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Abstract—Hierarchy is regarded as a natural phenomenon of
public transport networks (PTN). The imbalanced distribution
of passenger flow result in a hierarchical structure of PTN
and it is also related to the development of technology and
the introduction of new modes. However, there is still a lack
of knowledge on how to identify the hierarchical structure of
the multi-layer PTN. This study proposes a three-step passenger
transfer flow based methodology for separating and ranking
the PTN: (1) using passenger journey data to derive transfer
flow matrix; (2) applying network representation with Louvain
method of community detection to separate the PTN layers; (3)
performing ranking method, separating inner-transfer and inter-
transfer flow. To demonstrate our method, we use one-month
smart card data of The Hague, the Netherlands provided by
the PTN operator HTM. Our results show that our method
is able to, regardless of the geographic location and the mode
of transportation, identify the hierarchy of PTN based on the
passenger transfer flow pattern. Temporal attributes are also
discussed to illustrate how hierarchy is time-dependent, e.g. with
respect to the day of the week and the time of the day. Our
method supports public transport (PT) operators during design
and optimization of PTN and in determining which sets of higher-
level service to prioritize during different time periods.

Index Terms—public transport network, hierarchy, community
detection, data-driven

I. INTRODUCTION

Hierarchy is a feature of many domains with the meaning

of order, inclusion, control or level [1]. For a given pub-

lic transport network (PTN) with its transport service, the

imbalanced distribution of passenger trips will result in a

hierarchical structure [2]. Understanding the hierarchy of PTN

can facilitate prioritizing transfer synchronization decisions

and give priority to higher-level networks. This will help in

promoting the attractiveness of public transport (PT) and in-

crease the ridership as empirical research indicate that transfer

is perceived as the most unfavorable part of a PT journey [3].

Many researchers have investigated multi-level PTN and

various ways of defining the networks developed correspond-

ingly. For example, one way is to define the multi-level PTN

as a two-level PT system, consisting of two interconnected

subsystems: an urban network and an interurban network [4].

Also, constructing multi-level PTN by categorizing different

route hierarchies (e.g. mass, feeder and local) or other specific

linkages (e.g. feeder route for rail or bus network) has been

widely adopted and acknowledged [5]–[8]. Similarly, based on

route hierarchies, trip distance can be added up to determine

the optimal hierarchy of PTN [9]. In addition, multi-modality

can be used in describing the multilevel PTN [10], [11].

Remarkably, most of the studies are based on either mode

or other qualitative features. This means that the consideration

of the relationship between PTN and passenger flow is still

lacking.

Complex network science emerged as an effective and

quantitative method to study PTN and is able to capture the

topological properties of PTN structures [12], [13]. Several

studies have applied network science indicators to analyze

PTN, including estimation of passenger flow [14], identifica-

tion of hubs [15] and accessibility analysis [16]. Besides, com-

plex networks theory can also potentially offer an approach for

unraveling network hierarchy since it is witnessed in several

domains such as metabolic networks [17], social networks [18]

and internet networks [19]. Notwithstanding, hitherto no study

has performed such an analysis on PTN to the best of our

knowledge.

Therefore, we conduct this study to unravel the hierarchy

of PTN based on passenger transfer flow by using complex

network theory. The temporal attributes are also discussed

in order to represent the time-dependent characteristics of

this hierarchy. The developed methodology, regardless of the

geographic location and the mode of transportation, could

unveil the comparatively important sets of service to support

PT operators decisions in design and optimization of PTN.

The remainder of this paper is organized as follows: the

second section describes the proposed methodology which is

followed by the description of the case study in the third

section. The fourth section presents the results and conclusions

are drawn in the fifth section including a discussion of the

future research direction.

II. METHODOLOGY

In this paper, we propose a data-driven, geography-

independent and mode-agnostic methodology that is based di-

rectly on passenger flows rather than service design to identify

the hierarchy of PTN. The methodology consists of three steps:

deriving the topological representation of passenger transfer
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flow patterns, identifying clusters of PT lines and ranking PT

line clusters.

The methodology of this study follows the flow diagram

shown in Fig. 1. The Automatic Vehicle Location (AVL)

data and Automatic Fare Collection (AFC) data are already

processed to passenger journey data and passenger ride data.

Based on these input data, we derive transfer flow matrices.

Then, a topological representation is applied to represent the

PTN with the consideration of transfer flow. Next, in order to

cluster the line bundles, the Louvain Method of community

detection is adopted. Furthermore, the time-dependent hier-

archy of PTN is identified based on the inner-transfer and

inter-transfer flow.

Fig. 1. Framework for unraveling the hierarchy of PTNs based on passenger
transfer flow

A. Data

We use the pre-processed passenger journey data and

passenger ride data as input to our analysis. Examples of

these two types of data are presented in Tables 1 and 2,

respectively. Passenger journey data contains information of

the passenger ride(s) record(s) while the passenger ride data

contains information on the route (i.e. line) traversed. We

hereby select the journeys with at least one transfer. Finally,

the origin tap-in time is used to match the start and the end

of the selected time period for the investigation of temporal

properties.

TABLE I
EXAMPLE OF PASSENGER JOURNEY DATA

Journey ID Date Day of week

129 20150301 0

Origin check in time Origin stop ID Destination stop ID

46767 2917 5413

Destination check out time Number of rides Ride ID

49076 3 2957721; 2969; 5378523

TABLE II
EXAMPLE OF PASSENGER RIDE DATA

Ride ID Date Line ID

2969 20150301 1

Trip ID Direction ID Check in stop ID

2273 0 2832

Check out ID Check in time Check out time

2730 47667 47876

B. Topological Representation of Passenger Transfer Flow

Patterns

A weighted directed graph G = (V,E) is used to represent

passenger transfer flows, where nodes v ∈ V represent a

certain PT line l ∈ L and links e ∈ E between nodes are

built only when two lines have common stop (s) s ∈ S where

passengers can transfer [20]. The graph G is thus formulated

as a weighted adjacency matrix A where aij represents the

weight of the edge between i and j, which is the transfer flow

fij between line i and j. A simple example of PTN with its

corresponding topological representation is shown in Fig. 2.

Fig. 2. A simple example of PTN with the C-space representation of it

C. Identifying Clusters of PT Lines

Based on the proposed topological representation weighted

with the corresponding transfer flow, the concept of com-

munity detection is implemented to identify line bundles.

Community detection is able to partition the network into

communities with densely connected nodes and nodes in

different communities being sparsely linked. In this paper,

the weights are the transfer flow and thereby the network is

partitioned into communities, where transfers between lines

within the same cluster are maximized while transfer flows

between lines belonging to different clusters are minimized.

The Louvain method is selected as the community detection

technique to apply with the above-mentioned objective. It is

a heuristic method based on modularity (Q) optimization and

the most popular quality function is the modularity proposed

by Newman and Girvan [21], which measures the quality of a

partition of the network in communities. The essential idea

of this measure is to reveal how non-random the network

structure is by comparing the actual structure and its random-

ization where network communities are nonexistent. The value

of modularity (Q) is in the range [−1,+1], which measures

the density of links inside communities as opposed to links

between communities. Its general expression is formulated

using Eq. (1):

Q =
1

2m

∑

ij

(

Aij −
kikj

2m

)

δ (σi, σj) , (1)

where Aij is the adjacency matrix and m is the total

number of edges. The summation term pertains to over all

pairs of nodes i and j, in which ki and kj denotes the sum of

weights of the edges attached to node i and j. σi represents
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Community detection is able to partition the network into

communities with densely connected nodes and nodes in

different communities being sparsely linked. In this paper,

the weights are the transfer flow and thereby the network is

partitioned into communities, where transfers between lines

within the same cluster are maximized while transfer flows

between lines belonging to different clusters are minimized.

The Louvain method is selected as the community detection

technique to apply with the above-mentioned objective. It is

a heuristic method based on modularity (Q) optimization and
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by Newman and Girvan [21], which measures the quality of a

partition of the network in communities. The essential idea

of this measure is to reveal how non-random the network

structure is by comparing the actual structure and its random-

ization where network communities are nonexistent. The value

of modularity (Q) is in the range [−1,+1], which measures

the density of links inside communities as opposed to links

between communities. Its general expression is formulated

using Eq. (1):

Q =
1

2m

∑

ij

(

Aij −
kikj

2m

)

δ (σi, σj) , (1)

where Aij is the adjacency matrix and m is the total

number of edges. The summation term pertains to over all

pairs of nodes i and j, in which ki and kj denotes the sum of

weights of the edges attached to node i and j. σi represents

the community of node i and the Kronecker delta function

δ (σi, σj) is defined as shown in Eq. (2).

δ (σi, σj) =

{

1, if σi = σj

0, otherwise.
(2)

The Louvain method consists of two repeated steps for

maximizing the modularity: Initially, it assigns the nodes to

communities with favoring the local optimization of mod-

ularity, i.e. when no individual node moving can improve

the modularity; Next, it builds a new network based on the

communities found in the first step where nodes are the

communities now and then reapplies the algorithm in the first

step until there is no improvement in the modularity value [22].

Hence, the partition found in the second step will contain the

previous ones as well and the procedure will not terminate

until the largest modularity is found.

The Louvain method is selected as it has two advantages:

First, it is easy to apply and understandable; Second, it is

computationally efficient since it only requires the edge dataset

as an initial input. Moreover, it was found to be one of the best-

performing clustering algorithms after a comparative analysis

of community detection algorithms [23].

D. Ranking PT Line Clusters

Given the communities identified, which correspond to line

bundles, we utilize two types of transfer flow - inner-transfer

and inter-transfer - to identify the hierarchy of PTN. The inner-

transfer flow is the transfer flow within a community. Suppose

the PTN have been divided into n clusters, which means that

n communities have been detected. The inner-transfer flow of

a specific community c is calculated as follows:

f inner
c =

∑

i,j∈c

fij , (3)

where fij represents the transfer flow between line i and

j in the same community c while f inner
c stands for the total

inner-transfer flow volume within this community.

The inter-transfer flow corresponds to the total of transfer

flow between a specific community c and all other n − 1
communities. The inter-transfer flow of a specific community

c is thus calculated as follows:

f inter
c =

∑

i∈c,k/∈c

fik, (4)

where fik represents the transfer flow between line i from

community c and k from all other n− 1 communities except

for c and therefore f inter
c represents the frequency of commu-

nication between community c and other communities.

The higher level PTN community has frequent interchanges

within the community and lesser communication between

itself and other communities. We therefore identify PTN

hierarchy in this study based on self-sufficiency as measured

by the ratio between inner-transfer and inter-transfer flow. The

magnitude of this ratio of a certain community reflects thus

the importance of this community. The ratio is formulated as:

θc =
f inner
c

f inter
c

, (5)

where θc represents the ratio between inner-transfer and

inter-transfer flow of a community c. A higher ratio of a

community means a more important PTN community, corre-

sponding to a higher-level set of services in the obtained PTN

hierarchy.

III. APPLICATION

A. Case Study Description

We apply the proposed methodology to the urban PT

network of the city of The Hague, the Netherlands, operated

by HTM. The Hague is situated in the west of the Netherlands

and has more than 500,000 residents. The urban PT network

in the dataset consists of 12 tram lines and 8 urban bus lines

as shown in Fig. 3.

Fig. 3. Overview of urban public transport (bus and tram) in The Hauge

B. Selected Period Description

The pre-processed passenger journey and passenger ride

data from March 1st to March 31st, 2015, was available as the

initial input. The data cover 5 Sundays, Mondays and Tuesdays

and 4 Wednesdays, Thursdays, Fridays and Saturdays. Since

passenger transfer flow patterns vary for different times of

the day and for weekdays versus weekends, we average the

number of transfer by the type of day (weekday or weekend)

for each 30-minute time slice throughout the day. The resulting

trend in terms of the average transfer volume on weekday and

weekend per half an hour is shown in Fig. 4.

The weekday passenger transfer pattern shows a two-peak

trend while the weekend passenger transfer pattern exhibits

only one spike. In the following, we illustrate the time-

dependency of the PTN hierarchy by focusing on three time

periods, namely AM peak (06:30-08:30), PM peak (16:30-

18:30) and off-peak hour (11:30-13:30).
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Fig. 4. Average transfer volume on weekday and weekend for each 30-minute
time slice

IV. RESULT AND ANALYSIS

In the following we focus on the results of the weekday

morning period for demonstration purposes. We select both

weekday morning and weekday evening to establish a compar-

ison for the identification of PT line clusters with topological

representation thereof. Furthermore, in the subsection of the

discussion of time-dependent hierarchy, all six selected periods

are included to allow for a comparison.

A. Transfer Flow Derivation

The dataset consists of 40 line-directions. All 5,945,118

passenger journey data and 7,351,929 passenger ride data have

been selected based on periods and processed into 40 × 40

transfer flow matrices.

A distinctive spatial-temporal pattern can be observed for

different times-of-the-day and for weekday versus weekends.

Conventionally during the weekdays, the morning peak travel

pattern is almost the opposite of that of evening peak and

the travel pattern in the off-peak hour is less pronounced.

Moreover, the weekends’ travel pattern is different from

weekdays due to changes in the dominant trip purpose from

commuting to leisure activity-oriented. The derived transfer

flow on weekday morning peak is presented in Fig. 5. The

line is denoted as line number with direction (e.g. 3-E means

line 3 eastbound.)

It can be seen from Fig. 5 that several lines are the incoming

line of a relatively large transfer flow in the morning peak

period, namely line 3 eastbound, line 6 westbound, line 9

eastbound, and line 16 eastbound. These lines are connecting

residential areas with the Hague center and traverse either The

Hague central station or The Hague HS station or both stations.

B. Separation of network layers

Based on the derived transfer flow matrices, we construct the

proposed directed weighted graph representation. We then ap-

ply for this graph the Louvain method of community detection.

Figures 6 and 7 illustrate the graph for PTN on the weekday

morning and evening where each community is shown using a

different color. The community detection method yields four

different and distinctive communities with different size for

Fig. 5. Chord chart of transfer flow on weekday morning peak

each analysis period. In addition, the link width represents

the magnitude in terms of transfer flow where high-level line

bundles have more inner-transfer flow within the community

while low-level ones have more inter-transfer flow between

communities, regardless of the time periods.

Fig. 6. C-space representation of PTN with community detection on weekday
morning

C. Hierarchy of PTNs

Figure. 8 shows the obtained hierarchy of The Hague PTNs

on weekday morning peak (WKDY AM), weekday off-peak

(WKDY OP), weekday evening peak (WKDY PM), weekend

morning peak (WKED AM), weekend off-peak (WKED OP)

and weekend evening peak (WKED PM), respectively. Table 3
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C. Hierarchy of PTNs

Figure. 8 shows the obtained hierarchy of The Hague PTNs

on weekday morning peak (WKDY AM), weekday off-peak

(WKDY OP), weekday evening peak (WKDY PM), weekend

morning peak (WKED AM), weekend off-peak (WKED OP)

and weekend evening peak (WKED PM), respectively. Table 3

Fig. 7. C-space representation of PTN with community detection on weekday
evening

reports the ratio between inner-transfer and inter-transfer flow

for each of the above-mentioned time periods.

TABLE III
THE RATIO OF INNER-TRANSFER AND INTER-TRANSFER FLOW OF THE

HAGUE PTNS DURING DIFFERENT TIME PERIODS

Hierarchy WKDY AM WKDY OP WKDY PM

1 0.573 0.919 0.695

2 0.441 0.876 0.389

3 0.342 0.378 0.363

4 0.335 0.279 0.354

5 - 0.171 -

Hierarchy WKED AM WKED OP WKED PM

1 0.467 0.895 1.106

2 0.435 0.733 0.756

3 0.206 0.239 0.565

4 0.127 0.232 0.325

5 - 0.218 -

In general, it can be seen from Fig. 8 that the hierarchy

of The Hague PTNs varies for different time periods due to

changes in passenger transfer patterns. Trams (all with numeric

label below 20) are always clustered into higher hierarchy

layers, with some notable exceptions, such as bus lines 25

and 26 that have remarkable transferability with other lines.

Tram lines traverse the two main railway stations (The Hague

central station and The Hague HS station) are often identified

as members of the higher hierarchy layer, for instance, line 9,

16 and 17. This concurs with the notion that hubs in PTN form

a well-knitted self-contained set of transferring connections

and consequently lines with the connection to the hubs are

forming the highest level of PTNs. Interestingly, the extent of

hierarchy exhibited in the network - as measured in terms of

the gap in ratios between the higher hierarchy layer and the

lower hierarchy layer - is lower in the morning periods on

both weekdays and weekends than in other time periods as

shown in Table 3 .

Figures 9 and 10 show the hierarchy map of The Hague on

weekday morning and evening. During weekday mornings, the

Fig. 8. Hierarchy of The Hague PTNs during different time periods

higher level of PTN consists of the lines where people travel

from residential areas to the city center. As can be seen, the

highest hierarchy layer consists of light rail lines connecting

the large residential city of Zoetermeer (at the eastern edge

of the network) to the city center, as well as high-frequency

tram services that traverse the business areas and the major

train stations. In contrast, during weekday evening, the lines

in the city center are clustered into high hierarchies and several

lines are no longer in the high hierarchy. This could be due

to the non-uniform off-peak travel patterns. Moreover, both

directions of a line are often grouped into the same level of

hierarchy during the off-peak hours, whereas in the peak hours

the more directional demand results in asymmetric flows and

hence line direction rankings.

V. CONCLUSION

In this paper, a data-driven and passenger transfer flow-

based methodology for identifying the hierarchy of PTN is

proposed. The methodology consists of three-step: (1) using

the passenger journey data to derive transfer flow matrix; (2)

applying network representation with Louvain method of com-

munity detection to separate the PTN layers; (3) performing

self-sufficiency ranking method to determine the hierarchy,
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Fig. 9. Hierarchy of The Hague PTN on weekday morning

Fig. 10. Hierarchy of The Hague PTN on weekday evening

considering inner-transfer and inter-transfer flow. The mode-

agnostic and geography-independent method is applied to the

case of multi-modal network of The Hague, the Netherlands.

Results show that the hierarchy varies for different time

periods. The proposed data-driven method allows clustering

lines into hierarchical layers without relying on any prior-

knowledge. Future research may investigate the possibility to

consider segments of lines as members of different hierarchical

layers since segments of the same line may vary in their

functionality. Another direction for further research is the

potential incorporation of direct trips. While the proposed

method only utilizes information from passenger journeys

involving a transfer, direct trips may also provide information

on line’s position in the network. Our study though paves the

way for further developments of topological approaches for

analyzing passenger service network hierarchy.
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