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Abstract— In this paper we present a numerical study on
control and observation of traffic flow using Lagrangian mea-
surements and actuators. We investigate the effect of some
basic control and observation schemes using probe and actuated
vehicles within the flow. The aim is to show the effect of the state
reconstruction on the efficiency of the control, compared to the
case using full information about the traffic. The effectiveness
of the proposed state reconstruction and control algorithms
is demonstrated in simulations. They show that control using
the reconstructed state approaches the full-information control
when the gap between the connected vehicles is not too large,
reducing the delay by more than 60% when the gap between
the sensor vehicles is 1.25 km on average, compared to a delay
reduction of almost 80% in the full-information control case.
Moreover, we propose a simple scheme for selecting which
vehicles to use as sensors, in order to reduce the communication
burden. Numerical simulations demonstrate that with this
triggering mechanism, the delay is reduced by around 65%,
compared to a reduction of 72% if all connected vehicles are
communicating at all times.

I. INTRODUCTION

Traffic flow control has attracted a lot of attention in the
past decades. Indeed, the current traffic infrastructure cannot
handle the increasing number of cars and trucks, leading to
congestion, which in turn wastes productivity, increases the
emissions and jeopardizes the safety of road users. Since it
is not always possible, nor desirable, to add lanes or create
auxiliary roads, it is imperative to have control over the traffic
flow. Good awareness of the traffic situation is crucial for
implementation of any form of traffic flow control.

In urban environments, the complex structure of the road
network makes modelling the system and controlling its
traffic flow difficult. Even in a freeway context, where
modelling is easier, there are still difficulties due to the high
dimensionallity and nonlinearity of the discretized model of
the road, among other reasons. Nevertheless, there exist many
control schemes based e.g. on model predictive control [1].

To avoid discretization, one may use the infinite-
dimensional nonlinear Partial Differential Equation (PDE)
model [2], [3]. In the case of a Greenshields’ fundamental
diagram [2], the obtained PDE is hyperbolic and control is
usually applied at the boundaries of the PDE, i.e. at entrance
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and exit, using ramp metering for instance [1]. The control
strategies can be of various types: explicit state feedback [4],
PI control [5] or backstepping [6]. Nevertheless, boundary
control is difficult to derive and may lead to unrealistic
infinite-dimensional control laws. Recently, there has been a
push for in-domain, or Lagrangian traffic control. In [7], the
authors use a moving bottleneck to help dissipate congestion
faster. A similar idea is used in [8], [9].

Almost all the traffic control laws developed previously
require the knowledge of the full-state. In other words, either
there are sensors everywhere along the road or the state is
estimated using an observer. There is not much work on
observers for traffic flow (see the survey in [10]). In the
recent article [11] for instance, a backstepping observer is
derived for a congested road only. However, from the point
of view of traffic control, the most interesting case is when
we have a mixture of congestion and free flow. In [12], an
estimate of the flow in this case is considered but it relies
on a merger of the free flow and congested flow estimates.
More recently, in [13], [14], [15], [16], observers based
on measurements from probe vehicles are proposed. Using
vehicles as sensors makes sense since the vehicles today are
well-equipped and, within a decade, they may be able to
communicate with the infrastructure.

The main contribution of this paper is continuing the work
started in [8], using Connected Automated Vehicles (CAVs)
as moving bottlenecks to dissipate stop-and-go waves. The
main novelty is that instead of assuming we have full
information of the traffic conditions everywhere on the road,
we base the control on the reconstructed traffic state which
is obtained using probe vehicles as sensors. The proposed
algorithm for reconstruction is designed so that the commu-
nication burden is reduced, using a triggering mechanism to
activate probe vehicles where additional sensing is required.

To this end, in Section II, the models used in the article are
stated. Next, in Section III a control law for stop-and-go wave
dissipation using controlled moving bottlenecks is presented.
Then, in Section IV we describe a simple algorithm, used to
reconstruct the traffic density on the road, based on local
probe vehicle measurements. Finally, in Section V we test
the state reconstruction and control schemes and discuss the
simulation results, and in Section VI, we conclude.

II. MODEL FOR OBSERVATION AND CONTROL

Throughout this paper, we are interested in modeling a
portion of a freeway with two lanes. We adopt the discretiza-
tion of the Lighthill-Whitham-Richards model [2],

∂τρ(τ, x) + ∂x (vρ) (τ, x) = 0 (1)
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where ρ(τ, x) ∈ [0, P ] is the average density on the road at
point x and time τ over the two lanes. The average speed of
the vehicles at some point v(τ, x) is directly determined by
the traffic density. Alternatively, it can be easier to express
the evolution of the traffic density using the traffic flow
q(τ, x) = ρ(τ, x)v(τ, x), representing the number of vehicles
passing through point x at time τ , and can usually be directly
measured using fixed sensors such as induction loops. There
are many different ways to model the dependence of the flow
on traffic density, i.e. the fundamental diagram. In this work,
we will be using the triangular, Newell-Daganzo fundamental
diagram,

q(ρ) = min (V ρ, Q, W (P − ρ)) ,

where P is the maximal density on the road, V is the free
flow speed, and W is the congestion wave speed.

In what follows, we first present the numerical scheme
that will be used to simulate (1), and then briefly describe
how the model can be extended to capture the behaviour of
stop-and-go waves and moving bottlenecks.

A. Extended CTM

A standard way of numerically solving and simulating (1)
is by applying Godunov discretization, which yields the well-
known Cell Transmission Model (CTM) [17]. Here, we use
the extended version of the CTM similar to the one in [9],
where the update of traffic density in cell i, ρi(t), is

ρi(t+ 1) = ρi(t) +
T

L
(qi−1(t)− qi(t)) ,

qi(t) = min (Ui(t)ρi(t), Qi(t),W (P− ρi+1(t))) ,

for each of i = 1, . . . , N cells, and q0(t) is the inflow to the
road segment that is defined externally. The cell length L
and time step T are linked by L = V T . This model differs
from the standard one in that we model the capacity drop
phenomenon [1] through letting

Qi(t) = min (V σ,W (P − (1− α)σ − αρi(t))) ,

where σ ∈ [0, P ] is the critical density and α ∈ [0, 1] and
by allowing the free flow speed of vehicles in cell i to vary
in time. For α = 1, we recover the previous case.

Given a reference traffic density profile ρki (t) that should
at times t be satisfied in cells ik−(t) to ik+(t), we may set

Ui(t) = V min

{
1,
ρki+1(t+ 1)

ρi(t)

}
, (2)

for i = ik+(t)− 1, and then recursively have

Ui(t)=Vmin

{
1,max

{
0,
ρki (t+1)−V−Ui+1(t)

V ρi+1(t)

ρi(t)

}}
, (3)

for i = ik+(t) − 2 down to ik−(t) − 1, in order to make
the actual traffic density converge to the reference. Where
not otherwise noted, we use the default free flow speed,
Ui(t) = V . Since the evolution of the reference density
profile in time is known for cells around a stop-and-go waves
and moving bottlenecks, this enables proper handling of these

phenomena, which would otherwise suffer from diffusion
that is inherent in the classical CTM. Reference density
profiles will be described in the following subsections.

B. Stop-and-go waves

In this work, we focus on stop-and-go waves that originate
from downstream of the road segment of interest. Once the
k–th stop-and-go wave, with density ρkc > σ, stretching from
cell ikt (t) to cell ikh(t) and with downstream end at zk(t),
is fully within the road segment, traffic density in its zone
should follow [9]:

ρki (t)=


ρkc , i = ikt (t), . . . , ikh(t),

ρkd+
(
ρkc−ρkd

) zk(t)−ikh(t)L
L , i = ikh(t),

ρkd, i = ikh(t) + 1,

until ikh(t) = ikt (t) and the stop-and-go wave is dissipated.
Here, the traffic density discharged from the stop-and-go
wave is

ρkd =
W

V

(
P − (1− α)σ − αρkc

)
,

and the downstream end of the wave moves according to

zk(t+ 1) = zk(t) + λdT = zk(t)− V (1− α)σ

P − (1− α)σ
T.

This traffic density reference profile holds from ik−(t) = ikt (t)
to ik+(t) = ikh(t) + 1.

C. Behavior of CAVs

Apart from modelling the dynamics of aggregate traffic,
we also need to describe the movement of specific CAVs, as
well as capture how changing their behaviour influences the
rest of the traffic. The reason for particular treatment of CAVs
is that we assume that they are able to communicate with the
infrastructure, sending information about the traffic in their
vicinity, and potentially receiving control actions to apply,
acting as both pointwise Lagrangian sensors and actuators.
We differentiate between three types of CAVs:

1) Inactive CAVs – not acting as sensors or actuators,
2) Probe CAVs – acting only as sensors, and
3) Actuator CAVs – acting as both sensors and actuators.
Remark 1: Having both probe and actuators CAVs is a

more reasonable assumption than considering only actuator
CAVs. Indeed, there already exist cars capable of sensing the
traffic situation and in the near future, there might be more
probe vehicles than fully automated ones. The third category
reflects the fact that we are not using all CAVs at any times
and that we can switch off some of them to decrease the
communication burden. �

We denote the position of the m–th CAV as ym(t), and
update it according to

ym(t+ 1) = ym(t) + vmy (t)T,

until the CAV reaches the end of the road segment and leaves
it. Initially, we index the vehicles on the road at t = 0
so that ym(t) ≥ ym+1(t), i.e. the lowest m corresponds to
the downstream-most CAV, and each of the newly arrived



CAV will get a higher index. This ordering may change
in the event of CAVs overtaking each other. However, the
ordering will always be preserved in case of actuator vehi-
cles, ym(t) > ym

′
(t) if m′ > m, m ∈ Ya, m′ ∈ Ya, since

actuator vehicles will not overtake each other. The speed of
vehicle m is given by

vmy (t) = min
{
vimy (t)(t), u

m(t)
}

where vimy (t)(t) is the density-dependent speed of the traf-
fic in cell imy (t) = bym(t)/Lc where the m–th CAV is,
vi(t) = qi(t)/ρi(t), and um(t) ∈ [umin, V ] is the control
input. If the m–th CAV is inactive, a probe vehicle, or an
actuator vehicle not being actively controlled at time t, we
set um(t) = V and the vehicle moves with the flow of traffic.

If we externally impose speed um(t) < vimy (t)(t), i.e. force
the m–th CAV to move slower than the rest of the traffic, it
will begin to affect the traffic flow at its position by acting
as a moving bottleneck. This phenomenon may be modelled
by using (2), (3) with density profile reference [9]:

ρmi (t)=


ρmb (t), i = imy (t)− 1

σb+(ρmb (t)−σb)
ym(t)−imy (t)L

L , i = imy (t),

σ − σb, i = imy (t) + 1,

and im− (t) = imy (t) − 1, im+ (t) = imy (t) + 1, and where
the density of the congestion in the wake of the moving
bottleneck is

ρmb (t) =
WP − (V − um(t)) (σ − σb)

um(t) +W
.

For the purpose of control, this congestion is also counted
as a stop-and-go wave, with ρkd = ρmb (t), λd = um(t) and
zk(t) = ym(t).

III. CAV-BASED CONTROL

In nature, the density of vehicles on the road is bounded
and then traffic flow systems are stable in the classical
sense. The aim of the control is therefore to improve the
performances. In [1], many cost functions are introduced to
optimize ecological or economical indices. In this work, we
focus on the Total Time Spent (TTS) defined as the time it
takes for cars to exit the road, expressed by

TTS =

tmax∑
t=1

T

(
n0(t) +

imax∑
i=1

ρi(t)L

)
,

where n0(t) is the number of vehicles queuing to enter the
road at its upstream end.

For the control, we use a subset Ya of activated CAVs as
actuators for the traffic flow. They are acting as controlled
moving bottlenecks, as in [8], [9]. Due to capacity drop, the
discharging flow from a stop-and-go wave will be lower than
the road capacity, causing an increase TTS for the vehicles
on the road. By reducing the speed of the actuator CAV,
we restrict the inflow to the stop-and-go wave to a value
smaller than its discharging flow. As a result, the length
of the stop-and-go wave will decrease over time until it is
fully dissipated, at which point the capacity of the road is

returned to its maximum value. Each actuator vehicle focuses
on dissipating one stop-and-go wave as soon as possible, if
there are any stop-and-go waves downstream of them. If we
predict the actuator vehicle m will fail to dissipate its focus
stop-and-go wave km, due to limitations on its minimum
speed, we force the next actuator vehicle upstream of the m–
th CAV to focus on the same stop-and-go wave, km′ = km.
Otherwise, each actuator vehicle will focus on the first stop-
and-go wave downstream of its position, ikmh > imy .

Denoting by nmyz(t) the number of vehicles between the
m–th CAV and the downstream end of the stop-and-go wave
km, we will have

ṅmyz(t) = (V − um(t)) (σ − σb) (V − λd) ρkmd ,

whereas the distance between ym(t) and zkm(t) will follow

ḋm(t) = żkm(t)− ẏm(t) = λd − um(t).

We minimize the adverse effects that the stop-and-go wave
has on the traffic flow by ensuring that we have nmyz(θ) = 0
and dm(θ) = 0 with minimum θ, since in that case the road
capacity is returned to its maximum value as fast as possible,
without excessively delaying the traffic.

This is achieved by setting the speed of vehicle m to

um(t) =
V
(
ρkmd − σ + σb

)
− λd

(
ρ̄imy ,i

km
h

(t)− ρkmd
)

ρ̄imy ,i
km
h

(t)− σ + σb
,

where ρ̄imy ,ikm
h

(t) is the average traffic density between the
actuator vehicle cell imy (t) and the downstream end of the
stop-and-go wave cell ikmh (t). If the speed thus calculated is
lower than the allowed minimum, um(t) < umin, we instead
apply um(t) = umin and conclude that the m–th CAV will
not succeed in dissipating the km–th stop-and-go wave.

Note that the initial average densities ρ̄imy ,ikm
h

(t) will be
calculated using the reconstructed traffic density profile,

ρ̄imy ,i
km
h

(t) =
1

ikmh − imy

ikm
h∑
i=imy

ρ̂(t)

based on the information that we have available in the
particular case. Therefore, the different cases of control that
are considered in this work are only distinguished based on
what information we use for traffic state reconstruction.

IV. TRAFFIC STATE RECONSTRUCTION

As mentioned in the previous section, in order to be able
to improve the traffic flow, we first need to sense and at least
approximately reconstruct the traffic density profile along the
road. Here we propose a simple traffic state reconstruction
scheme, and briefly discuss how we select which CAVs are
used as probe vehicles.



A. Methodology

We assume that we only have access to the information
about the traffic that is communicated by probe and actuator
vehicles on the road, from set Ys(t). Namely, we assume
that these CAVs can measure local traffic densities in cells
i ∈ Is(t) adjacent to the cell they are in,

Is(t) =
{
i :
∣∣i− imy (t)

∣∣ ≤ 1,m ∈ Ys(t)
}
,

assuming that the cell length L is chosen so that the sensors
on CAVs can indeed cover this range. This set will typically
change every time step, since the CAVs will move along
the road, leave the road segment at its downstream end,
and new ones will arrive at its upstream end. Using these
measurements, we can attempt to approximately reconstruct
the traffic density,

ρ̂i(t) =

{
ρi(t), i ∈ Is(t)
ρ̂i(t−1) + T

L (q̂i−1(t−1)− q̂i(t−1)) , i /∈ Is(t)
where q̂i(t) is defined the same way as qi(t), but using ρ̂i(t)
instead of ρi(t), and Ûi(t) that is calculated for ρ̂i(t).

Since here we assume that the traffic flow model is
known, there are only three sources of uncertainty in the
traffic density estimate: the initial condition ρi(0) (which
disappear in time [16]), the inflow q0(t), and the conditions
at the downstream end of the road segment, i.e. stop-and-
go waves arriving from downstream. We assume that at
least the average inflow q̄0 is known, which in practice
could be learned from historical data. Then, we may use
this value as the estimated inflow, q̂(t) = q̄0, if no other
information is available, as well as for initializing the traffic
density estimates, ρ̂i(0) = q̄0

V . However, unless they can be
measured in some other way, changes in the traffic conditions
downstream of the road segment will only be detected once
a probe vehicle reaches their spillback.

Note that in the proposed simple reconstruction algo-
rithm it is required that all probe vehicles communicate
their measurements at each time step, potentially straining
the communication resources. However, since many of the
vehicles will be in free flow, moving at the same speed
as the vehicles around them, the measurements that they
would communicate are often redundant. Therefore, it can be
beneficial to develop an algorithm that will only activate the
potential probe vehicles when their measurements is needed.
The complete control scheme is depicted in Figure 1.

B. Probe vehicle selection

It is clear that the quality of traffic state reconstruction can
only increase if we gain access to more information, i.e. use
more probe vehicles. However, in a situation where the com-
munication channel bandwidth is limited, it might be useful
to reconstruct the density with fewer sensors, eliminating
the redundant information. Information about the congestion
and stop-and-go waves is particularly important and will
significantly improve the control performance, whereas the
information about the rest of the road that is in free flow is
less impactful.

Fig. 1: Block diagram of the control scheme used here. The
triggering mechanism reduces the communication burden by
only activating the probe CAVs when their sensing is needed,
based on the reconstructed density.

Fig. 2: Picture of the road when congestion is detected.
It shows the trigger mechanism for activating the dormant
CAVs. Grey vehicles are human-driven, without sensing
capabilities while the black ones are CAVs that can be
switched on to become probe vehicles. Once the active probe
vehicle, shown in green, detects the congestion, the black
vehicles that are less than δ away from it activate sensing.

There are numerous ways of selecting which CAVs are
used as probe vehicles, and the selection will depend on the
intended purpose. Here, we propose a simple adaptive probe
vehicle selection scheme outlined in Figure 2. Denote by
Y the set of all CAVs. First, we use a subset Y0

s of CAVs
that are always activated. Ya is the set of actuated vehicles
(Ya ⊂ Y0

s ) and Ys(t) is the set of probe vehicles activated
at time t. When the vehicles in Y0

s detect any congestion,
we activate all vehicles that are less than some predefined
distance δ away from any cell where ρ̂i(t) > σ, i.e. where
we expect to encounter congestion, leading to the following
definition:

Ys(t) = Y0
s∪
{
m ∈ Y : ρ̂i(t) > σ, i− imy (t) ∈

[
0,

⌊
δ

L

⌋]}
.

After these vehicles leave the congestion, they will be deac-
tivated. With this selection scheme, we aim to improve the
quality of traffic state reconstruction that is most impactful
with regards to the control performance.

In the following section, we will compare this probe
vehicle selection scheme to using only the probe vehicles
from Y0

s , as well as with using all CAVs as probe vehicles.

V. SIMULATIONS

The efficiency of the proposed traffic density reconstruc-
tion scheme and control law is studied in simulations with
different parameters. The initial traffic densities, flow into
the road segment and stop-and-go waves entering the road
from downstream are randomized and the same values are



(a) G = 0.5km (b) G = 1km (c) G = 1.5km (d) G = 2.5km

Fig. 3: Median delay compared to the no control case shown for different pp and G for a given pa = 0.3.

Case Sensors Actuators

No control ∅ ∅

Predefined subset of CAVs Y0
s ⊂ Y Ya ⊂ Y0

s

Adaptive subset of CAVs Ys(t) ⊂ Y Ya ⊂ Y0
s

All CAVs Y Ya ⊂ Y

Full-information all the road Ya ⊂ Y

TABLE I: Summary of different state reconstruction and
control scenarios using CAVs.

q̄0 = 3200 veh/h σ = 40 veh/km α = 0.25

V = 100 km/h W = 50 km/h umin = 30 km/h

TABLE II: Simulation parameters.

taken for all parameter combinations. The arrival of CAVs
is modelled as Poisson arrival process with average gap of
G, and the newly arrived vehicle is a probe vehicle with
probability pp, an actuator vehicle with probability pa (in
which case it also acts as a probe vehicle), and an inactive
CAV if it is neither a probe nor an actuator vehicle.

We executed 100 simulations for every different
combination of parameter G and ps values, with
G ∈ {0.5km, 1km, 1.5km, 2.5km}, pp ∈ {0.1, 0.3, 0.5, 0.7},
with pa = 0.3. For each simulation run, five control cases
were used, as summarized in Table I. The performance
metric that we use is the median of the delay ratio,

TTS − TTSmin

TTSunc − TTSmin
,

i.e. the ratio between the increases of TTS in the controlled
and uncontrolled case. The increase is calculated compared
to the minimum TTSmin = q̄0

V ltsim, where l = 5 km is the
length of the simulated road segment and t = 1 h the duration
of each simulation run.

The simulation results are shown in Figure 3. We can
see how increasing pp affects the control performance for
constant G and pa. Unsurprisingly, we can see that control
performance deteriorates as we use less and less information.
When G = 0.5 km, the full-information control achieves the
best performance, eliminating close to 80% of delay, whereas
using all CAVs as sensors eliminates around 72% of delay

for the same G. In case we are using a subset of CAVs
as sensors, the performance will improve as pp increases,
starting from eliminating around 60% and 65% of the delay,
using a predefined and adaptive subset of CAVs as sensors
respectively, and approaching the performance of the case
where we use all CAVs as sensors as pp + pa go to 1, when
the same subsets of CAVs are used. We can also see that
the main factor determining the control performance is the
average gap between two CAVs. When G is very low, all
control schemes achieve good results, and probe vehicle-
based control approaches the full-information control.

To further illustrate the control and state reconstruction
algorithms, in Figure 4 we show a detail from one of the
simulation runs. The figures show the density profile along
the road, with brighter colours representing denser traffic.

The baseline case, with no control, is shown in Figure 4a,
and the full-information control case is shown in Figure 4d.
A stop-and-go wave originating from downstream enters the
road around t = 0.52 h, and propagates upstream unless
dissipated by applying some control action.

Figures 4b and 4c show the attempt to dissipate the
congestion using only the predefined set of CAVs (shown in
green and red) as sensors, with the real traffic situation ρi(t)
shown in Figure 4b, and the reconstructed estimation of the
traffic state ρ̂i(t) shown in Figure 4c. Around t = 0.536 h, an
actuator vehicle runs into the stop-and-go wave, detecting it
as it goes through it. The actuator vehicle upstream reacts by
slowing down and restricting the flow. Four inactive CAVs
reach the stop-and-go wave before the actuator vehicle, but
since they transmit no information, the control law underesti-
mates the width of the wave and the CAV fails to completely
dissipate it. However, in case we use the proposed adaptive
probe vehicle activation, once these four inactive CAVs get
close to the congestion, they are temporarily activated, as
shown in Figures 4e and 4f (shown in dashed green). The
additional information corrects the underestimation, and the
stop-and-go wave is successfully dissipated.

VI. CONCLUSION

To conclude, in this paper we explored the effect of
using reconstructed traffic state on the efficiency of the
control, compared to the full-information case. Both the state
reconstruction and actuation are executed using connected
automated vehicles. We have seen that the difference between



(a) Real density without control. (b) Real density with reconstruction-based
control using a predefined subset of CAVs.

(c) Reconstructed density of situation (b).

(d) Real density with full information control. (e) Real density with control using an adap-
tive subset of CAVs.

(f) Reconstructed density of situation (e).

Fig. 4: Traffic density obtained from a numerical simulation in different cases. The trajectories of inactive CAVs are in
black, probe vehicles in green and actuator vehicles in red.

the full-information case and the reconstructed-based control
is diminished by introducing more probe vehicles. We also
proposed a triggering mechanism which reduces the com-
munication burden, by reducing the number of active probe
vehicles, without sacrificing too much control performance.

This preliminary work shows that the Lagrangian state
reconstruction should be investigated in more detail since
the preliminary results seem very promising. The work con-
ducted here should also be extended to other traffic models.
Then, a more refined model could be used with noise in
the measurements and external disturbances. Finally, a more
formal analysis also needs to be conducted.
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