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Distributed Controller Design for Vehicle 
Platooning under Packet Drop Scenario  

 

 

Abstract—This paper proposes a distributed control 
strategy for homogeneous platoon systems with external 
disturbances under random packet drop scenario which can 
occur due to underlying network among the vehicles in a 
platoon. An linear matrix inequality (LMI) based approach is 
used to obtain the controller gains for ensuring the stability 
with bounded H∞ norm for such systems. Effectiveness of the 
proposed method is demonstrated with numerical results 
considering different network topologies in a platoon under 
single packet drop. The variation of H∞ norm bound for 
different number of platoon members under the different 
structure of network topologies and the packet drop has been 
studied in this paper.   

Keywords—vehicle platoon, distributed controller, LMI, 
packet drop 

I. INTRODUCTION  

Vehicle platoon is a group of two or more connected 
autonomous vehicles (CAVs) where all vehicles travel with 
the same velocity while maintaining a small inter-vehicular 
distance within themselves. In a highway, the platoon of 
CAVs offers number of benefits like road safety, highway 
utility, and fuel economy etc. [1]. In a platoon, vehicles 
exchange information with their neighbours through wireless 
vehicle-to-vehicle (V2V) [2] and vehicle-to-infrastructure 
(V2I) [3] communication systems. These communication 
systems utilize the concepts of network topologies e.g. (i) 
predecessor following (PF), (ii) predecessor leader following 
(PLF), (iii) bidirectional PF (BPF) [4], (iv) bidirectional 
predecessor leader following (BPLF), (v) two PF (TPF) [5], 
(vi) two BPF (TBPF) [4] and (vii) all-to-all [6] etc. relating 
the way of information exchange between vehicles in a 
platoon. However, the reliability of wireless communication 
network depends largely on bandwidth allocation, external 
disturbances, signal strength etc., which ultimately leads to 
packet drop and/or delay in data transmission. This packet 
drops and/or delay largely affects the stability and 
performance of the vehicle platoon system [7] due to 
presence of wireless communication network in it.  
Therefore, it is quite challenging to ensure the stability and 

maintain the desired performances (maintaining the same 
velocity and inter-vehicular distance) by designing the 
appropriate controller for the vehicle platoon system under 
different network topologies with packet drop.   

The importance of network topology has been described 
for designing the controller to analyse the closed-loop 
stability and co-operative motion of the vehicles in a platoon 
in [5]. Recently, number of advanced control strategies have 
been implemented to achieve better performances of vehicle 
platoon using different network topologies [3, 8-11]. In [8], a 
distributed receding horizon controller has been designed for 
platoons under the PF topology while [9] extended the results 
of [8] with unidirectional topology. Using graph theory and 
Routh-Hurwitz criteria, the stabilizing threshold of controller 
gains has been derived in [2]. A distributed H controller has 
been designed for homogeneous platoon with undirected 
topology using LMI approach in [10].  An adaptive control 
strategy has been adopted for adjusting the gains of the 
distributed controller as a function of mismatched states of 
the platoon members in [6]. However, these above-
mentioned methods do not ensure stability and performances 
under network imperfections (e.g. packet drop and/or delay), 
parametric uncertainty such as mass of passenger vehicles or 
engine time constant [12] and external disturbances such as 
lead vehicle’s acceleration, wind gust or road slope [10, 12-
13] acting on the vehicles in a platoon.   

 Although packet drop, communication delays, 
parametric uncertainty and external disturbances all have 
been investigated by researchers separately [7, 10] or in 
some combinations [13] for the vehicle platoon control 
problem but combination of all these issues remains a 
challenging research problem [9, 10]. For example, for short 
range wireless communication environment among the 
vehicles in a platoon, a decentralized model predictive 
controller has been designed under low and high 
communication latency for longitudinal platoon control 
problem in [14]. Tang et al. [7] have utilized the concept of 
network topology for communication systems [5] between 
vehicles in a platoon and have designed the LMI based 
distributed controller to achieve the co-ordinated motion of 
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each vehicle under packet loss. Other approaches have used 
co-operative adaptive cruise control to analyse string stability 
and performance of platoons under packet drop [15, 16] and 
communication delay [17, 18] when vehicles are wirelessly 
connected. However, to the best our knowledge, very few 
researchers have proposed control strategies with networked 
packet drop or delay for vehicle platoon control under 
parametric uncertainty and/or external disturbances [13, 19]. 
An LMI based distributed H controller has been designed 
for heterogeneous vehicle platoon control under the 
parametric uncertainty, external disturbances and 
communication delays in [19]. However, the method 
proposed in [19] only considered PLF network topology for 
the communication among the vehicles in a platoon. As an 
extension of the work [19], our method proposes a 
distributed controller design methodology for vehicle platoon 
under random single packet drop and external disturbances 
considering the network topology for communication 
between vehicles are generic (i.e. valid for different network 
topologies (i)-(vii)) as reported in [4, 5].        

This paper proposes a robust distributed control design 
methodology for homogeneous vehicle platoon under 
random packet drop. As in [10], the longitudinal dynamics of 
homogeneous platoon with disturbances has been considered 
in this work. However, to design the distributed controller for 
the homogeneous platoon with external disturbances, first, 
we recast the platoon control problem as a synchronization 
problem of a multi agent system [8, 11], i.e. leader-following 
consensus under single packet drop scenario using Bernoulli 
modelling of packet drop distribution is used. Next, we have 
used Lyapunov based LMI approach to obtain the controller 
gains with the satisfaction of certain bounded H norm 
which ensure the stability and maintain desired inter-
vehicular distance for such systems. The effect of various 
network topologies with random packet drop rate on H  
norm bound for different numbers of platoon members has 
been studied in this paper. In addition, for different platoon 
members, the effect of leader vehicle’s information to the 
follower vehicles in a platoon under network topologies and 
packet drop has also been studied by analysing the robust 
performance measures i.e. H  norm bound  .  

The rest of the paper is organized as follows. Section II 
describes platoon modelling and control objectives of 
platoon for synchronization problem under single packet 
drop scenario.  Then to achieve the control objectives for a 
platoon, the LMI based distributed controller design 
approach has been described in Section III. Section IV 
represents the detail derivation of proposed methodology. 
Numerical results have been shown in section V to analyse 
the effectiveness of proposed method. The final conclusions 
have been presented in Section VI followed by references.       

II. PLATOON MODELING AND CONTROL OBJECTVES 

In this paper, the platoon problem can be considered as a 
synchronization problem of a networked dynamical systems 
with a pinner node [5,11] where a set of agents (i.e. nodes) 
interact among themselves through network and these nodes 
are controlled in such a way that the dynamics of all nodes 
converge towards the pinner node i.e. leader of a platoon. 
The main components of a network of dynamical systems 
are (i) individual node dynamics which describes the 

evaluation of each node when not coupled with the network; 
(ii) different network topology which describe the 
interaction among nodes; (iii) control action to each node 
for steering the node dynamics to the pinner’s trajectory.  
This section describes the modelling of the platoon network 
topology and longitudinal dynamics of the vehicles in a 
platoon which represent the node. The control objectives of 
platoon are also discussed in this section. Since this paper 
deals with a synchronization problem [6] under 
communication topology, the follower vehicles may be 
connected with a pinner node i.e. leader and it is further 
assumed that all the followers may receive information from 
the leader, but the followers will not send any information to 
the leader.  

A. Modelling of the Platoon Network Topology and Packet 
drop 

The communication topology of the N followers (nodes) 
can be represented by the graph  ,N N NG V E , where 

 1,2,...,NV N  defines a set of vertices or nodes and 

N NE V V   defines a set of arcs or edges. The pair 

 , Nj i E  indicates the ith vehicle receives the information 

from jth vehicle. An adjacency matrix N N
N ijA a       can 

be defined based on the edges NE . The generic entry ija  of 

the adjacency matrix defines 1ija   when  , Nj i E  and 

0ija  otherwise i.e. 1ija  implies when the ith vehicle 

receives the information from jth vehicle while 0iia   

represents no self-loop in the network.  The degree ND of the 
graph is represented by the number of edges pointing to the 
follower. For such case the Laplacian matrix 

N N
ijL l       which can be represented by N NL D A   

where ii ijj i
l a


  and ij ijl a i j    .  If the network 

topology considers the leader (i.e. leader of the platoon or 
pinner of the network) then the graph NG  is augmented with 

node 0 and the modified graph is  1 1 1,N N NG V E    where 

 1 0,1,...,NV N   and 1 1 1N N NE V V     , also representing 

the pinner of the network. The corresponding adjacency 

matrix is    1 1
1

N N
N ijA a   
         with 

0 0, 0,1,...,ja j N    indicates that the followers are not 

sending information to the leader, 0 1, 1,2,...,ia i N   
indicates that the followers are receiving information from 
the leader and finally  0 0ia  indicates otherwise. iN  

denotes the neighbour set in 1NG   for the node 

, 1, 2,..., Ni i   i.e.   0,1,..., : 1i ijN j N a   . 

Let us consider the stochastic variable    0,1ji k   is 

satisfying Bernoulli distribution of packet drop in the 
communication link among the vehicles.   0ji k   

represents the follower j will receive the information or 
packet from ith follower and    1ji k   represents packet or 

information is lost. Under such scenario the following holds: 

     1ij ijProb k E k r      (1) 



   

 and  

  1 1ijE k r    ,  (2) 

where r is the packet drop rate in the communication link 
among the vehicles. 

B. Modelling of the Longitudinal Vehicle Dynamics 

 In a vehicle platoon, the nonlinear longitudinal dynamics 
of the vehicles can be represented by a third order linearized 
differential equation due to its satisfactory trade-off between 
accuracy and simplicity [5, 10]. The third order model of ith 
vehicle with disturbance input in homogeneous platoon 
considering the states    T

i i i it s v ax  is represented in 

state space form as: 

 
       
   

i i i i

i i

t t u t w t

y t t

  



x Ax B B

Cx


  (3) 

where   m
iu t  ,    2 0,m

iw t L    and   q
iy t   

represents system input, exogenous disturbance input and 
output matrices respectively with appropriate dimension and 

 
0 1 0 0

0 0 1 , 0 , 1 0 0

0 0 1 1 

   
        
      

A B C .   (4) 

In (4), , , ,i i is v a  represents the position, velocity, 

acceleration and time lag respectively and 1,2,...,i N  
represents the ith follower vehicles. 
The continuous time system (3) can be discretized using 
specified sampling time Ts and the corresponding equivalent 
zero order hold (ZOH) discretized system is 

 
       
   

1i d i d i d i

i i

k k u k w k

y k k

   



x A x B B

Cx
 , (5) 

where sT
d e AA  and 

0

sT

d e d   AB B . 

In discrete time, the dynamics of leader vehicle (i = 0) with 
constant velocity can be represented as: 

 
   
   

0 0

0 0

1 dk k

y k k

 



x A x

Cx
 .            (6) 

C. Platoon Control Objectives 

The control objective of the platoon is categorized in two 
ways [6]: (i) impose leader velocity to all followers; (ii) 
maintain specified inter-vehicular distance between two 
consecutive vehicles in a platoon. These control objectives 
can be described by the following definition:  

Definition 1 [20]: platoon of vehicles represented by leader-
following system is said to be consensus if it is satisfying 
the following under any initial conditions: 

      0lim lim 0 1,2,...,i i
k k

k k k i N
 

    x x e , (7) 

where   i ke represents the tracking error.  

Now, to achieve the above-mentioned control objective of a 
platoon, the controller is assumed to be static and identical 
for all the followers and then the corresponding distributed 
control law can be represented as: 

      
0

, 1,2,...,
N

i ij i j
j
j i

u k a k k i N



    K x x   (8) 

where,  s v aK K K   K represents the identical 

controller gain,  0,1ija   is the   ,i j  entry of adjacency 

matrix    1 1
1

N N
N ijA a   
       . 

III. STABILITY ANALYSIS AND CONTROLLER DESIGN 

UNDER PACKET DROP 

This section describes the packet drop modelling in the 
communication link of a vehicle platoon and then LMI based 
approach is used to analyse the stability and design 
distributed identical controller with bounded H  norm for 
such systems under the packet drop scenario. 

A.  Modelling of the Packet drop for Vehicle Platoon 

Network packet drop modelled as a Bernoulli process can be 
used for the transmitted state vector  j kx as: 

           1 1j ji j ji jk k k k k    x x x   (9) 

Correspondingly, 

           1 1i ij i ij ik k k k k    x x x  (10) 

since follower i knows whether it has received the 
information in the form of packet from jth follower or not at 

skT  instant. Here, we assume    ji ijk k  which defines 

that a specific link failure affects the packet drop in the both 
direction and all the link failure is asynchronous with same 
failure rate. 

B. Stability Analysis and Controller Design 

This sub-section describes the stability analysis and 
identical controller design with bounded H  norm for 

vehicles of platoon under the packet drop scenario. 
Considering the packet drop in the transmitted state vectors 
among the vehicles in a platoon and using (9), (10) and 

   ji ijk k   in (8), the distributed control law yields: 

 
        
        0

1 1

1 1

1,2,..., .

N ij i ij i

i ij
j ij j ij jj i

k k k k
u k a

k k k k

i N

 

 


   
 
     




x x

K
x x  (11) 

Aim of this paper is to design the distributed control law (8) 
for vehicle platoon systems under random packet drop by 
ensuring the mean square stability and bounded  H  norm 

  to reach the consensus of the system (17). 

Definition 2 [11]: The system (17) is said to be mean square 

stable (MSS) if    2
lim 0
k

E k


e for any initial state 

 0 ne   [17].  

Definition 3 [21]: The output error dynamics  ey are said to 

have a bounded  H  norm 0  , when the closed-loop 
system is MSS and  

         2 22

0 0

0,and 0 0e
k k

E k E k k
 

 

    y w w  e

       (12) 
Now, this paper addresses the distributed controller design 
methodology satisfying MSS with bounded H  norm   for 



   

the closed loop system (17) using LMI approach which is 
stated as Theorem 1, below. 

Theorem 1 provides sufficient conditions for the control gain 
K in (8) to guarantee that the closed loop system is MSS 
with a given H  norm bound  . 

Theorem 1: Given closed loop system (17) with packet loss 
modelled as in (1)-(2) with mean packet loss rate r and the 
control action , then closed-loop system is MSS with 
bounded H  norm  if there exists  

0 0,T T nN nN
N N

        P P I P 0 Q Q I Q 0   such 
that  

    

 

1

1 1

2

1

1

1

* *

*

1

N

N d d d N d

N

r r





 







 
 
  

      


 

P

0 P QP

0 0 I

I A P L B Y L B Y I B

P 0 0

I C P 0 0

    

1

1

* * *

* * *

* * *

* *

*

N











 



 

0
P

0 Q

0 0 I

   (13) 

and, 
1

1 1



 

 
  

M P
0

P Q
     (14) 

    
where, 1 1,  P P Q Q  and the control gain in (8) is 

selected as 1 1
0 0

n  K = YP YP  . 

IV.  MAIN RESULTS AND PROOF 

This section uses the error dynamic model of the vehicle 
platoon to establish the stability criteria and design the 
distributed identical controller based on Lyapunov theory. 
Hence, first we derive the model of closed loop error 
dynamics subsequently using Lyapunov-like function, 
Theorem 1 presented in section III is proved for the platoon 
of vehicles. 

A. Modelling of Error Dynamics 

The followers (5) will be following the leader’s dynamics 
(6) when the control law (11) is applied. Under this scenario, 
the error dynamics for the ith follower can be represented as:  

     
     

        
        

0

0

0

1 1 1

1 1

1 1

i i

d i d i d

N ij i ij i

d ij
j ij j ij jj i

k k k

k w k k

k k k k
a

k k k k

 

 


    

  

   
 
     



e x x

A x B A x

x x
B K

x x

 

      
           

          

0

0 0

0 0 0

1

1 1 1 1

d i d i

N ij i j

d ij
j ij i jj i

k k w k

k k k k k
a

k k k k k






  

     
 
        



A x x B

x x x x
B K

x x x x

                        (15) 
The error dynamics (15) for ith the follower can be re-written 
using (7) as: 

 

     
       

      
            

0

0 0

1

1

1 1

.
i

i d i d i

N ij i j

d ij
j ij i jj i

e i i i

k k w k

k k k
a

k k k

y k y k y k k k k






  

  
 
     

    



e A e B

e e
B K

e e

C x x Ce

 (16) 

Therefore, the error dynamics of all the followers in closed 
loop can be represented with the augmented states  

       1 2, ,...,
TT T T

Nk k k k   e e e e  and 

       1 2, ,...,
TT T T

Nk w k w k w k   w  as:   

 

         
       

     

1

2

1

1

N d d

d N d

e N

k k k

k k

k k

    

    

 

e I A e L B K e

L B K e I B w

y I C e

 , (17) 

where,  
 

        

        

        

1 1 12 12 1 1

21 21 2 2 2 2

1

1 1 2 2

1 1 ... 1

1 1 ... 1

1 1 ... 1

i

i

i

j j N N
j N

j j N N
j N

N N N N Nj Nj
j N
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and 
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Now, due to presence of random packet drop, expectation 

values of  1 2,L L are,    1 1E r L L  and  2E rL L . 

And expectation value of (17) yields, 
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       (21) 

Now, using the system  (21) the proof of Theorem 1 is 
described in the following. 

B. Proof of Theorem 1 

Defining the Lyapunov function candidate as: 

          1 1T TV k k k k k   e Pe e Qe   (22) 

for the inequality,  
            21 T T

e eV k V k k k k k    y y w w 0 .     (23) 

obtained from bounded real lemma (BRL) [21] which 
satisfies bounded H  norm  . 

However, since,    1 1E r L L  and  2E rL L , 

therefore, taking expectation value of (23), the following 
holds  [21]: 

            2T T
e eE V k E k k k k   y y w w 0 . (24) 

From (24) as in [11], 
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Using(17) in (25) yields, 
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  (26) 
Again, as in [21], 
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 By adding (26) and (27) and for non-zero 

     1T T T Tk k k   z e e w yields:  
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Now (28) can be re-written as: 
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Using Schur complement [22] of  (29) yields, 
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Now multiplying by  1 1, , , ,N N Ndiag  P P I I I  in both side 

of (30) and defining 1 1
0N

  P I P  and 0K YP   yields: 
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It is seen that (31) is a nonconvex LMI due to presence of 

constraints  1 1, P Q . This nonconvexity problem of (31) 

can be overcome by assuming 

 1 1 1and   P QP M P P ,   (32) 

where 0N Q I Q . 

Thus, using (32), (31) takes the LMI form as: 
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and (32) yields the LMI form 
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where 1Q Q  . 
Now, (33) can be re-written as: 
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Using Schur complement of (35), (32) and 
1 1,  P P Q Q , the LMI can be obtained the form (13).   

V. NUMERICAL RESULTS 

This section represents the results to demonstrate the 
effectiveness of the proposed methodology for achieving 
cooperative motion of platoon considering seven different 
network topologies i.e. PF, PLF, BPF [4], BPLF, TPF [5], 
TBPF [4] and all-to-all [6] with different number of 
homogeneous follower vehicles in discrete time domain with 

specified sampling time Ts = 0.1s. A constant spacing policy 
of 25m [4] is used among the vehicles in a platoon. Again, 
for all the homogeneous followers it is assumed that there is 
no collision at initial time t = 0s and the initial states are 
random in nature. The time lag is chosen as 0.4s  [4], [6]. 
The Leader’s speed is considered constant at 72 km/hr [23]. 
In this paper, the external disturbance input to the 
acceleration of all followers has been considered as a square 
wave of amplitude 1, starting at t = 120s and thereafter 
continued for the period of 20s as shown in Figure 1, with 
limited energy which means  

2
i L

w k is bounded. Under 

such scenario, the  measures the robustness of a platoon 

which is defined by     
2 2

sup e L L
k k  y w . Therefore, 

  describes the sensitivity or attenuation effect of the energy 
of external disturbances.  

 
Figure 1: Disturbance input 

Now, the variation of 2  has been depicted in Figure 2 to 
demonstrate the effect of network topologies, platoon 
members and packet drop in platoon by solving the designed 
LMI (13). The LMI has been solved using YALMIP toolbox 
[24] and SeDuMi solver [25] considering seven different 
network topologies [5, 9], different number of platoon 
members (N = 3 to 10) and under varying packet drop rate (r 
= 0.1 to 0.5 representing 10% to 50 %) (colour bar).  It can 
be observed form the Figure 2 (a) and (b) that under 20% 
packet drop, the value of 2  is increasing when the number 
of platoon members (N) are higher and this is same for all the 
seven different network topologies i.e. PF, PLF,BPF, BPLF, 
TPF, TBPF, all-to all. In Figure 2 (a) and (b), the value of  

2  is higher when the amount of information exchange 
between platoon members is less. Also, it is evident that the 
magnitude of 2  is more for the topologies where the leader 
is connected only with the first follower in a platoon 
compared to all-to-all network topology under 20% packet 
drop. Next, Figure 2 (b) compares the variation of 2  for N = 
3 to 10 under 20% packet drop scenario for four different 
network topologies i.e.  PF with PLF (left) and BPF with 
BPLF (right). It is seen form the Figure 2 (b) the value of 

2 is increasing with the platoon number (N) and this value is 
higher when leader is connected only with first follower i.e. 
PF and BPF compared to all leader following i.e. PLF and 
BPLF under 20% packet drop as expected. In Figure 2 (c), 
all-to-all network topology has been considered to depict the 
variation of 2  for different platoon (N) i.e. 3 to 10 and 
different packet drop rate (r) i.e. 10% to 50% (colour bar).  It 
is seen from the Figure 2 (c) that the value of 2  is becoming 
larger when number of vehicles in a platoon and rate of 
packet drop is increasing. It can be noted that with the 
variation of the rate of packet drop, the value of 2  is not 
varying a large amount because the proposed algorithm is 



   

designed and validated under the consideration of single 
packet drop. 

 
(a) 

 
          (b) 

(c) 

Figure 2: Variation of 2  for different network topologies with 

different number of follower vehicles under different packet drop rate 
(a) effect of network topology under 20% packet drop (b) effect of 
leader information under 20% packet drop (c) effect of packet drop 
(i.e. 10% to 50%). 

 
Next, Figure 3-5 shows the effectiveness of the designed 

controller to achieve control objectives (7) and that has been 
demonstrated in terms of time responses considering 10 
followers in a platoon for two different network topologies 
i.e. BPF and BPLF under 20% packet drop [7]. By solving 
the LMI (13), the controller gains K = [-0.5528, -6.5034, -
2.5130] and K = [-3.0506, -3.9947, -1.5223] are obtained for 
BPF and BPLF topology, respectively. It is assumed that the 
follower states are mismatched at time instant t = 0s e.g., up-
to 2m inter vehicular distance error  1,i ie   among the 

consecutive platoon members and hence the variation in 
velocities (vi) of followers. It is seen from Figure 3-4 that all 
vehicle dynamics are converging to desired behaviours i.e. 
zero inter-vehicular distance error, matching to leader’s 

velocity, zero accelerations (ai) when the controllers are 
activated. It is also seen that the converging time i.e. 40s of 
the follower states in the BPF topology is higher than the 
converging time (3.5s) of states in the BPLF topology under 
20% packet drop since leader vehicle is connected to all the 
followers in BPLF topology as in [5]. Figure 4 depicts the 
behaviour of follower’s states when the external disturbances 
shown in Figure 1 is applied to each follower under 20% 
packet drop. Under such scenario, the inter-vehicular 
distance error (maximum 15.3 m) and settling time is higher 
when BPF topology is used compared to BPLF topology 
where maximum inter-vehicular distance error is 0.35m. For 
BPLF topology the inter-vehicular distance error exist only 
for the first follower and other followers are maintaining 
almost zero error. This is because all the followers have zero 
initial error (at steady state) and they are also pinned to the 
leader, thereby maintaining same dynamic evaluation [5]. 
Again, the amplification of velocity is also higher for BPF 
topology compared to BPLF topology. It is also noted that 
each vehicle has maintained almost same velocity and 
acceleration when BPLF topology is considered.           

 
Figure 3: Steady state response for 10 follower vehicles in a platoon 
under 20% packet drop rate with BPF (left panel) and BPLF topology 
(right panel). 

 
Figure 4: Time response of the follower’s states under external 
disturbance and 20% packet drop for BPF (left panel) and BPLF 
topology (right panel). 

 
Figure 5: Control inputs to the followers at steady state (upper panel) 
and external disturbances (lower panel) under 20% packet drop.  



   

From Figure 5, it is seen that all the control inputs are 
converging to zero for both topologies before and after acting 
of external disturbances to each follower. Also, highly 
oscillatory nature of control inputs for the BPF topology 
describes the requirement of high control effort compared to 
the BPLF topology. 

VI. CONCLUSION 

In this paper, an LMI based distributed state feedback 
controller satisfying bounded H  norm has been designed 
for vehicle platoon under single packet drop. The variation of 
bounded H  norm for different network topologies and 
number of platoon members under packet drop, has also been 
presented. The designed controller has been tested for 10 
follower vehicles in a platoon considering two different 
network topologies under 20% packet drop, as well. The 
simulation results demonstrated the effectiveness of the 
proposed controller for maintaining desired performances for 
vehicle platooning under random packet drop and external 
disturbances. As a scope of future work, the proposed 
method can be extended under the scenario of multiple 
packet drop.    

 
 Acknowledgment  

This work is supported by Jaguar Land Rover and the 
UK-EPSRC grant EP/N01300X/1 as part of the jointly 
funded Towards Autonomy: Smart and Connected Control 
(TASCC).  

REFERENCES 

 
[1] J. Karl Hedrick, Masayoshi Tomizuka, and P. Varaiya. “Control 

issues in automated highway systems”, IEEE Control Systems 
Magazine 14, no. 6 (1994): 21-32. 

[2]  Shengbo Eben Li, Yang Zheng, Keqiang Li, and Jianqiang Wang, 
“An overview of vehicular platoon control under the four-component 
framework”, In 2015 IEEE Intelligent Vehicles Symposium (IV), pp. 
286-291. IEEE, 2015. 

[3]  Dongyao Jia, and Dong Ngoduy, “Enhanced cooperative car-
following traffic model with the combination of V2V and V2I 
communication”, Transportation Research Part B: Methodological 90 
(2016): 172-191. 

[4] Shengbo Eben Li, Xiaohui Qin, Yang Zheng, Jianqiang Wang, 
Keqiang Li, and Hongwei Zhang, “Distributed platoon control under 
topologies with complex eigenvalues: stability analysis and controller 
synthesis” IEEE Transactions on Control Systems Technology 99 
(2017): 1-15. 

[5] Yang Zheng, Shengbo Eben Li, Jianqiang Wang, Dongpu Cao, and 
Keqiang Li, “Stability and scalability of homogeneous vehicular 
platoon: Study on the influence of information flow topologies”, 
IEEE Transactions on intelligent transportation systems 17, no. 1 
(2015): 14-26. 

[6] Umberto Montanaro, Saber Fallah, Mehrdad Dianati, David Oxtoby, 
Tom Mizutani, and Alexandros Mouzakitis, “On a Fully Self-
Organizing Vehicle Platooning Supported by Cloud Computing” In 
2018 Fifth International Conference on Internet of Things: Systems, 
Management and Security, pp. 295-302. IEEE, 2018. 

[7] Ye Tang, Maode Yan, Panpan Yang, and Lei Zuo, “Consensus based 
control algorithm for vehicle platoon with packet losses” In 2018 37th 
Chinese Control Conference (CCC), pp. 7684-7689. IEEE, 2018. 

[8] Dunbar, William B., and Derek S. Caveney, “Distributed receding 
horizon control of vehicle platoons: Stability and string stability” 
IEEE Transactions on Automatic Control 57, no. 3 (2011): 620-633. 

[9] Zheng, Yang, Shengbo Eben Li, Keqiang Li, Francesco Borrelli, and 
J. Karl Hedrick, “Distributed model predictive control for 
heterogeneous vehicle platoons under unidirectional topologies”, 

IEEE Transactions on Control Systems Technology 25, no. 3 (2016): 
899-910. 

[10] Yang Zheng, Shengbo Eben Li, Keqiang Li, and Wei Ren, 
“Platooning of connected vehicles with undirected topologies: 
Robustness analysis and distributed H-infinity controller synthesis”, 
IEEE Transactions on Intelligent Transportation Systems 19, no. 5 
(2017): 1353-1364. 

[11] Ya-Jun Pan, Herbert Werner, Zipeng Huang, and Marcus Bartels. 
“Distributed cooperative control of leader–follower multi-agent 
systems under packet dropouts for quadcopters”, Systems & Control 
Letters 106 (2017): 47-57. 

[12] J. W. Kwon  and D. Chwa, Adaptive bidirectional platoon control 
using a coupled sliding mode control method. IEEE Transactions on 
Intelligent Transportation Systems, 15(5), pp.2040-2048, 2014. 

[13] L. Xu, W. Zhuang, G. Yin and C. Bian, “Stable Longitudinal Control 
of Heterogeneous Vehicular Platoon With Disturbances and 
Information Delays”, IEEE Access, 6, pp.69794-69806, 2018. 

[14] H. Zhou, R. Saigal, F. Dion and L. Yang, “Vehicle platoon control in 
high-latency wireless communications environment: Model predictive 
control method”, Transportation Research Record, 2324(1), pp.81-90, 
2012. 

[15] C. Lei, E.M. Van Eenennaam, W.K. Wolterink, G. Karagiannis, G. 
Heijenk and J. Ploeg, “Impact of packet loss on CACC string stability 
performance”, In 2011 11th International Conference on ITS 
Telecommunications, pp. 381-386, August, 2011, IEEE. 

[16] S. Wen and G. Guo, “Cooperative control and communication of 
connected vehicles considering packet dropping rate”, International 
Journal of Systems Science, 49(13), pp.2808-2825, 2018. 

[17] Ge Guo, and Wei Yue. “Hierarchical platoon control with 
heterogeneous information feedback”, IET control theory & 
applications 5, no. 15 (2011): 1766-1781. 

[18] S. Öncü, J. Ploeg, N. Van de Wouw and H. Nijmeijer, “Cooperative 
adaptive cruise control: Network-aware analysis of string stability”, 
IEEE Transactions on Intelligent Transportation Systems, 15(4), 
pp.1527-1537, 2014. 

[19] Liwei Xu, Weichao Zhuang, Guodong Yin,Chentong Bian, and 
Huawei Wu, “Modeling and Robust Control of HeterogeneousVehicle 
Platoons on Curved Roads Subject to Disturbances and Delays”, 
IEEE Transactions on Vehicular Technology, DOI 
10.1109/TVT.2019.2941396,2019. 

[20] A. Pawar and Y.J. Pan, “Leader-following consensus control of multi-
agent systems with communication delays & random packet loss” In 
2016 American Control Conference (ACC) (pp. 4464-4469), July,  
2016, IEEE. 

[21] Zidong Wang, Fuwen Yang, Daniel WC Ho, and Xiaohui Liu. 
“Robust   Control for Networked Systems With Random Packet 
Losses”, IEEE Transactions on Systems, Man, and Cybernetics, Part 
B (Cybernetics) 37, no. 4 (2007): 916-924. 

[22] David Carlson, “What are Schur complements, anyway?” Linear 
Algebra and its Applications 74 (1986): 257-275. 

[23] Jeroen C. Zegers, Elham Semsar-Kazerooni, Jeroen Ploeg, Nathan 
van de Wouw, and Henk Nijmeijer, “Consensus control for vehicular 
platooning with velocity constraints”, IEEE Transactions on Control 
Systems Technology 26, no. 5 (2018): 1592-1605. 

[24] https://yalmip.github.io/ 

[25] Jos F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for 
optimization over symmetric cones” Optimization methods and 
software 11, no. 1-4 (1999): 625-653.  

 


