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Abstract— Avoiding critical situations is a prerequisite for
Advanced Driver Assistant Systems and Autonomous Driving
to decrease the number of total hazards and fatal collisions.
As a guide for safe motion behavior and for avoiding critical
situations in complex scenarios with several interacting traffic
participants, an appropriate risk measurement is necessary. It
should incorporate system-inherent uncertainties like present
in environment recognition, behavior predictions and physical
model assumptions. In this paper, we introduce a time-course-
aware incremental risk model for motion planning which
predicts state distributions along forecasted trajectories and
regards their magnitude evolution by the Survival Theory and
their shape adaptation by removing collided distribution parts
while preserving statistical moments. Our approach is able to
reproduce motion risk probability costs as found by particle-
based Monte-Carlo (MC) simulations in a range of scenarios,
at much lower computational costs.

I. INTRODUCTION

The ambitious zero-accident target of institutions and car
makers is a driving force for continued research in the area
of risk estimation for intelligent Advanced Driver Assistant
Systems (ADAS) and Autonomous Driving (AD). To ap-
proach that target and to obtain acceptance of driver-less
vehicles, such systems have to deal with all kinds of complex
traffic scenarios and find those paths and maneuvers which
are less likely to end up in crashes. Corresponding motion
planners should consider all kinds of risks like crashes or loss
of control caused by street infrastructure and car dynamics.
This can be done by modeling these different risk types with
a holistic risk approach, so that no unreasonable behavior
occurs.

With this purpose in mind, the avoidance of collisions
between two participants is a challenging problem. Imper-
fect sensors and measurements as well as uncertain motion
behavior of other traffic participants like vehicles or pedes-
trians prohibit the calculation of a single deterministic future
evolution of the scene. To handle an uncertain future, a
holistic risk concept has to regard several future outcomes
together with their probability and their severity [1]. In many
applications [2]–[5], the formulation of a risk which consists
of a probability model for critical events and mostly a simple
constant severity model [6], works as a safety measure and
helps controllers or human planner to avoid or mitigate
unsafe future scenarios.

1Fabian Müller is with the Control Methods and Robotics Lab,
Technical University of Darmstadt, 64283 Darmstadt, Germany
fabian.mueller@rmr.tu-darmstadt.de

2Julian Eggert is with the Honda Research Institute (HRI)
Europe, Carl-Legien-Str. 30, 63073 Offenbach/Main, Germany
julian.eggert@honda-ri.de

For capturing uncertainties and their future evolution dur-
ing prediction, in addition to sampling approaches Kalman
filters [7] (e.g. for tracking positions, velocities or orienta-
tions) and multidimensional Gaussian state distribution [2]
are commonly used. Transition models for all relevant traffic
participants provide future state distributions, and collision
probabilities can be gained by evaluation of the distribution
w.r.t. e.g. the geometric overlap of the shapes of the involved
entities, given their predicted states. Depending on the de-
tails of the form and overlap model assumptions, different
methods are available to calculate the overlap probability
of circularly shaped [4], [8], non-convex polygonal-shaped
[2] and point approximated entities for far distant scenarios
[9]. For more complex shaped entity overlap probability
calculation Monte Carlo (MC) simulations are also used, see
e.g. [10].

From the time-course of future overlap probabilities or
predicted risks, a single integral risk value representative for
the current time t needs to be calculated. For this purpose, in
[8], [11] and [12], this integral risk is extracted from the max-
imum of the predicted risks, neglecting all other contributions
which get invisible to a planner. Other approaches take the
integral of the risk along the trajectory over time. In [4],
the authors use a flow calculation technique to estimate the
cumulative risk of entering a circular safety zone around two
ships. The direction of the probability density flow through
the boundaries of a collision region is considered in [13].
Unfortunately, these approaches are usually not sensitive to
the prediction time-course of the predicted risk. To address
this, the Survival Theory, described in [14], provides a
probabilistic model for the time-course-sensitive probability
reduction along the prediction time. This was used in [15],
[16] for the construction of a simple integral risk-based
motion planner capable of handling a range of parallel
lane scenarios with multiple vehicles based on incremental
utility, risk and comfort terms. Other works incorporate
the prediction time-course by the incremental extraction of
already collided parts of a distribution. [17] represents future
states by enlarging circles where collided areas are removed
for the collision probability calculation. In another approach,
a bunch of possible trajectories is propagated into the future
by an exhaustive MC simulation, and the collision probability
is calculated by the proportion of collided trajectories [6].
In [18], the Gaussian state distributions are propagated and
truncated by linear boundary constraints arising from fixed
obstacles. In this paper, we present a time-course sensitive
many-entity collision probability model for based on an
analytic approximation of the distribution along predicted
trajectories to calculate time-incremental risks. For this, we
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connect the survival theory [14], which predicts the proba-
bility of reaching future time points, with an algorithm for
the collision sensitive analytic shape adaptation of Gaussian
distribution functions for predicted states by given state
transitions for all future time points.

II. PROBLEM STATEMENT

We consider a driving scene at time t, involving a vehicle
i that interacts with other traffic participants j. The task
is to estimate the collision risk, and with it, the collision
probability, of i with any other vehicle for some future
time period [t, t + smax]. Since there are different kinds of
uncertainties involved in the future development of the scene,
we describe the current and future states of all entities by
probability distribution functions (pdf’s). The uncertainty
in the states originates from several sources. On one side,
measurement and estimation uncertainties of the current time
t initial states like positions, orientations and velocities. On
the other side, prediction and modeling errors arise from
behavioral uncertainties, the propagation of measurement
uncertainties as well as the mismatch with reality of the
models that are used to predict the future states of all traffic
participants.

The estimation of the collision risk during any intermedi-
ate future time t+s, with s ∈ [0, smax], will certainly depend
on the previous prediction time course during [t, t+s[. This is
what we call the time-course sensitivity (tcs) of the predicted
risk. This should become clear considering e.g. the case that
a high collision probability in the distant future t + s can
only occur if, during the preceding time [t, t+s[, the overall
predicted collision risk was low, since otherwise the vehicle
i would not have “survived” until t + s in the first place.
Or, other way round, if there is a high predicted collision
probability at t+s, then the collision probability will be low
afterwards for ]t + s, t + smax], because the probability that
the vehicle will have survived the collision at t+ s is low.

We now assume that for the prediction of states during
[t, t+ smax] we have a propagation model of the entity pdf’s
for the collision-free condition. In addition, we assume that
at any time step, given the predicted states, we can check
whether a collision occurs or not. The question is then how
to estimate the history-dependent collision risk function for
the predicted time interval.

Inevitably, if we are able to estimate the full sequence
of pdf’s for the prediction time, which incorporates the
influence of the collisions at any time step, then we would
have reached our goal. The task therefore breaks down into
the estimation of a realistic and efficient model of collision-
sensitive future state pdf propagation. This task might be
separated again into two subtasks: One is to calculate from
pdf’s the probability magnitude (i.e., a scalar) that a collision
occurs, and propagate this further into the future. The second
is to estimate the influence that the collisions might have on
the form of the state pdf’s, considering in detail which states
lead to collisions and which continue to survive for future
consideration.

Psurv,i(t
′′|t)

Pcoll,ij(t
′′; ∆t)

Ptcscoll,ij(t
′′|t,∆t)

Pintcoll,i(t) t′′t

Fig. 1: Survival probability curve Psurv,i(t
′′|t), time-course sensi-

tive prob. curve Ptcscoll,ij(t
′′|t,∆t) and integral collision prob. area

Pintcoll,i(t) for a given exemplary instantaneous collision event prob.
Pcoll,ij(t

′′; ∆t) curve as function of predicted time t′′.

The first subtask relates to the problem of estimating the
survival probability of vehicle i over [t, t + smax]. This has
been focus of previous work on general risk estimation using
survival theory, see e.g. [11]. We will sketch the main idea of
the survival theory relevant for this paper in the next section.
The second subtask, the time sensitive adaptation of the pdf
shape, is the main target of this paper, and will be introduced
from section IV-C on. The two subtasks influence each other
in the sense that both are necessary for a correct handling of
collision risks in specific traffic scenes.

III. PREVIOUS WORK: SURVIVAL THEORY

Let us denote the predicted probability that the vehicle i
survives at a point in time t′ > t, given that we start our
prediction at t, with the survival probability Psurv,i(t

′|t),
with starting condition Psurv,i(t|t) = 1. What is then the
probability Psurv,i(t

′′|t) that vehicle i will still survive at a
later moment in time t′′? This is in essence what survival
theory is about. From probability considerations we easily
see that

Psurv,i(t
′′|t) = Psurv,i(t

′′|t′)Psurv,i(t
′|t) (1)

and so on. If we split the interval [t, t′′] into ever smaller
subintervals with corresponding survival probabilities Psurv,i,
we see that Psurv,i(t

′′|t) essentially depends on all time
steps within [t, t′′], i.e., it depends on the entire prediction
time-course from t to t′′. Written as Psurv,i(t + s|t), we
get a survival function that starts at 1 for s = 0 and is
monotonously decreasing for ever increasing s, i.e., it can
never grow. In addition, for larger (collision) risks, it will
decrease faster. So how can we calculate Psurv,i?

Starting from discrete time intervals of size ∆t, and look-
ing exclusively at collision events for the survival calculation
(other risks can be incorporated without loss of generality
into these considerations, see e.g. [11] for a general risk
theory based on survival probability), we now introduce
Pcoll,ij(t

′; ∆t) as the collision probability during the time
interval [t′, t′ + ∆t]. We call this the instantaneous event/
collision probability, since it will depend only on the states
around t′ and not on the time course [t, t′] since prediction
start, in the sense that it will be zero if the states of the
entities at t′ are such that no collision takes place. We
then have that for the ego-car (car i), assuming statistical



independence of the events, the total probability of not
colliding with any other entity during the next short time
interval [t, t+ ∆t] is given by

Pnc,i(t; ∆t) =
∏
j 6=i

[1− Pcoll,ij(t; ∆t)] (2)

and consequently the probability of colliding by

Pcoll,i(t; ∆t) = 1− Pnc,i(t; ∆t) (3)

The probability that vehicle i will not be engaged in any
of the events in the next time interval, i.e., the probability
that the vehicle survives, can be expressed by

Psurv,i(t+ ∆t|t) = Pnc,i(t; ∆t)Psurv,i(t|t) (4)
Psurv,i(t+ 2∆t|t) = Pnc,i(t+ ∆t; ∆t)Psurv,i(t+ ∆t|t)
Psurv,i(t+ n∆t|t) = . . .

(starting with Psurv,i(t|t) = 1) so that we get

Psurv,i(t+n∆t|t) =

n−1∏
k=0

Pnc,i(t+k∆t; ∆t)Psurv,i(t|t) . (5)

For small time intervals ∆t→ 0 we can set

Pcoll,ij(t; ∆t) ≈ d

dt
Pcoll,ij(t; ∆t) ∆t := τ−1

coll,ij(t) ∆t (6)

with the collision event rate τ−1
coll,ij (number of collision

events between entity i and j per time unit), which then
leads to the total entity i specific event rate

τ−1
coll,i(t) =

∑
j 6=i

τ−1
coll,ij(t) (7)

and, in continuous time, to the survival function

Psurv,i(t
′′|t) = exp

{
−
∫ t′′

t

τ−1
coll,i(t

′) dt′
}

. (8)

These last two equations can be generalized to arbitrary other
risks k quantifiable via risk event rates τ−1

k , with all risk
event contributions adding linearly as in eq. (7).

With the survival function (either calculated discretely
eq. (5) or continuously eq. (8)), it becomes easy to calculate
the real, time-course sensitive (tcs) predicted risk for each
event contribution, in our case e.g. the collision with j,
according to

Ptcscoll,ij(t
′′|t,∆t) = Pcoll,ij(t

′′; ∆t)Psurv,i(t
′′|t) , (9)

meaning that it is given by the probability that, starting at
time t, the vehicle i survives potential collisions with all
entities until t′′, to then get involved in a collision with entity
j during the interval of size ∆t around t′′. The relationship
between the instantaneous probability Pcoll,ij , the survival
probability Psurv,i and the time-course sensitive probability
Ptcscoll,ij is exemplarily depicted in Fig. 1. A beneficial side
effect is that we can use eq. (9) to calculate the integral
probabilities and risk contributions (see e.g. [15]) involved in
a planned, predicted ego-vehicle trajectory, simply by adding

1
pr,i(ri)

pr,j(rj)

Ωi

Ωj

2 pd,ij(dij)

Ωij

3

N(d|d̂, σ2
d)

N(dij |d̂coll, σd,coll)

4

N(dij |d̂coll,Σd,coll)

5

N(dij |d̂nc,Σd,nc)

6

pr,trunc,i(ri)

pr,trunc,j(rj)

Fig. 2: State probability truncation approach based on Gaussian
distributions. See text section IV for details. The approach starts at
the upper left corner (point 1), where the current predicted vehicle
pdf’s and orientation are given. The schema of the truncation
process and the back inference on the truncated vehicle state pdf’s
is indicated by points 1-6.

over all the event contributions (e.g. all other vehicles which
might collide) future time,

Pintcoll,i(t) :=
∑
n

∑
j

Ptcscoll,ij(t+ n∆t|t,∆t) , (10)

This is the total probability (for ∆t→ 0 it can be shown
that Pintcoll,i(t) ∈ [0, 1]) that vehicle i will get involved in a
collision with any other entity at some point in the future.

Summarizing, the survival theory allows to estimate the
probability magnitude of certain risks over future time, given
a predicted scene time-course. In the next sections, we will
determine the instantaneous collision probability value and
we will concentrate on the estimation of the form of the
future state pdf’s. The connection between the two is given
by the instantaneous collision probability eq. (3), which is
fed from the state pdf’s into the survival calculation.

IV. COLLISION PROBABILITY CALCULATION APPROACH

A. 2-Entity Instantaneous Overlap Probability

We assume collision entities (in our case, vehicles) with
geometries which can be described by 2D shape polygons
Ωj(rj , θj) anchored at specific 2D positions rj and with
orientations θj . We consider a collision of 2 entities to occur
when their respective polygons touch or overlap.

The positions and orientations can be uncertain so that
the overall location of a vehicle would be described by
a probability distribution function (pdf) over 2D position
and orientation. In this paper, and since it is the more
relevant parameter (the vehicle orientation is often tangential
to the vehicle trajectory), we consider the orientations to be
deterministic and only the positions to be uncertain, with the
positions described by Gaussian pdf’s,

N (r|r̂,Σ) :=
1

2π
√

det[Σr]
exp

{
−1

2
[r− r̂]T Σ−1

r [r− r̂]

}
.

(11)
with mean r̂ and covariance matrix Σr so that the position
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Fig. 3: Schema for determining the geometrical convolution
(Minkowski difference) of two entities by placing the geometry
of one entity around the corners of the other entity and taking
the centers as boundary for the polygonal-shaped geometrical
convolution area Ωij where the two entities would collide.

probabilities obey

pr,j(rj) := N (rj |r̂j ,Σr,j) . (12)

In 2 dimensions, a collision probability between any 2
entities i, j can then be calculated by moving into relative
coordinates dij := ri − rj , e.g. in this case of the vehicle
i. This results in a pdf for the 2-dimensional distance vector
dij .

pd,ij(dij) := N (dij |d̂ij ,Σd,ij) (13)

with

d̂ij = r̂i − r̂j (14)
Σd,ij = Σr,i + Σr,j .

The distance vectors dij , for which the two vehicles
collide, can be calculated by a geometrical convolution
(Minkowski difference) of the two polygons according to
Ωij := Ωi × Ωj , with boundary polyline dΩij . For this
purpose, the vehicle j geometry is kept fixed while the
vehicle i geometry is repeatedly placed around it in a way
that their boundaries just touch each other. Any area covered
by the position difference dij where Ωj overlaps with Ωi

then results in the hull Ωij . For the case of two rectangles as
Ωi and Ωj , the hull results in an octagon, and generally, it
is convex if the shape polygons are also convex (see Fig. 3).
All points dij inside of this collision area Ωij correspond
to collision states, whereas all points outside are safe states.
We then have that the mass within the collision area

Pov,ij :=

∫∫
Ωij

pd,ij(dij) ddij (15)

gives us the overall probability for the 2 involved entities i
and j to overlap, and, correspondingly, Pnonov,ij := 1−Pov,ij
the probability that they will not overlap.

B. Instantaneous and Differential Collision Probability

We denote both Pov,ij and Pnonov,ij as probabilities be-
cause they are properly bounded to [0, 1]. However, the
interpretation of these quantities as “collision” probabilities
is problematic: The probability calculated in such a way are
valid for any time instant t, independently of an observation
time interval length, i.e., they do not scale with time.
However collision probabilities arise due to a process in time

(the collision process), and should therefore depend on the
observation interval ∆t, as stated in (6).

This becomes clear observing that the relevant quantity
for calculating the collision probability is not the total
probability within the collision area (15), but instead the
amount of probability that moves into the collision area over
time when the scenario evolves, given by the probability
density flow into the collision area, i.e., the inbound flux of
pd,ij(dij) over the collision area boundary dΩij . The flux
originates by both pd,ij(dij) and Ωij changing over time,
the first because of e.g. relative position changes and the last
because of orientation changes between the involved entities.
We simplify this calculation by “truncating” the overlapping
states from the pdf pd,ij(dij) at each time step, i.e., by
removing those states that are inside of the collision area
Ωij . We then get for the instantaneous collision probability

Pcoll,ij(t; ∆t) ≈ Pov,ij(t)−Pov,ij(t−∆t) ≈ Pov,ij(t) . (16)

because Pov,ij(t − ∆t) is zero after truncation. The trun-
cation approach would correspond to removing those states
which exhibit a physical overlap, so that these states are
not considered further for the remaining prediction process.
This approach is consistent with MC simulations with the
probability functions approximated by a cloud of particles,
removing all particles that enter the collision area at each
time step.

The interesting point is that in several previous approaches
[15], [16], Pov,ij(t) was used directly (without truncation)
to calculate the collision probability, which leads to effects
which are inconsistent with real driving behavior, because
colliding states survive for the next risk calculations. The
question is now, how can we use (16) with truncation to
derive fast and analytic approaches to calculate an improved
estimate for collision risk probability. This approach will be
described in the following sections.

C. Truncation of 1D-Gaussian Density Functions

Let us consider first a 1D Gaussian probability function
d ∼ N (d|d̂, σ2

d), which we truncate at either a lower or an
upper bound b−, b+ or both, meaning that we set all values to
zero outside of b− ≤ x ≤ b+. The question is: What would
a good Gaussian approximation of this truncated probability
distribution? That is, we want to know the variance and mean
of the Gaussian function that we can use to approximate
the truncated Gaussian. This is a well-known problem from
standard statistical literature [19], leading to

d̂trunc = d̂− σd
[
φ(b+)− φ(b−)

Φ(b+)− Φ(b−)

]
(17)

σ2
d,trunc = σ2

d

[
1− α+φ(b+)− α−φ(b−)

Φ(b+)− Φ(b−)

]
− (d̂trunc − d̂)2

where we use

α± :=
b± − d̂
σd

(18)

φ(x) :=
1√
2π
e−

1
2x

2

Φ(x) :=

∫ x

0

φ(x′) dx′



with the standard normal distribution φ and the associated
standard cumulative distribution Φ.

If b± indicates the boundaries of a forbidden region Ω
like e.g. the previously introduced collision area, with d ∈ Ω
meaning collision, we additionally get that

Pov = [Φ(α+)− Φ(α−)] (19)

is the probability that e.g. there is a geometric overlap
between the 2 entities involved in a potential collision.

The one-sided truncation with b± = ∓∞ can then be
extracted as a special case.

D. Calculation of Collision Area Probability Distribution

With the truncation method described above, we are able
to get a representation of the collision area pdf, which we will
later use for obtaining the non-collision area representation
and for calculating the collision probability at the current
predicted time point. For convex entity polygons, the colli-
sion area Ωij gained by geometrical convolution described
in section IV-A, is also a convex polygon. For that polygon,
we can use the special case of one-sided truncation for each
polygon edge. If we assume rectangular vehicle shapes, the
geometrical convolution is a point symmetric polygon with
pairs of parallel edges, so that we can use the two-sided
truncation method. We truncate the pdf in relative coordinate
space pd,ij(dij) (14), where the edges aTd = b of the
geometrical convolution are represented, by projecting them
into the 1D case N (d|d̂, σ2

d), so that the truncation methods
from the previous section can be applied to remove all parts
outside the collision area. The transformation equations are
as follows:

d̂ = aT d̂

σ2
d = aT Σd a (20)

With (20) we can apply (17) to get the truncated mean
d̂trunc and variance σd,trunc in 1D. The mean d̂trunc and
variance Σd,trunc of the multivariate Gaussian in 2D space
N (d|d̂trunc,Σd,trunc) can be calculated as follows [18]:

d̂trunc := d̂− Σd a

σ2
d

(aT d̂− d̂trunc) (21)

Σd,trunc := Σd −
Σd a

σ2
d

(σ2
d − σ2

d,trunc)
aT Σd

σ2
d

. (22)

For the composition of several linear constraints, we
calculate the corresponding Pov’s from the original non-
truncated distribution pd,ij(dij) for all constraints, beginning
in an ordered way by truncating the distribution with the
highest Pov. The truncated pdf is then used as input pdf
pd,ij(dij) for the next truncation. To calculate the Pov,ij
for (15), we multiply all overlap collision probabilities Pov
(eq. (19)) gained from the different truncation processes,
where we use both finite borders α+ and α− for parallel
collision area edges.

E. Calculation of Non-Collision Probability Distribution

We have seen in the last section how to calculate the
collision area probability, representing the states that will be
involved in the collision. What we are interested in, however,
is the complement, i.e. the probability pd,nc(d) that we will
not be engaged in a collision. This is given by removing
all collision area states from the state pdf. Since this cannot
be done directly in an analytic way (for a comparison with
MC simulations see the evaluation section V), we use the
truncation approximation to achieve this. We therefore take
the truncated pdf calculated as detailed in section IV as
approximation for the collision area pdf. We also calculate
the total probability Pcoll,ij from the truncation as explained
in the previous section and use eq. (16) to get the collision
probability Pcoll. We then set

pd(d) ≈ Pcoll pd,trunc(d) + (1− Pcoll) pd,nc(d) (23)

i.e., we approximate the total Gaussian pdf as a sum of the
truncation approximation of the collision area pdf and the
rest, representing the non-collided states. The mean and the
variance of all Gaussian pdf’s are gained by the conservation
of statistical moments in the following way:

d̂ =

∫
pd(d) d dd (24)

= Pcoll d̂trunc + (1− Pcoll) d̂nc

Σd =

∫
pd(d) (d− d̂)(d− d̂)T dd (25)

= Pcoll

[
Σd,trunc + (d̂trunc − d̂)(d̂trunc − d̂)T

]
+ (1− Pcoll)

[
Σd,nc + (d̂nc − d̂)(d̂nc − d̂)T

]
These equations can finally be solved for d̂nc and Σd,nc,
which are the parameters of our pdf pd,nc(d) for non-collided
states, approximated by a Gaussian. We then get:

d̂nc =
1

1− Pcoll
(d̂− Pcoll d̂trunc) (26)

Σd,nc = − Pcoll

1− Pcoll

[
Σd,trunc + (d̂trunc − d̂)(d̂trunc − d̂)T

]
+

1

1− Pcoll
Σd − (d̂nc − d̂)(d̂nc − d̂)T (27)

These parameters determine the Gaussian which can be
transferred into the next predicted time step by a given
transition model.

F. Single Entity Probability Truncated Distribution

In the previous section, we have seen how to calculate the
distribution in differential state space and how to determine
and remove the states that are prone to collision. This was
done based on a Gaussian approximation and a truncation
approach, which allows us to estimate this in a computation-
ally efficient way.

Once we have calculated the parameters d̂nc and Σd,nc of
the reduced pdf, we have to estimate the state pdf’s of the
single entities. In case that one of them is deterministic or has



a substantially smaller variance than the other, e.g. Σr,i �
Σr,j , it is approximately Σd ≈ Σr,j and we can directly take

r̂nc,j ≈ ri + d̂nc

Σr,nc,j ≈ Σd,nc . (28)

In case that both Σr,j and Σr,i are probabilistic and have
to be correctly considered, the idea is similar but we have
to proceed in a mathematically more general way. In section
IV-C, we did the projection to the 1D distance by 2 steps,

[ri, rj ]→ d→ d , (29)

with the help of the 2D relative position vector d = ri − rj
and the projection aTd. Once we are in the d space, the
information regarding any single traffic participant is lost, so
that after a truncation the correct assignment of truncation
components to each contribution i and j cannot be retrieved
anymore.

Therefore, instead of using d, we stay in the combined
state space (shown here for i and j positions, but general-
izable to arbitrary number of traffic participants and state
variables)

xT = [rTi , r
T
j ] , (30)

with x ∼ N (x|x̂,Σx) and mean and variance

x̂T = [r̂Ti , r̂
T
j ]

Σx = boxdiag(Σx,i,Σx,j) . (31)

Analogously as before in section IV, we impose e.g. linear
(hyper-plane) constraints there by ATx ≤ b. We then project
again into the 1D Gaussian distribution N (d|d̂, σ2

d) by d :=
ATx so that

d̂ = AT x̂

σ2
d = AT ΣxA (32)

This results in new mean (like in eq. (21))

d̂trunc := x̂− ΣxA

σ2
d

(AT x̂− d̂trunc) (33)

and variance (like in (22))

Σd,trunc := Σx −
ΣxA

σ2
d

(σ2
d − σ2

d,trunc)
AT Σx

σ2
d

. (34)

For the constraint parameter A, we remark that the con-
straint in joint state space, ATx = b, can be expressed as

ATx = aT Tx = aTd (35)

with the matrix T which transforms from joint state space x
to the j-relative state space d via d := Tx. From this, we
can directly calculate the joint space constraint vector from
the 2D parameter a by

A = TTa (36)

and calculate the joint state truncated pdf according to
eqs. (33) and (34). This results in the parameters of the
truncated Gaussian distribution as desired.

To finalize, from the joint state pdf we have to calculate
again the single entity truncated position pdf’s. This can be
done in a straightforward way by marginalizing over the
variables that are not of interest. E.g. if we want to extract
the position rj pdf, we have to marginalize N (x|x̂,Σx)
over ri. This results again in a Gaussian distribution, and its
mean and variance can be calculated according to [20], where
we take the components of the gained overall non collided
distribution representation corresponding to their vehicle’s
identity. The vehicle’s mean vector r̂nc,j is placed on the
j’th position of the overall mean vector x̂nc and the vehicle’s
variance Σr,nc,j is placed on the j’th positon of the overall
variance Σx,nc main diagonal (compare eq. (31)).

G. N-Entity Instantaneous Collision Probability

For any 2 entities and at any time step, the full procedure
to apply the pdf truncation in one time step then is as follows
(compare to Fig. 2):

1) Start with entity state pdf’s pr,i(ri) and oriented shape
representation Ωj .

2) Transformation into pairwise relative space dij and
determination of collision area Ωij with entity shapes
(shown in section IV-A) to obtain linear representation
of edges.

3) Transformation of overall state pdf p(x) into 1D (32)
with (36) and truncation by linear (parallel) constraints
afterwards with (17).

4) Iterative determination of means (33) and variances
(34) of the overall state pdf px,trunc(x) for each edge
(pair).

5) Calculation of mean (26) and variance (27) while pre-
serving statistical moments to obtain the non-collided
state pdf representation.

6) Iterative repetition of step 1) to 5) for all entity pairs.
7) Marginalization to obtain the entity state pdf’s for

transition execution.
The collision probability magnitude and the integral risk

measure is finally gained by calculating successively:
1) Overlap probability Pov,ij with (15)
2) Collision probability Pcoll,ij with (16)
3) Survival probability Psurv,i with (2) & (5)
4) Time-course sensitive prob.’s Ptcscoll,ij with (9) and
5) Integrated probability measure Pintcoll,ij with (10).
In a setting with several other entities, only collisions

with the ego vehicle leads to a truncation of the overall pdf.
Mutual collisions among the others are neglected and do not
lead to any adaptation of the overall pdf.

V. EVALUATION

In the previous sections, we have seen how the Survival
Theory can be extended to adapt to the shape deformation
of the predicted state probability distributions by truncation
and Gaussian approximation with conservation of moments
(COM). In this section, we show the applicability of our
approach to driving scenarios. For this purpose, we compare
the proposed survival approach (“truncated survival”) with
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Fig. 4: Three-vehicle tailgating and overtaking scenario. Top:
scenario, where the ego vehicle (blue) is overtaking another vehicle
on a neighbouring lane and a second vehicle is arriving with
high velocity on the ego-lane. 2nd row: Predicted Gaussian 2σ-
ellipsoid potentials for the survival approach without truncation
(red) and MC particles (black and grey). 3rd row: The survival
approach with truncation (orange) and MC particles. The Gaussians
from the truncation approach provide a good approximation for
MC particles. 4th-6th row: Instantaneous, survival and time-course
sensitive collision probability for different probability models. One
can see that the collision probability of the truncation model is very
similar to the MC results in overtaking scenarios, but deviates when
multi-modal distributions develop.

the plain survival approach without shape adaptation (“non-
truncated survival”) and MC simulations.

First, we investigate the approximation of the pdf’s by
showing the shape and instantaneous collision probability
over prediction time in high risk scenarios, shown in Fig. 4
(top), containing two scenarios: An ego vehicle (blue) is
passing another vehicle and is subsequently tailgated by a
third vehicle. In Fig. 4 (bottom), we show the ego-vehicle’s
instantaneous, survival and time-course sensitive probability
curves, and it can be seen that the truncated survival approach
(orange line) matches the MC simulations better (black) than
the non-truncated survival approach. However, at prediction
times s > 6 sec, there is a deviation caused by the splitting
of the grey MC particles into 2 streams (Fig. 4, third row),
which our unimodal Gaussian cannot handle appropriately. It
can also be seen from the survival probabilities’ faster decay
to zero, that the non-truncated survival approach largely
overestimates the collision risk during the tailgating process.
On an i7-2600 processor with 4 cores our algorithm is around
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Fig. 5: Two-vehicle driving scenario, where the ego vehicle starting
point is at different relative positions to another vehicle (black
rectangle). The ego vehicle is driving faster with a relative hori-
zontal velocity of 10 m/s. At every point, the integral collision
probability Pintcoll,i(t) is calculated to form a spatial heat map.
Top: MC simulation. Bottom: Truncated survival model according
to eq. (10).

100 times faster than a MC simulation with 20.000 particles
(similar computational time with around 200 particles).

In a second evaluation, we investigated whether the overall
risk as estimated by the truncation approach matches that
of the MC simulations. For this purpose, we used the
integral collision probability eq. (10), which is basically the
expectation value that a collision will occur over the entire
predicted future. This is done for a scenario where the ego-
vehicle is approaching another vehicle from left to right,
starting at different spatial points with a constant relative
velocity. For each spatial point, we then get a scalar quantity
Pintcoll,i(t) < 1 indicating the overall integral collision
probability, resulting in a sort of spatial heat map. Fig. 5
shows results from the MC simulation (top) vs. the truncation
approach (bottom). We again see the good match, with some
overestimation of the overall risk by our truncation approach.

To investigate overtaking tendencies for fixed parallel
offsets, we calculate the velocity-dependent integral collision
measurement (see Fig. 6). Our approach matches generally
well with some deviations in case of small lateral distances
and small relative velocities, where it is overestimating the
integral collision measurement Pintcoll,i in these special cases.

The last scenario shows the positional heatmap of our
integral collision measurement Pintcoll,i in a left to right
driving ego vehicle setting with two other, differently shaped
vehicles (see Fig. 7). One can see the overestimation of our
model (bottom) for high longitudinal distances but a similar
heatmap in the critical valley passage, in the middle of the
two blocking vehicles, compared to MC simulations (top).

VI. SUMMARY AND CONCLUSIONS

We have presented a model for the analytic shape esti-
mation of the future state probability distribution functions
with the purpose of improving predictive collision risk es-
timation for behavior planning. We introduced a truncation
approximation which allows to work efficiently on the basis
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Fig. 6: Integral collision probability measurements Pintcoll,i in a
two-vehicle following scenario, where the ego vehicle starts at
different relative lateral distances ry and relative velocities ∆vx to
the frontal vehicle at a fixed longitudinal relative initial distance
∆x = 10 m. Top: Integral probability values calculated by
MC simulation. Bottom: Truncated survival approach. For larger
distances and velocity differences the match is very good, however,
for small spatial distances and small velocities, the unimodality of
the Gaussian leads to deviations.

of Gaussian state pdf’s. The approach is consistent with
and improves a previously presented general risk estimation
approach based on survival probability theory. In simulations
of different scenarios, including multi-vehicle risks as well
as longitudinal and lateral collisions, we have shown that
our introduced integral collision probability measurement
considers the entire predicted trajectory and leads to rea-
sonable heatmaps. Additionally, our approach matches well
to the results of MC simulations in various scenarios, as
long as the resulting true distributions can remain unimodal.
Our approach is computationally fast, scales linearly by the
amount of involved vehicles and creates non-zero risk also
in far-distant scenarios, where particle density is low. In
deviating cases, even if it overestimates the overall risk, the
presented approach is always better than approaches which
do not consider a shape adaptation of the state pdf’s.
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