an nVidia 
PhysX based implementation. While our current 
implementation already scales out over multiple JVMs on 
different machines [14], our new engine enables us to better 
scale up on each machine. We are also working on a WebGL 
based visualization, which enables running PHABMACS on 
multiple instances in the cloud and visualize in a web browser.   

VII. CONCLUSION 

We presented an environment for rapidly prototyping 
cooperative ADAS based on vehicle simulation. Its underlying 
approach is to either bring ideas for cooperative ADAS 
through the prototyping stage towards plausible candidates for 
further development, or to discard them as quickly as possible. 
By designing an efficient scenario definition methodology, we 
address scenario definition and application parameter tuning 
as highly repetitive tasks an iterative prototyping process for 
cooperative ADAS. Our scenario definition methodology, 
provides best flexibility and a minimal expenditure of time on 
the developer side. As a consequence, our key design decision 

is to assume knowledge of Kotlin programming language by 
developers of cooperative ADAS using our prototyping 
environment. Instead of complex graphical or verbose XML 
based interfaces, we provide a lean DSL interface, which 
enables the named flexibility. In order to address handling the 
complexity of large application related parameter spaces, we 
designed a driver model based on composing with reusable 
behavior entities, inspired by the subsumption architecture 
[16]. Our strategy for field evaluation and improvement of our 
scenario definition methodology is to open source parts of the 
implementation of our prototyping environment called 
PHABMACS, as part of the new co-simulation framework 
Eclipse MOSAIC [13]. 
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