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Abstract— Being able to assess the state-of-health of a vehicle
opens of course many possible applications. All the more so if
the ongoing degradation of the monitored components can be
provided continuously as the vehicle life extends over time. In
modern shared mobility systems, thanks to which migration
from ownership to usership models should eventually take
place, developing means to actively monitor the state of the
vehicle fleet is crucial to improve business models and feasible
and predictive maintenance plans. Within this challenging
context, the present paper focuses on the monitoring of the
vehicle vertical dynamics, to understand, from the analysis
of measured data, which is the combined effect of driving-
style and introduce road pavement roughness in determining
the usage profile of the vertical-dynamics-related components
of the vehicle, mostly the suspensions system. The proposed
cost function concisely represents such wearing process, with
the advantage of not requiring detailed parametric models of
the vehicle dynamics and of the components themselves. The
approach is tested on more than 9.000 km of trips carried out
on four different vehicles, allowing to prove the effectiveness
and generality of the approach.

I. INTRODUCTION

Although new vehicles are increasingly equipped with on-
board diagnostic systems, the problem of assessing vehicle
wear over time remains open today. An online identification
of the state-of-health of a car could be very appealing
for second-hand car market, as it would offer an objective
assessment of the vehicle conditions. Furthermore, the power
to demonstrate quantitatively the wear of a vehicle becomes
even more relevant if connected to the car-sharing context.
In this setting, in fact, a quantification of the impact that
each trip has in terms of vehicle usage can both support
the driver in adopting a less aggressive driving style and the
service provider to develop individual pricing schemes and
to actively monitor the fleet.
In the scientific literature, the concept of the so-called health-
and-usage monitoring systems (HUMS) has been developed
mainly within the aeronautical community, both for aircraft
and helicopters, and is being transferred to military ground
vehicles, for which maintenance plans are crucial to ensure
a correct operation of the fleet, see e.g. [1], [2], [3].
In the ground vehicle world, most of the approaches that
analyze the consumption of the various parts of a vehicle are
based on mathematical models of the involved mechanical
components, see e.g., [4], [5], [6] for tire wear models, [7],
[8], [9], [10], [11], [12] for suspensions and shock-absorber
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systems. These methods, while guaranteeing a remarkable
precision of the results, are difficult to implement in practice
because they require the knowledge of the technical charac-
teristics of the involved individual components as well as the
measurement of signals that are often very difficult to access
in practice.
In this paper, we address the problem of analyzing the
combined effect of driving style and road pavement input
on the aging of vertical dynamics components of a vehicle
devising a black-box approach that operates on measured
signals that can be retrieved from an e-Box, which are
telematics sensing units. These devices are commonly used
in vehicle telematics applications, thus acting as an add-on
with respect to the OEM-based equipment, which we assume
not directly accessible. In particular, the proposed method,
starting from a minimal set of inertial signals, evaluates the
wear of the components linked to the vertical dynamics of
the car, specifically those related to the wear of the tires and
of the suspension system.
Specifically, the main goal is to develop a wear-assessment
approach that is independent of the specific vehicle technol-
ogy, has low implementation cost, and uses an equipment
that can be easily retrofitted on existing cars. Thus, we
discuss a method that would apply both to private vehicles
(e.g., to assess the state-of-health of potential second-hand
vehicles), and to multi-model fleets of shared-vehicles. To
do this, a reference behavior of every vehicle in the vertical
direction needs to be characterized from data, to build
a baseline model. This reference can be used to classify
every trip in terms of the vertical stress that it exerts on
the vehicle. The initial data gathering can be, in a final
implementation, adjusted with some calibration trips to be
done upon installation, and periodically checked for updates.
In so doing, all the trips are compared to the computed
baseline behaviour of the single car and used to monitor the
vehicle life to capture the effect that driving style and road
state have on the vertical dynamics in an integral sense, i.e.,
over the vehicle life-cycle. This is different from the existing
fault-detection approaches, see e.g., [13], [14], [15], [16] for
the suspension system, which of course are tailored to detect
individual anomalous events rather than tracking how usage-
related wear develops.
The paper is organized as follows. Section II presents the
problem statement and the experimental setup used in this
paper, whereas Section III concentrates of the design of the
proposed monitoring algorithm. Further, Section IV deals
with the experimental results with different vehicles traveling
on different road types.



II. PROBLEM STATEMENT AND EXPERIMENTAL SETUP

The goal of the proposed approach is to provide a metric
that accounts for how driving-style and road input influence
the vertical dynamics of a vehicle, which is central in the
evaluation of safety, comfort, and suspensions aging. This
problem is particularly challenging because vertical dynam-
ics is not only influenced by the driving-style but also by the
vehicle speed and the vehicle suspension system, which acts
as a filter on the dynamics of interest. An example of this
phenomenon is shown in Fig. 1, where two very different
cars (a Fiat Panda – denoted with Car 5 – and a Mercedes
Benz B-class – Car 6) are compared in controlled tests,
i.e., while driving on the same road segments. The vertical
acceleration variance is higher for increasing velocities for
the same road type. However, this trend is quite different
for the two vehicles. For this reason, our approach aims to
evaluate the relative impact that driver and road have on the
vertical dynamics for each different car, using its normal
behavior as a baseline with respect to which new trips are
evaluated. Furthermore, we assume that suspension aging
is characterized by a slow-time dynamics with respect to
driving style effects and road inputs variations, thus implying
that we work under the assumption that suspensions response
does not change within a single journey.
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Fig. 1: Analysis of the variance of the vertical acceleration
of two vehicles driving on the same roads. As shown, sus-
pensions filter the same road pavement quality (i.e. highway
vs off-road) differently for different vehicles and longitudinal
speeds.

Particular importance is given to the use of a minimal
sensor setup, which measures vertical acceleration and speed
only. These measurements are already widely available in
all modern vehicles through CAN bus. However, relying on
embedded sensors would increase the complexity of evaluat-
ing the proposed approach unnecessarily. Also, it would be
difficult to compare different vehicles because of their non-
standard sensor quality. For this reason, in the experimental
campaign we equipped all tested vehicles with the same

external device, which was a modern, cost-effective, and easy
to install telematic e-Box [17]. This apparatus was already
employed in different applications [18], [19], [20], proving
to be a flexible and reliable device for similar applications.
E-Boxes are equipped with an inertial measurement unit
(IMU) and a GPS/GNSS receiver. Data are sampled at a
sampling frequency of fs = 10 Hz for both the IMU and
the GPS/GNSS unit. The external device was mounted close
to the vehicles’ center of mass to reduce the effect of roll
and pitch movements on the vertical acceleration.

The available data were collected during a four-month
experimental campaign involving five drivers, driving more
than nine thousands kilometers over 441 journeys. An
overview of the trips and the vehicles used in these experi-
ments is listed in Table I.

TABLE I: Summary of the experimental vehicles and the
recorded trips.

Vehicle Trips [-] Distance [km]
Car 1 Toyota Aygo 115 1640
Car 2 Alfa Romeo MiTo 78 1160
Car 3 Mercedes-Benz A-class 83 2307
Car 4 Jaguar E-Pace 117 3967
Car 5 Fiat Panda 30 133.5
Car 6 Mercedes-Benz B-class 18 83.7

Total 441 9291.2

III. ALGORITHM DESIGN

In this section, we illustrate the proposed method and
discuss its main parts. First, we investigate the effects of
signal windowing on data representation. Then, a reference
profile denoting the nominal vehicle response is identified.
Finally, the driving-style index that accounts for vertical
wearing is discussed.

A. Signals windowing

To extract the needed information from data, the first
step is to understand how to process them online looking
at a time window that is representative of the phenomenon
under investigation. Specifically, we first aim to tune a sliding
window that can well characterize the road profile in terms
of its statistical distribution. This tuning parameter plays a
key role, to trade-off responsiveness with completeness of
information.

In Fig. 2, an overview of some road sections are analyzed
for different windows lengths w (i.e., from 5 up to 60 sec-
onds). In this analysis, the sample variance of each signal is
computed and represented with its 95% confidence interval,
denoted with the error bars. In these tests, the same vehicle
(i.e., Car 6) was driven at steady state on a high-quality
reference profile. We assumed the vehicle to be in stationary
motion when the speed variance was below 7 km2/h2.

As shown, larger buffers provide an estimate with lower
uncertainty, i.e., smaller error bars. However, it should be
remarked that such reduced uncertainty is obtained looking
at a large amount of data collected on significantly long road
sections. Because of this, distributions are no longer able to
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Fig. 2: Vertical acceleration sampling variance distributions for different velocities and window lengths. Shorter windows
(e.g., w ≤ 10 s) result in less accurate estimates. Instead, too long windows (e.g., w ≥ 45 s) provide accurate estimates,
though over long road sections. A good trade-off is w = 20 s.

capture interesting, yet short events, as they populate only a
small portion of the entire buffer. As shown in Fig. 2, three
events with large variance are captured only for w ≤ 20 s.
For larger windows (e.g., w ≥ 45 s), these anomalies no
longer stand out, and all the distributions lie in a small range.

For a qualitative analysis of vertical aging, we consider
these anomalies particularly important as they point out to
stressful events, which impact on the suspensions system
more than on average. Thus, in this application we select
w = 20 s.

B. Identification of the baseline vertical behavior

Once the buffer size and the sampling frequency are set,
vertical acceleration measurements can be buffered in the
sliding window and its sampling variance computed. The
analysis of the variance of the vertical acceleration has been
already widely used in similar applications, in particular for
road pavement quality assessment, see, e.g., [21]. However,
to define a metric that accounts for vertical wearing, a
reference profile needs to be defined for each vehicle. To
this end, we created a database containing a set of tuple
s = {E [v(t− k, . . . , t)] ,Var (az(t− k, . . . , t))} for each
vehicle, in which E [v(t− k, . . . , t)] is the averaged speed,
and Var(az(t− k, . . . , t)) the vertical acceleration sampling
variance computed on the window w, so that k = w

fs
.

When the database is sufficiently populated, the collected
data represent a large exploration of different road profiles
and different driving behaviors. Then, such points are used
to define a lower bound, which is a set of samples that
characterize the best use of the vehicle, i.e., that with
lower stress on the vertical dynamic, within the monitored
period. These points are clustered using DBSCAN, a non-
parametric density-based clustering algorithm that groups
together points with many nearby neighbors and marks as

outliers those points whose nearest neighbors are sufficiently
far from them [22]. It is worth noting that a meaningful
clustering with DBSCAN is possible only if the database is
populated with continuity on the entire velocity range (e.g.,
one sample every 2 km), otherwise some samples could be
marked as outliers.

As clustered points may be affected by noise and may not
cover all velocity values, a compact representation that aver-
ages the cluster profile is necessary. To this end, we leverage
what proved in [21]: The power of the vertical acceleration
sensed in a vehicle moving with constant horizontal speed
can be approximated as

Paz (v) = q̂vγ , (1)

with q̂ ∈ R and γ ∈ R parameters to be identified. Assuming
the vertical acceleration to be a stationary process, the power
of the vertical acceleration is equivalent to its variance. Thus,
(1) can be turned into

Var(az) = q̂vγ . (2)

By fitting the model in (2), the lower bound is generalized
into a reference profile that can be used as a benchmark,
against which all subsequent trips can be evaluated. More-
over, this benchmark is described by only two parameters that
are directly learned from data, and are characteristic of every
vehicle. Since we assume to have a large database covering
multiple roads and driving conditions, it is worth to point
out that the identified curve represents the vehicles’ heave
dynamics at different velocities on a smooth surface. Fur-
thermore, parameters q̂ and γ are a compact representation
of the vehicle’s vertical response, in particular:

• q̂ represents the vehicle filtering capabilities. The
smaller its value, the smoother the vehicle response.
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Fig. 3: An overview of the datasets created for each vehicle. Darker points are the lower bound clustered with DBSCAN,
representing the vehicle response in the best driving conditions. Model (2) is fitted with the curve in red.

• γ accounts for the loss of filtering action due to higher
velocities.

We evaluated this fitting step on experimental data, as
shown in Fig. 3. Within the experimental campaign, we
obtained a dense cluster of points for each vehicle. The
lower bounds group together all the samples closest to zero,
highlighted with the darker shade. It is possible to notice
that every lower bound depends on the specific vehicle. As
mentioned before, these differences are due to the specific
vehicle suspension system. In fact, Car 1, which is an
affordable, compact hatchback, smooths the vertical road
profile less than other tested vehicles, especially at low-
medium speed. Instead, more expensive, heavier cars, e.g.,
Car 4, provide a more comfortable driving experience, shown
in the data with a lower bound closer to zero.

In Table II, vehicles are further compared in terms of their
baseline reference model parameters q̂ and γ. As the table
shows, Car 1 is characterized with the highest value of q̂,
which confirms what qualitatively stated before. Moreover,
Car 1 has the lowest value of γ, meaning that the filtering
action degrades less at higher speed with respect to the other
vehicles. Instead, the two sedans (i.e., Car 2 and Car 3)
have different responses: The less expensive Car 2 provides
a less smoothing suspension system; on the other hard, Car 3
becomes less effective at higher speed. Parameters identified
for Car 4, the high-end SUV, lie in between what obtain for
the sedans: The filtering action is slightly worse than Car 3,

but it is less sensitive to the effects of speed.
Finally, it is worth to point out that the relation in (2) has

proved to lose its modeling capabilities when driving at a
speed above 130 km/h, which is generally the maximum
speed legally accepted in many countries. This should not
surprise: Vehicles are designed to provide the most comfort
for the range of speed in which the car is supposed to
drive most of the time, while the poorly fitting area is
outside the design range. For what follows, we kept the
identified model as valid for all speed values, assuming that
aging increases non-linearly outside the main speed range
commonly explored.

We now have a methodology for defining a reference
profile that can be used to normalize every vehicle behavior
regardless of the road profile. Driving style is then assessed
with respect to both vertical acceleration and speed. In the
next section, we define a metric for the evaluation of the
vertical wearing on the basis of the obtained baseline.

TABLE II: Identified parameters for the vehicles used in
tests.

q̂ γ

Car 1 4.9 · 10−3 0.5972
Car 2 1.5 · 10−3 0.8089
Car 3 0.5 · 10−3 1.1665
Car 4 1 · 10−3 0.7505
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Fig. 4: Analysis of the average V2WI for different vehicles based and different road types. As shown, the influence of
driving-style on aging is dependent on the environment.

C. Definition of the V2WI cost function

The last step of the proposed algorithm consists in the
definition and computation of the vertical wearing metric. To
compute this quantitative indicator, it is necessary to have a
database and a reference profile, as discussed in the previous
section. We first define

d(t) = Var (az(t− k, . . . , t))− q̂v(t)γ (3)

as the distance between the variance of the vertical accel-
eration and the identified benchmark evaluated at the actual
speed v(t). This distance represents how intense the driving-
style and road profile are impacting on the vertical wearing
more than in the best baseline conditions.

Then, the proposed cost function V2WI is defined as

V2WI(t) =

{
d(t) d(t) > 0

0 d(t) ≤ 0.
(4)

For every new sample of vertical acceleration and speed, the
index is computed and updated. As suspension aging has a
slow-time dynamics, a suitable and compact representation
of our indicator is obtained by averaging its values over an
entire journey

V2WI =
1

T

T∑
t=k

V2WI(t), (5)

where T is the journey duration.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, the proposed method is analyzed on
experimental data. In this analysis, we grouped together the
computed cost functions based on the main road type driven
during each journey. This overview allows to consider the
impact of the environment on the aging assessment. At the
end of the experimental campaign, we interviewed the drivers

in order to find correlations with what obtained computing
the index.

The goal of this analysis is to assess whether the proposed
method is capable of discriminating both different behaviors
of the same driver, and among different drivers. As shown in
Fig. 4, the proposed method seems to be consistent for each
driver. In particular, the following remarks are in order:

• Car 1 shows to have had a very aggressive driving. In
particular, at least 50% of the journeys in the urban
and extra-urban areas are above the average, stressing
the suspension system particularly. When interviewed,
the driver reported to commute in a poorly maintained
road. Nevertheless, the driver revealed not to have
adapted their driving practices considering the low-
quality pavements.

• Car 2, instead, proved to have been the most conserva-
tive driver of the four, especially at high-speed.

• Car 3 achieved the worst performance on highways,
while the driving behavior is similar to Car 2 in the
other environments. In high-speed roads, the driver uses
the cruise control frequently, not adapting the speed
when approaching lower quality road sections.

• Car 4 was driven by the most consistent driver. De-
spite the quite-aggressive behavior, the range spread
by V 2WI is comparable for the three scenarios. For
this car, suspensions age uniformly regardless where the
car is driven. To explain this behavior, it is important
to remark that the high-quality suspension system pro-
vide a lower bound very close to zero for almost all
velocities, shrinking the differences due to the driving
environment.

Experimental data prove the effectiveness of the proposed
approach. The obtained metric is an absolute index of how
the use of the vehicle increases vertical wearing. In particular,
the benefit of using such metric is twofold: First, V2WI



analyzes vehicle wearing accounting for each specific vehicle
response, which is vehicle-dependent. Thus, the obtained
metric can be used to compare driving-style and suspension
aging regardless of the vehicle used. Second, the method
automatically learns from data without any manual calibra-
tion. Moreover, the output is physically explainable, which
allows to extend this qualitative analysis for a quantitative
assessment of how driving-style influences suspension aging.

Finally, it is also worth discussing the limitations of the
current version of the presented algorithm. The first one
is that, to compute a meaningful lower bound, a large
amount of data is required. Only a high-volume of mea-
surements guarantees to properly characterize the vehicle
vertical dynamic response together with the condition of
having driven on high-quality pavements roads for a kind of
initialization phase. We believe that this limitation cannot be
overcome; however, the data collection is rather simple, and
one may start from an array of baselines already computed
for different classes of vehicles which then needs only to be
adapted to the single one, thus probably implying a shorter
training phase. Further, to be able to compare the impact of
vertical dynamics on two different vehicles, it is necessary
to assume that the lower bound values have been collected
in correspondence of similar road profiles. Thus, in case of a
fleet which needs to be monitored, the training phase should
be consistently performed. Finally, in its present form the
algorithm is not adaptive. The identified lower fitting curve
is kept fixed, while vehicle usage may in principle lead to
a natural degradation of its performance. For this reason,
consideration should be given to the possibility of adaptively
shifting the distribution of the V2WI index towards larger
values by means of a triggering decision logic that accounts
for the stage of the vehicle life-cycle.

V. FINAL REMARKS

In this paper, an innovative data-driven approach for the
active monitoring of the combined effect of driving-style and
road pavements in the degradation of the vehicle components
acting on the vertical direction has been proposed. The
resulting V2WI index can be employed both in the second-
hand vehicles market and in shared fleets to profile the
wear and tear of those components related to the vertical
dynamics. The results showed that we are able to provide a
vehicle-independent assessment of the impact each trip has
in the excitation of the vertical vehicle dynamics with respect
to a predefined baseline. Ongoing work is being devoted to
map the V2WI index onto a real wearing function of the
suspensions system, which of course requires some input
data from the suspensions manufacturer, but it will allow
employing the proposed index for predictive maintenance
plans. Further investigations will also extend the investigation
of the proposed index to a larger range of vehicles at different
level of vehicles age, which is something that this study
has not characterized. Also, it will be explored the use
of nonlinear relationships to better evaluate the effects of
suspension aging at high speed.
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