
Safe Reinforcement Learning for Autonomous Lane Changing Using
Set-Based Prediction

Hanna Krasowski∗, Xiao Wang∗, and Matthias Althoff

Abstract— Machine learning approaches often lack safety
guarantees, which are often a key requirement in real-world
tasks. This paper addresses the lack of safety guarantees
by extending reinforcement learning with a safety layer that
restricts the action space to the subspace of safe actions. We
demonstrate the proposed approach using lane changing in
autonomous driving. To distinguish safe actions from unsafe
ones, we compare planned motions with the set of possible
occupancies of traffic participants generated by set-based pre-
dictions. In situations where no safe action exists, a verified fail-
safe controller is executed. We used real-world highway traffic
data to train and test the proposed approach. The evaluation
result shows that the proposed approach trains agents that do
not cause collisions during training and deployment.

I. INTRODUCTION

Self-driving techniques have the potential to improve
mobility in terms of safety and traffic efficiency. One of
the most crucial tasks for autonomous vehicles is to plan
their motion through traffic without harming other traffic
participants. The recent development of motion planning
techniques has become more data driven due to the advance-
ment in computation power and the amount of available
traffic data. Compared to rule-based methods, data-driven
approaches require much less expert knowledge based on
the ability to learn complex dependencies from data. Motion
planning tasks can be modeled as Markov decision processes,
for which reinforcement learning (RL) provides potential
solutions. RL’s core idea is that an agent learns to interact
with the environment by exploring different actions and
receiving the next state of the environment and a reward. The
exploration process of RL impedes its applicability to real-
world problems since unsafe actions are possibly executed.

Various approaches have been proposed to increase the
safety of RL methods by modifying the optimality criterion
[1], [2] or by verifying the exploration processes with exter-
nal guidance [3]–[10]. By modifying the optimality objective,
agents behave more cautious than those trained without a risk
measure included in the objective; however, the absence of
unsafe behaviors cannot be proven. In contrast, by verifying
the safety of the action and excluding possible unsafe actions,
we can ensure that the exploration process is safe. Therefore,
we focus on verifying the safety of proposed actions and
ensuring safety if the agent fails to find a safe action.

* The first two authors have contributed equally to this work.
All authors are with the Department of Informatics, Technical University

of Munich, 85748 Garching, Germany.
hanna.krasowski@tum.de, xiao.wang@tum.de,
althoff@in.tum.de

In this paper, we propose a safe RL framework for motion
planning based on our previous work on autonomous lane
changing [6]. Our contributions are threefold:

1) We benchmark state-of-the-art model-free RL algo-
rithms to solve high-level behavior planning problems
for highway driving.

2) We propose a framework to integrate RL methods in
our developed safety layer for autonomous vehicles.

3) We evaluate the proposed approach using a real-world
highway traffic dataset.

The remainder of this paper is organized as follows:
Section II provides an overview of recent developments in
safe RL and safe motion planning techniques. Section III
introduces individual modules of our safe RL framework for
motion planning. In Section IV, we evaluate the proposed
method in real-world highway scenarios. Section V gives
the conclusion.

II. RELATED WORK

Safe RL approaches are distinguished in [11] by ap-
proaches that modify the optimization criterion and by ap-
proaches that modify the exploration process. As previously
discussed, only approaches modifying exploration are verifi-
ably safe; thus, we focus on this technique in the subsequent
literature review.

A. Modification of Exploration Process

One method to alter the action selection process is to
prioritize actions that are estimated to be safer [3]. However,
this approach does not prove the nonexistence of unsafe
behaviors. Another approach starts with a verified agent
model and updates the agent only if the safety requirements
are preserved [4], [5]. However, a verified agent model is not
always available for complex tasks. A third alternative is to
verify which actions are safe and to restrict the action space
to safe actions [6]–[10]. However, if all actions are verified as
unsafe, safety is no longer guaranteed. To guarantee safety,
using the third method, we added a verified fail-safe planner,
which holds available a safe action that is activated when the
agent fails to identify a safe action.

B. Safety Verification for Autonomous Vehicles

Researchers have proposed various approaches to verify
the safety of motion planners for autonomous vehicles. A
common method is to predict the most likely motion of
other traffic participants [12] or a probability distribution
of their future behaviors [13]. The planned trajectories are
executed if they do not collide with a traffic participant

according to its prediction. The limitation of this method
is that collisions still happen if other traffic participants’
behavior deviates from their prediction. In another approach,
a minimum requirement for safe motion planning is that
inevitable collision states are avoided [14]. A system is in
an inevitable collision state if it collides with other traffic
participants irrespective of the action taken. However, the cal-
culation of inevitable collision states suffers from the curse
of dimensionality. Another possibility is to apply logical
reasoning, which uses deduction to prove correct behavior
based on given rules [4], [5], [8]. However, logical reasoning
is typically not appropriate for online verification, which is
required in this work. Furthermore, logical reasoning requires
human intervention.

Reachability analysis verifies the safety of planned trajec-
tories by computing all possible future motions of obstacles
and checking whether they intersect with the occupancy of
the ego vehicle [15]. Since computing the exact reachable
sets of nonlinear systems is impossible, reachable sets are
over-approximated to ensure safety.

III. REINFORCEMENT LEARNING WITH SAFETY
VERIFICATION

A. Framework

We build a safe RL framework to tackle the safe lane-
changing task by integrating a safety layer between the agent
and the environment, as shown in Fig. 1. The safety layer
guides the exploration process by restricting the action space
to the safe subspace of actions. The task of the agent is to
reach a goal area on a multilane highway safely. We define
an agent’s behavior as safe if it does not cause collisions
with other traffic participants.

The safety layer receives the current state of the ego
vehicle sego and the states sobstacles of surrounding obstacles.
Using these states, we predict the possible occupancy areas
of the surrounding obstacles. We generate trajectories from
high-level actions to check for collisions with the predicted
occupancies, thereby determining which high-level actions
are safe, as described in Section III-C.

The safe action mask generated by the safety layer restricts
the agent’s actions to safe actions only, as presented in
Section III-E.

Environment

Safety Layer

Agent

SPOT Safe ACC Low-level Planner

State st
Reward rt

Safe action at

State of obstacles sobstacles
State of ego vehicle sego

Safe action mask mat

Fig. 1. Reinforcement learning with the safety layer.

sensing range of 150 m

ego vehiclevehicle sf vehicle sl

goalvehicle llvehicle lf

vehicle rlvehicle rf

longitudinal distance

driving direction

Fig. 2. Schematic representation of a three-lane road with the ego vehicle,
surrounding vehicles ij, and the goal area. The gray area depicts the sensing
field of the ego vehicle. The obstacle’s lane is specified relative to the lane
of the ego vehicle by i, i.e., l for the left lane, s for the same lane, and
r for the right lane. The relative position of the surrounding vehicle to the
ego vehicle is described by j, i.e., l for leading and f for following.

TABLE I
16-DIMENSIONAL CONTINUOUS STATE SPACE

Dim. State Description

1-6 dij The longitudinal distance of surrounding vehicle ij to
the ego vehicle (Fig. 2)

7-12 vij The relative velocity of surrounding vehicle ij to the
ego vehicle

13 vego Absolute velocity of the ego vehicle
14 aego Absolute acceleration of the ego vehicle
15 dlong Longitudinal distance from ego vehicle to the goal area
16 dlat lateral distance from ego vehicle to the goal area

B. Markov Decision Process for High-Level Planning

The discrete action space contains the high-level actions
for lane-changing decisions: changing to the left lane, chang-
ing to the right lane, continuing in the current lane, and
staying in the current lane by activating a safe adaptive cruise
control (ACC) [16]. The safe ACC is only activated for fail-
safe maneuvers since it ensures safety for an infinite time
horizon.

The 16-dimensional continuous state space is shown in
Tab. I. The agent is provided with the distance to the
goal area, as well as the state of the ego vehicle and the
surrounding vehicles, to reach a goal area on a highway
safely. We consider the relative velocity and longitudinal
distance of six surrounding vehicles in a sensing range of
150m, as illustrated in Fig. 2. Binary variables are introduced
below for further derivations:
• 1reach_goal = 1 when the ego vehicle reaches the goal

area.
• 1goal_lane = 1 when the ego vehicle drives in the lane

of the goal area.
• 1collision = 1 if the ego vehicle collides with other

vehicles.
• 1safe_violation = 1 if the ego vehicle violates the safe

distance to the leading vehicle or during a lane change
to the following vehicle.

We terminate an episode if the time horizon of the current
traffic scenario is reached, the goal area is reached, or the ego
vehicle collides with another vehicle. The reward function is
defined as

r = rreach_goal + rgoal_lane + rcloser + rcrash + rsafe_dist, (1)

where each term is further specified as

rreach_goal = 100 · 1reach_goal (2a)
rgoal_lane = 5 · 1goal_lane (2b)
rcloser = dlong(t− 1)− dlong(t) (2c)
rcrash = −100 · 1collision (2d)

rsafe_dist = −10 · (
dsafe

dij
− 1) · 1safe_violation. (2e)

The sparse rewards rreach_goal and rcrash encourage goal-
reaching or collision avoidance behaviors. Additionally, the
positive rewards rgoal_lane and rcloser are provided if the ego
vehicle gets closer to the goal area in a lateral or longitudinal
direction. The penalty rsafe_dist encourages the agent to keep
a safe distance. The safe distance [17] between two vehicles
is calculated by

dsafe =
1

2amax
(v2
f − v2

l) + vf treact, (3)

where vl and vf are the the leading and following vehicles’
current velocity, respectively, treact = 0.32 s is the reaction
time and amax = 11.5m/s2 is the maximum deceleration of
the vehicles. The value for the reaction time is taken from
[17]. The maximum deceleration is based on common values
for midsize cars like the BMW 320i [18].

C. Safety Layer

To check whether a high-level action might result in a col-
lision, we compute the future occupancy of the ego vehicle
and that of other traffic participants. If both occupancy sets
do not intersect for all consecutive time intervals within a
predefined time horizon and if the ego vehicle reaches an
invariably safe set [19], a collision is impossible. Figure 3
shows an example of a traffic situation with trajectories and
occupancies of two surrounding vehicles. If the occupancy of
the ego vehicle intersects with the obstacles’ occupancy at a
certain time step, e.g., as shown in Fig. 3 c), the correspond-
ing high-level action is regarded as unsafe. The occupancies
of the surrounding traffic participants are obtained by using
our tool SPOT [20]. SPOT considers the physical limits of
surrounding traffic participants and constraints implied by
traffic rules, e.g., vehicles are not allowed to drive backward
on a highway.

The occupancy of the ego vehicle from high-level actions
is obtained by a motion planner and the road network
structure. For the go-straight action, the ego vehicle follows
the center of its current lane. For lane-changing actions, we
assume a duration of 2 s. The precise movement is obtained
by a sampling-based trajectory planner [21], which requires
the total time ttotal, the final velocity of the trajectory
vfinal, and the lateral deviation from the given reference path
dlat_ref . The intervals from which our planner samples are
defined as
• ttotal ∈ [0.2 s, tmax],
• vfinal ∈ [vmin,max

(
vmin, vdesired + 0.25 tmaxamax

)
],

where vmin = max
(
0m/s, vdesired−0.125 tmaxamax

)
,

• dlat_ref ∈ [−2m, 2m].

Fig. 3. Example situation for safety verification using set-based prediction
[20] and sampling-based trajectory planning [21] with two traffic partic-
ipants for three time steps. Blue polygons are the predicted occupancies
of the surrounding vehicles at specified times. Green lines are the feasible
trajectories of the ego vehicle and the gray lines are the appended braking
trajectories. The red rectangles symbolize the occupancies of the ego vehicle
at the specified time steps.

The desired velocity vdesired is defined by the mean velocity
necessary for reaching the goal from the initial state in the
considered dataset. The planning horizon tmax is set to 2.7 s
for go-straight and lane-changing trajectories.

We first exclude meaningless high-level actions that would
result in leaving the road, e.g., we exclude changing to the
left when driving in the leftmost lane. For each combination
of the sampling parameters, a trajectory is generated and
checked with the vehicle’s kinematic constraints. An optimal
trajectory is selected according to the cost function in [21]
after the exclusion of kinematically infeasible trajectories.
Note that the proposed method can be extended to a contin-
uous action space by converting a sequence of continuous
actions to trajectories. We append a braking trajectory with
maximum deceleration to the sampled trajectory (cf. Fig. 3).
The ego vehicle never follows this braking trajectory but it is
utilized to check if the vehicle is in an invariably safe state
at the end of its driving trajectory.

If none of the calculated trajectories are considered safe,
the fail-safe plan is executed. We utilize the safe ACC
from [16] as a fail-safe planner to ensure safety beyond the
planning horizon.

D. Selection of the Reinforcement Learning Algorithm

Before integrating the action masking in our policy model,
we select the RL algorithm for the goal-reaching task on
highways. We benchmark three state-of-the-art RL algo-
rithms with a discrete action space, namely deep Q-network
(DQN) [22], actor-critic with experience replay (ACER) [23],
and proximal policy optimization (PPO) [24]. DQN [22]
is a value-based method where the Q-value is represented
by a neural network. The optimal policy is derived from
the learned Q-value model. PPO [24] is a policy-gradient
method where the policy is represented by a neural network
and is directly sampled from the learned model. ACER
[23] combines the idea of policy gradient and value-based
methods.

We compare the performance of these three methods
without the safety layer to exclude its effect on the learning
algorithms. We perform a grid search for the hyperparameters
for these three methods and select the best hyperparameters
for each model. Table II shows that policies trained with PPO

TABLE II
RESULTS OF PRELIMINARY ALGORITHM COMPARISON

Parameter PPO ACER DQN

Reached goal frequency 93.5% 91.8% 89.7%
Elapsed training time 5.76h 6.41h 11.71h
Multiprocessing True True False

reached the goal most often on the test dataset and have the
shortest computation time. Based on the implementation in
OpenAI [25], PPO and ACER support multiprocessing to
decrease the training time, while the DQN algorithm does
not support parallelization. Therefore, we select PPO as our
learning algorithm.

To be able to differentiate the PPO objective function for
discrete action spaces, we apply the Gumbel noise from [26]
to the output of the policy network:

a(t) = argmax
ai(t)

[log(yi(st))− log(− log(ui))︸ ︷︷ ︸
Gumbel noise

], (4)

where log(yi(st)) is the output of the policy network corre-
sponding to action ai, and ui is a random variable sampled
from a uniform distribution ui ∼ U [0, 1]. We use log(yi(st))
as the output of the policy network instead of yi(st) because
we use a hyperbolic tangent as the activation function.

The optimization objective of PPO JPPO(θ) [24] is

JPPO(θ) = Êt
[
LC
t (θ)− vlL

VF
t (θ)

]
,with (5a)

LC
t (θ) = min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât) (5b)

LVF
t (θ) = (Vθ(st)− V targ

t)2, (5c)

where the probability ratio rt(θ) =
πθ(at|st)
πθold(at|st)

, πθold
is the old policy before the update, vl and ε are scalar
hyperparameters, Vθ is the estimated value function, and
V targ
t is the target value function collected through Monte

Carlo simulations. The operator clip() limits the first
argument to the range which is defined by the following
two arguments, and Êt[...] is the empirical mean over
a finite batch of samples. We denote by θ the trainable
parameters of the network. The main term of the objective
is the clipped objective LC

t (θ), which is easier to implement
than using the Kullback Leibler divergence while showing
stability comparable to trust-region-based methods. The
value loss LV Ft (θ) is necessary because parameters between
policy network and value function network are shared. The
advantage function Ât is estimated by a general advantage
estimator [27].

The gradient of the PPO objective JPPO(θ) is obtained
by differentiation with respect to the trainable parameters θ,
which is derived as in [27]:

∇θJPPO(θ) = Êt
[
∇θ log

(
πθ(at|st)

)
JPPO(θ)

]
, (6)

where ∇θ denotes the gradient with respect to the trainable
parameters.

E. Action Masking

The safety layer generates a mask for the action to restrict
the action space to the safe subspace. The safety mask mai

is a binary vector defined as

mai(t) =

{
1, if ai(t) is verified safe
0, otherwise.

(7)

When we insert the safety mask (7) in (4), we obtain

a(t) = argmax
ai(t)

[log(yi(st))mai(t) − log(− log(uimai(t)))]

= argmax
ai(t)∈Asafe

[
log(yi(st))− log(− log(ui))

]
, (8)

where Asafe is the set of actions which are verified as safe
by the safety layer. The second line of (8) is derived from
the fact that 0 − log(− log(0)) = −∞, i.e., unsafe actions
can never be selected by the argmax operator.

In the following, we show that masking does not affect the
PPO objective and its gradient. All variables in (5) associated
to masking are denoted by �m. First, we obtain the objective
with masking Jm

PPO(θ) based on (5a):

Jm
PPO(θ) = Êt

[
LC,m
t (θ)− vl L

VF
t (θ)

]
, (9)

where LC,m
t (θ) is the clipped objective, and LVF

t (θ) is
the value function loss (see (5c)). The masking of actions
does not alter the value function loss term LVF

t (θ) because
the value function describes the value of a specific state
independent of the actions. The clipped objective LC,m

t (θ)
is based on (5b) and is specified as

LC,m
t (θ) =min(rm

t (θ)Ât, clip(r
m
t (θ), 1− ε, 1 + ε)Ât)

(10)

where

rm
t (θ) =

πm
θ (at,mat |st)

πm
θold

(at,mat |st)
=

πm
θ (at|st)

πm
θold

(at|st)
. (11)

The policy values πm
θ and πm

θold
for safe actions are not

modified as the masking yields that at is always a safe action.
Therefore, rm

t (θ) stays the same as the initial (see rt). The
estimated advantage Ât depends on the value function and
is not affected by the masking. Thus, the action masking
does not affect the clipped objective LC,m

t (θ) and the PPO
objective Jm

PPO(θ). Consequently, the gradient ∇θJm
PPO(θ)

also remains the same as defined in (6).

IV. EXPERIMENTS

We demonstrate the proposed approach using a real-world
highway dataset. To show the safety layer’s effect on an RL
agent, we train two groups of agents with and without the
safety layer, respectively. Furthermore, we investigate the
impact of different neural network structures. We evaluate
the agents’ performance by comparing their learning curves
during training as well as the collision rate and goal-reaching
rate on a test set.

A. Simulation Environment
a) Dataset: We utilize the highD dataset [28] to train

and test the proposed approach. This dataset includes real
traffic scenarios of German highways from six different
locations with three-lane and two-lane roads. The dataset
includes 5.1 h of recorded traffic with a time step size of
0.04 s. The scenarios’ duration ranges from 12.45 s to 12.67 s
in the 95% confidence interval. The scenarios’ duration is
similar because the observed road length is the same for
the six locations, and the scenarios were generated from the
original data. We generated tasks by removing a vehicle from
the recorded data and using its start and the final state as the
initial state and the center of the goal region, respectively.
In particular, the goal area is the occupancy of the removed
vehicle at its final position. The goal is reached if the ego
vehicle intersects with the goal area. We randomly split the
dataset into 80% training set and 20% test set.

b) Policy Network: We conducted experiments with
two different types of policy networks, namely, a multi-
layer perceptron (MLP) network [29] and a long short-
term memory (LSTM) network [30]. The hyperparameters
of the policy networks are determined using a grid search.
The hyperparameter search compares the convergence and
final rewards on the training set. The MLP network consists
of three hidden layers, with 128 neurons in each layer.
We choose an LSTM network as the second type because
the task is time-sequential and recurrent networks are well
suited to solve sequential tasks. However, training an MLP
network is more stable as it converges for a larger variety
of hyperparameters. The LSTM network consists of 128
neurons, and layer normalization is applied. Furthermore,
we compute the running mean and standard deviation of the
states to normalize the state space for both policy networks.

c) Training Mode: We conducted the training in two
modes:
• Safe mode: we train the agent as proposed in Fig. 1.
• Non-safe mode: we exclude the safety layer.

In both modes, we restrict the action space to the correspond-
ing high-level lane change action in case a lane change is
currently conducted. Thereby, we ensure that a lane change
cannot be prematurely aborted. A lane change is considered
finished when the orientation of the ego vehicle differs at
most by 0.2 rad from the orientation of the target lane, and
the center of the ego vehicle is closer than one-fourth of the
lane width to the centerline of the target lane.

B. Results
We trained the MLP and LSTM agents in safe and non-

safe mode, resulting in four different agents. We compared
these agents with respect to training performance, safety
during training, and testing performance. Furthermore, we
evaluated the effect of the safety layer on the agent using
the test dataset.

a) Training Performance: Figure 4(a) shows the reward
curves, which reveals that training in safe mode leads to
faster convergence. Notably, training the agents in the non-
safe mode required three million training steps; in contrast,

0 0.2 0.4 0.6 0.8 1

Training steps in million

−2000

−1500

−1000

−500

0

500

1000

1500

2000

R
ew

ar
d

Non-safe LSTM Non-safe MLP Safe LSTM Safe MLP

0 0.2 0.4 0.6 0.8 1

Training steps in million

0

500

1000

1500

2000

d s
af

e
vi

ol
at

io
n

du
ra

ti
on

[s
]

(a) (b)

Fig. 4. Training results: (a) Reward curves for trained agents, (b) Safe
distance violation for trained agents

one million steps were enough to train the agents in safe
mode. The high negative rewards for non-safe mode agents
originate from scenarios where the agent maintains a safe
distance to the leading vehicle or changes lane close to the
following vehicle on the target lane. The penalty for a safe
distance violation with respect to surrounding vehicles is
computed using (2e). Therefore, the penalty reaches high
values if the agent almost collides with a traffic participant
ahead.

Another indicator of how well the agents are exploring
the action space is the number of lane changes per traffic
scenario. Initially, the lane change frequency for training
is about one lane change per traffic scenario for the safe
agents and five for non-safe agents. The lower lane change
frequency for the safe agents at the beginning of the training
is due to the restriction of the action space. During training,
the lane change frequency converges to about 0.2 lane
changes per scenario, which means that the agent performs
one lane change in every five scenarios with an average
scenario duration of 12 s. This convergence is significantly
faster for the agents trained in safe mode. Note that the
original data in the highD dataset has 0.1 lane changes per
scenario, potentially caused by the low traffic density. Thus,
lane change behaviors are not necessary in most scenarios.

Comparing the network types on the training set, the
performance of MLP agents is almost identical to the
corresponding LSTM agents. In particular, for the non-
safe agents, the training converges marginally faster for the
LSTM agent than for the MLP agent. For safe agents, there
exists no visible difference in training convergence. For all
agents, utilizing an MLP network leads to reaching the goal
marginally more often.

b) Safety during Training: We have to differentiate
between collisions for which the ego vehicle is responsible
and collisions that occur because no interaction between
traffic participants was considered due to prerecorded data.
We exclude scenarios with collisions not caused by the ego
vehicle from our evaluation, e.g., another vehicle colliding
with the rear of the ego vehicle. Furthermore, the ego vehicle
considers the safe distance to the leading vehicle and the
following vehicle after a lane change.

During training, the non-safe agents caused collisions with

TABLE III
FINAL EPISODE STATUS ON THE TEST DATASET

Agent Collision Reached goal

Non-safe LSTM 1.3% 95.0%
Non-safe MLP 0.8% 97.1%
Safe LSTM 0.0% 87.5%
Safe MLP 0.0% 75.4%

0 20 40 60 80 100
Percentile

20

30

40

50

M
ea

n
ve

lo
ci

ti
es

[m
/s

] Non-safe LSTM
Non-safe MLP
Safe LSTM
Safe MLP
Ground truth

Fig. 5. Percentile curve for mean velocities on test scenarios

other traffic participants, while the safe agents did not cause
any collisions. Moreover, the non-safe agents reached the
goal more frequently than safe agents. However, the safe
agents reach the goal in about 80% of the scenarios in the
last 500 000 training steps.

We measure safety using the duration for which the agents
violated the safe distance. Figure 4(b) shows the duration of
safe distance violations during training. The non-safe agents
violate the safe distance while the safe agents never violate
the safe distance.

c) Testing Performance: Table III summarizes the re-
sults of testing the agents. The test dataset’s performance is
similar to the performance of the training dataset, indicating
that the agents are not overfitted. In the test set, the non-safe
agents reach the goal more frequently than the safe agents.
Moreover, the non-safe agents cause collisions in contrast to
the safe agents. The performance of both policy networks is
very similar in general. Based on the frequency of reaching
the goal, the safe LSTM agent performs better than the safe
MLP agent. This performance might be due to the ability
of LSTM to store temporal features, e.g., acceleration of
surrounding vehicles, providing additional information for
planning a safe motion.

Furthermore, to show that the safe models do not drive
too conservatively and impede the traffic flow, we evaluated
the behavior of the agents against the original human driver
trajectory from which the initial state and goal area of the
task were generated. In general, the trained agents show a
behavior similar to the original driver. Figure 5 depicts the
percentile curve of the mean velocity. The mean velocities for
the original human driver and all trained agents are almost
identical. By comparing the safe distance violations to the
leading vehicle, we observe that the original driver violated
the safe distance, and the non-safe agents violated the safe
distance even more. In contrast, safe agents did not violate
any safe distances during testing.

d) Effect of Safety Layer on Learning: We tested the
agents trained in safe mode also in non-safe mode to detect
if training with the safety layer leads to better-performing
agents. The comparison of the agents’ performance in non-
safe mode shows that the agents trained in safe mode perform
worse than the agents trained in non-safe mode. The goal-
reaching rate is 25% less for the safe LSTM and 62%
less for the safe MLP agent than for agents trained in
non-safe mode. Moreover, the agents trained in safe mode
collided in more test scenarios (23% for LSTM and 27%
for MLP). In contrast, the agents trained in non-safe mode
caused collisions in about 1% of the test scenarios. This
performance is because the agents trained in safe mode
did not experience dangerous situations with high penalties
during training and cannot solve them in the non-safe test
setting. Thus, the safety layer is necessary during deployment
to ensure safety.

If training is conducted in a simulation setting and not in
the real world, safety guarantees for real-world deployment
would often suffice. Therefore, we tested the non-safe agents
in safe mode and compared them to the agents trained and
tested in safe mode. The performance of agents trained in
non-safe mode and the safe LSTM agent on the test set
is almost identical because all the agents reached the goal
in 87% of the scenarios. The safe MLP agent performs
marginally worse as it only reaches the goal in 75% of
the scenarios. Due to the safety layer, none of the agents
cause collisions in the test set. The result shows that the
agents can be trained in non-safe mode and deployed in safe
mode without causing performance loss and safety reduction.
However, training in safe mode converges faster, which is a
reason for training in safe mode.

C. Discussion

Although the proposed approach guarantees safety in all
scenarios, the agent drives more cautiously than normal
drivers, especially in dense traffic. In such scenarios, the
predicted occupancy leads to a comparably small free space
for the agent to drive. In this type of scenario, the interaction
between traffic participants is essential. A traffic simulator
can predict interactions between the agent and traffic partic-
ipants to a certain degree.

Moreover, accurate modeling of physical parameters is
crucial for set-based predictions. Too large physical bounds
lead to significant over-approximation errors, limiting model
applicability. Simultaneously, too small physical bounds
cause inaccurate prediction that does not enclose the actual
behavior, leading to unsafe behaviors. To check whether
the modeled physical parameters over-approximate the real
behavior, one can perform a reachset conformance test as
shown for a pedestrian model in [31].

Due to the computational overhead for determining safe
actions, the computation time for training safe agents is
16 times higher than for the non-safe agents. The average
training step for safe agents takes 5.46 s and 0.112 s for
non-safe agents. This significant increase in the training time
is mainly because instead of one trajectory for the selected

action, all possible trajectories are generated and compared to
the predicted occupancies of traffic participants. Optimizing
the current implementation is necessary to benefit from the
faster convergence of safe agents in order to safeguard
machine learning in real vehicles.

V. CONCLUSIONS

In this paper, we present a framework for safeguarding
an RL agent using a safety layer to verify whether the
proposed actions are safe and provide a provably safe fail-
safe controller. Safe actions are determined by set-based
prediction, which considers all possible motions of traffic
participants. We evaluated the proposed approach using a
real-world highway dataset. The result of the evaluation
shows that the trained policy does not cause any collisions.
Furthermore, the safe agent’s ability to reach the goal region
is comparable to that of non-safe agents. The proposed
approach only requires an additional navigation system to
realize basic motion planning on highways.

ACKNOWLEDGMENT

The authors gratefully acknowledge the partial financial
support of this work by the German Research Foundation
Grant AL 1185/3-2 and the research training group CON-
VEY funded by the German Research Foundation under
grant GRK 2428.

REFERENCES

[1] B. Lütjens, M. Everett, and J. P. How, “Safe reinforcement learning
with model uncertainty estimates,” in IEEE International Conference
on Robotics and Automation (ICRA), 2019, pp. 8662–8668.

[2] D. Isele, R. Rahimi, A. Cosgun, K. Subramanian, and K. Fujimura,
“Navigating occluded intersections with autonomous vehicles using
deep reinforcement learning,” in IEEE International Conference on
Robotics and Automation (ICRA), 2018, pp. 2034–2039.

[3] M. Bouton, A. Nakhaei, K. Fujimura, and M. J. Kochenderfer,
“Safe reinforcement learning with scene decomposition for navigating
complex urban environments,” in IEEE Intelligent Vehicles Symposium
(IV), 2019, pp. 1469–1476.

[4] N. Fulton and A. Platzer, “Verifiably safe off-model reinforcement
learning,” in International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, 2019, pp. 413–430.

[5] S. Pathak, L. Pulina, and A. Tacchella, “Verification and repair of
control policies for safe reinforcement learning,” Applied Intelligence,
vol. 48, no. 4, pp. 886–908, 2018.

[6] B. Mirchevska, C. Pek, M. Werling, M. Althoff, and J. Boedecker,
“High-level decision making for safe and reasonable autonomous
lane changing using reinforcement learning,” in IEEE International
Conference on Intelligent Transportation Systems (ITSC), 2018, pp.
2156–2162.

[7] D. Isele, A. Nakhaei, and K. Fujimura, “Safe reinforcement learning on
autonomous vehicles,” in IEEE International Conference on Intelligent
Robots and Systems (IROS), 2018, pp. 1–6.

[8] G. R. Mason, R. C. Calinescu, D. Kudenko, and A. Banks, “Assured
reinforcement learning for safety-critical applications,” in Doctoral
Consortium at the 10th International Conference on Agents and
Artificial Intelligence, 2017.

[9] A. Akametalu, S. Kaynama, J. Fisac, M. Zeilinger, J. Gillula, and
C. Tomlin, “Reachability-based safe learning with Gaussian pro-
cesses,” in IEEE Conference on Decision and Control, 2015, pp. 1424–
1431.

[10] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. Gillula,
and C. J. Tomlin, “A general safety framework for learning-based
control in uncertain robotic systems,” IEEE Transactions on Automatic
Control, vol. 64, no. 7, pp. 2737–2752, 2018.

[11] J. García and F. Fernández, “A comprehensive survey on safe rein-
forcement learning,” Journal of Machine Learning Research, vol. 16,
no. 42, pp. 1437–1480, 2015.

[12] F. Altché and A. de La Fortelle, “An LSTM network for highway
trajectory prediction,” in IEEE International Conference on Intelligent
Transportation Systems (ITSC), 2017, pp. 353–359.

[13] T. Gindele, S. Brechtel, and R. Dillmann, “Learning driver behavior
models from traffic observations for decision making and planning,”
IEEE Intelligent Transportation Systems Magazine, vol. 7, no. 1, pp.
69–79, 2015.

[14] T. Fraichard and H. Asama, “Inevitable collision states a step towards
safer robots?” Advanced Robotics, vol. 18, no. 10, pp. 1001–1024,
2004.

[15] M. Althoff and J. M. Dolan, “Online verification of automated road
vehicles using reachability analysis,” IEEE Transactions on Robotics,
vol. 30, no. 4, pp. 903–918, 2014.

[16] M. Althoff, S. Maierhofer, and C. Pek, “Provably-correct and com-
fortable adaptive cruise control,” IEEE Transactions on Intelligent
Vehicles, 2020.

[17] M. Althoff and R. Lösch, “Can automated road vehicles harmonize
with traffic flow while guaranteeing a safe distance?” in IEEE In-
ternational Conference on Intelligent Transportation Systems (ITSC),
2016, pp. 485–491.

[18] M. Althoff, “CommonRoad: Vehicle models.” [Online]. Available:
https://commonroad.in.tum.de/

[19] C. Pek and M. Althoff, “Efficient computation of invariably safe states
for motion planning of self-driving vehicles,” in Proc. of the IEEE Int.
Conf. on Intelligent Robots and Systems, 2018, pp. 3523 – 3530.

[20] M. Koschi and M. Althoff, “SPOT: A tool for set-based prediction
of traffic participants,” in IEEE Intelligent Vehicles Symposium (IV),
2017, pp. 1686–1693.

[21] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory
generation for dynamic street scenarios in a Frenét frame,” in IEEE
International Conference on Robotics and Automation (ICRA), 2010,
pp. 987–993.

[22] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing Atari with deep reinforce-
ment learning,” in Twenty-seventh Conference on Neural Information
Processing Systems – Workshop on Deep Learning, 2013.

[23] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu, and
N. de Freitas, “Sample efficient actor-critic with experience replay,” in
International Conference on Learning Representations (ICLR), 2017.

[24] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[25] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, Y. Wu, and P. Zhokhov, “OpenAI baselines,”
2017. [Online]. Available: https://github.com/openai/baselines

[26] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
Gumbel-softmax,” in International Conference on Learning Represen-
tations (ICLR), 2016.

[27] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estima-
tion,” in 4th International Conference on Learning Representations,
ICLR, 2016.

[28] R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein, “The highD
dataset: A drone dataset of naturalistic vehicle trajectories on German
highways for validation of highly automated driving systems,” in
IEEE International Conference on Intelligent Transportation Systems
(ITSC), 2018, pp. 2118–2125.

[29] C. M. Bishop, Pattern Recognition and Machine Learning, 1st ed.
Springer, 2007.

[30] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. Cam-
bridge, Massachusetts and London, England: MIT Press, 2016.

[31] S. B. Liu, H. Roehm, C. Heinzemann, I. Lütkebohle, J. Oehlerking,
and M. Althoff, “Provably safe motion of mobile robots in human
environments,” in Proc. of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, Sep 2017.

