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Abstract— Scheduling and Routing in freight transport are 

usually the end products of an optimization process. However, 

the results may differ due to the heterogeneity of rules in 

different transport markets. Since the understanding of these 

decision rules is important for disaggregate freight modeling, 

this paper investigates the development of an effective decision 

tree method for extracting them from an extensive freight 

transport data. We applied the method to model departure 

time and type of tours in freight transport of agricultural 

products. Having these two models together help us understand 

the whole anatomy of the freight activities for the selected 

transport segment.  The models highlight the characteristics of 

time-of-day freight activities for this sector and indicate the 

importance of spatial and temporal characteristics in capturing 

the distinctions of the type of tours. 

I. INTRODUCTION 

Identifying the structure of tours in freight activities is 
crucial for freight and traffic management. Time-of-day (i.e. 
scheduling) and type-of-tours (i.e. Routing) are the two key 
characteristics of the freight transport activities that are 
believed to be conditioned upon the motorways’ level of 
service [1]. From a travel demand management perspective, 
Time of day models shed light on the commercial vehicles 
pattern to understand their sensitivity to congestion. 

The importance of time-of-day modeling is even more 
relevant in the light of the increase in containers’ throughput 
of large logistic hubs such as port of Rotterdam (roughly 5 % 
according to [2]). Dynamics in departure time of freight 
traffic may have large impacts on motorway congestion; 
whereas in turn, those congestion problems may have large 
impacts on logistics operations [3]. Despite its importance, 
there is little research on freight transport departure time 
choice. Many of the earliest freight demand modeling 
frameworks use Monte Carlo simulation in which departure 
times are sampled from (limited) observed start times [4]. 
Probably, the first time-of-day model in freight transport is 
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proposed in reference [5]. In this model, the authors use a 
discrete choice model estimated on survey data to obtain the 
probability that a delivery tour departs at a  certain time of 
day from an origin. A recent time-period choice model based 
on stated preferences for road freight transport can be found 
in [6]. This research is followed by [7] using revealed 
preference (GPS tracking data of trailer) to model time of day 
choice. These authors use a nested logit model to improve the 
models’ fit. A discrete-continuous Probit model is also 
proposed in [1] for modeling the time-of-day choice behavior 
of commercial vehicles in urban areas. 

The type of tour is important for transport managers to 
understand how logistic operational strategies change due to 
the conditions on motorways. For example, they can identify 
whether reducing/increasing the number of trips per tour (i.e. 
intermediate stops) can improve the efficiency of commercial 
vehicle tours when facing congested areas. There is a limited 
amount of literature that focuses on “type of tours” modeling 
as well. An early study of commercial vehicle delivery 
strategy can be found in [8], which is followed and modified 
further by [9]. These studies used mixed and multinomial 
logit to model multiple types of tour classification. 
Researchers in [10] develop a multiple discrete-continuous 
choice method to model a joint distribution of type of tour 
and number of trips for commercial vehicles.     

From the literature, it is clear that modeling time-of-day 
and type of tour in freight transport is a complex task, 
particularly since the freight transport industry includes many 
submarkets. Examples are agricultural products, food 
products, and chemical products. Generally speaking, they all 
have the same pick-up and delivery scheduling tasks to 
satisfy their demand. However, their performance is quite 
diverse when it comes to the operational details. Due to this 
heterogeneity, understanding and simulating the disaggregate 
freight transport activity is an important topic in freight 
modeling. One of the challenges is that the data for different 
industrial sectors are not easily available. Another key issue 
is that classical choice models can be used to study the 
preferences of decision-makers when he/she can make one 
choice among the discrete alternatives. However, this is not a 
good assumption to model type-of-tour and time-of-day 
departure time in freight transport. Because these features are 
the output of an optimization process (i.e. routing and 
scheduling) and thus rather more associative rules than the 
discrete choice of decision-makers.  

In this research, we propose an alternative machine 
learning approach to model departure times. We learn these 
patterns from a unique and extensive database of tours, from 
which we derive decision rules to explain tour patterns in the 
freight transport activities. In this paper, we present two 
analyses. The first part considers descriptive scheduling of 
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tours using decision trees which aims to find patterns in the 
departure time of tours. In the second part, we extract 
probabilistic rules that can explain different pick-up and 
delivery strategies and predict the average number of stops 
simultaneously. These two models together explain “the 
anatomy of tours” taking both routing and scheduling into 
account. The specific contributions of this paper are: (a) 
analytical insight of daily activities in freight transport from 
empirical data with many detailed features, (b) a decision tree 
classification approach to classify tours according to their 
scheduling and routing. (c) a method to fuse loop detector 
data and ground truth tour data to analyze the efficiency of 
tours.  

The remainder of this paper is organized as follows: 
Section II describes the data structure and fusion of multiple 
data sources. Section III presents the methodology with 
which we characterize freight activities. Section IV. denotes 
results of the descriptive tour scheduling model and marks 
findings from descriptive analysis of the freight routing 
patterns.  Section V, in the end, offers concluding insights. 

II. MATERIALS 

For this study, we make use of multiple data sources to 

enrich one from another.  The datasets we use are first the 

XML data set of truck diaries provided by the Central 

Bureau of statistics in the Netherland (CBS). In total CBS 

collected 2.65 million shipment records from the year 2015 

which contain information regarding loading/unloading 

locations, commodity type, and vehicles used. The database 

has also been used in the Multi-agent simulation system for 

urban good transport (MASS-GT) models [11] The second 

data set is the distribution center (DC) database which comes 

from Rijkwaterstaat (RWS) in the Netherlands and contains 

over 1600 registered distribution centers along with their 6-

digit postcode, size, and sectors. Third, we use the 

transshipment terminal (TT) dataset which is provided by 

IDVV-binnenvaart game (IDVV inland shipping game) and 

contains information regarding their postcode, size, and 

annual throughput. The fourth data set we use for this 

research is vehicle counts. In the Netherlands, the National 

Data Warehouse (NDW) provides a stream of vehicle counts 

collected from loop-detectors on motorways.  

A. Data Fusion 

The XML data contain the geographic location of trucks 
loading and unloading along with detailed information about 
other tours and trip characteristics. The Data however lack 
the intermediate stop characteristics. As this information is 
important for understanding the tour pattern, we used a 
hierarchical multi-step deterministic and probabilistic 
matching algorithm to characterize intermediate stops in 
XML data with DC and TT data. More information about the 
data fusion process is in [12]. 

B. Count Data Processing 

Dispatchers in freight transport companies usually use 
optimization software to plan the tours. This software usually 
takes expected travel time into account while making routing 
and scheduling tables. This can affect the sensitivity of tours 

to congestion. To understand how the perception of 
congestion can reflect on characteristics of tours in different 
sectors, we make use of count data to obtain this perception 
of congestion for the intermediate stops. To estimate the 
aggregate congestion level for each geographical zone, we 
used the same method proposed in [13]. 

C. Congestion Indicator  

We use a moving average of delays encountered as the 

congestion indicator. To calculate this delay, we first require 

average speed on a road link. We then calculate the average 

speed as a moving average of speeds over a period T for the 

link i. 
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Where T is the duration of the period, t0 and t are the first 

and last time slots in T  respectively, and vi, j is the average 

speed obtained from loop detectors on the link i for the 

period T. while we considered the maximum measured 

average speed over a period as the free flow speed vfree, we 

define vmin as the lowest average speed for the link i: 

 ,min min i Tv v   (2) 

 Then the average delay during period T for the link i is: 
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We use di, T as an indicator for the congestion level for 

period T on link i measured in minutes per kilometer. 

Modifying the T parameter can limit the estimation of delay 

for a specific period. We used three specifications for this 

parameter i.e. morning peak (7:00 -10:00 AM), evening peak 

hour (3:00 to 7:00 PM), and rest of the day. We calculate the 

aggregate congestion level (CL) for every zone (PC4 

postcode) based on the average delay indicator:  

 

 
, ,z T i i T i

i z i z

CL l d l
 

    (4) 

The threshold for this indicator is considered to be 10 
seconds per kilometer in peak period as is recommended in 
[13] for motorways in Netherland.  

To make use of this indicator in our tour type and time of 
day analysis, first, we calculate the proximity of every zone 
to the congested zones, this way less congested zones that are 
close to or surrounded by high congested zones are also 
considered as congested. Secondly,  we assumed that every 
vehicle takes the shortest path from origins to destinations 
because the actual path and time of arrival for the 
intermediate stops are not reported in XML data. The only 
reported timestamps in this data belongs to the start and end 
of the tour. This is however a fair assumption as our 
congestion indicator takes a wide range of periods so that the 
arrival time of a trip would fit to the correct periods with high 
probability regardless of the actual path. Finally, we define 
two binary variables as if the first and later pick-up or 
delivery locations are in a congested zone at the time of 
arrival. This gives us information on the variation of freight 
activity patterns based on the perception of the congestion. 
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TABLE I.  LIST OF EXPLANATORY AND TARGET VARIABLES 

No. Variable  Description 

E1 

Number of shipments in 

the first visited location. 

0: 0-2 

1: 2-7 
3: > 7 

E2 Day of week [0 6]: [Mon. Sun.] 

E3 
Visit to Distribution 

center 

1: yes 

0: no 

E4 
Visit to transshipment 

terminal  

1: yes 

0: not 

E5 
Congestion state of first 

intermediate stop  

1: congested zone 

0: otherwise 

E6 
Congestion state of 
other intermediate stops 

1: congested zone 
0: otherwise 

E7 Average Load factor  

0: 0-0.3 

1:0.3-0.4 
3: >0.4 

E8 Tour distance 0: 0-47 km,1: >47  

E9 
Average Distance of 

trips 

0: 0-37 km 
1: 37-64 km 

2: 64-95 km 

3: 95-140 km 

E10 Empty container/pallets  

1: if a trip is with an 

empty container or 

pallets 
0: otherwise   

E11 Vehicle Type 
0: truck  

1: truck trailer  

T1 Type of Tour  
1: direct 
2: collection  

3: Distribution 

T2 Number of stop Min: 1 max:33 

T3  Departure time  

1 : (6:00-11:00] 

2 : (11:00-15:00] 

3 : (15:00-20:00] 
4 : (20:00-6:00] 

D.  Tour data 

   Table 1. shows a description of the explanatory (labeled 
with E) and target (labeled with T) variables that we used for 
our analysis. The continuous explanatory variables E1, E7, 
and E8 are discretized into 4 categories based on their 
distribution quantiles.  

III. METHODS 

The decision tree is one of the simplest but powerful 
machine learning methods to build descriptive models. These 
models identify which covariates can explain the variability 
of the response variable by recursive partitioning of all the 
data according to the most significant covariate [14]. There 
are three strong reasons for the popularity of decision trees. 
First is the interpretability of the tree structures. Many 
machine learning algorithms have high prediction accuracy 
but are essentially black boxes. Decision tree models, 
however, have the joint advantage of being interpretable and 
having high accuracy. The second advantage of decision tree 
models is that these methods make no probability distribution 
assumptions but are still able to identify explanatory 
variables and detect interactions among them. There are 
different types of decision tree methods. The first regression 
tree algorithm is Automatic Interaction detection (AID). This 
algorithm was further improved by [15] through Chi-squared 
Automatic Interaction Detection (CHAID). However, the 
disadvantages of these methods include sensitivity to the 

overfitting problem as well as a bias towards covariates in 
case of many split possibilities [16]. To address this problem, 
an unbiased recursive partitioning by conditional partitioning 
(Ctree) was proposed in [16]. In this paper, we utilize Ctree 
to model both departure time and type of tours. Besides the 
general advantages of decision trees, this decision-tree 
method does not require any pruning and thus provides us 
with a more robust model with less complex rules. As in our 
type-of-tour model, we want to model a joint discrete type of 
tour and continuous distribution of the number of stop for 
each tour type, we add one preliminary step to the method to 
be able to handle the bivariate discrete-continuous response 
variable. 

A.  Discretizing continuous variable 

To handle bivariate discrete-continuous variables, there 
are three regular approaches. One is to model each response 
variable separately which does not take into account the joint 
distribution of the two random variables. The second 
approach is to use copulas joint distribution to make a joint 
distribution from the bivariate variable. The third approach is 
to discretize the continuous variable and coupling the two 
discrete variables for all possible matches. For this research, 
we used the third approach as it is simple to implement and 
takes into account the correlation between the two response 
variables as well. We use however a systematic way of 
discretizing the continuous response variable.  For each 
discrete value in the discrete response variable, we take the 
probability distribution of the continuous variable. Then for 
each category, we use the k-means clustering technique to 
find the best discrete ranges. And then we couple the discrete 
response variable with the center and variance of all the 
possible clusters of the continuous variable. It implies that 
every tour type is coupled with possible two or three clusters 
of the number of stops within that type of tour. This approach 
is more accurate than simply discretizing the continuous 
variable without taking into account the discrete response 
variable.  

 

Figure 1: building blocks of the time-of-day and type-of- tour models 

B.  Decision tree  

  For this paper, we used Ctree from the Party package in 
R. For the details about the methodology we refer to [16] 
which describes the method implemented in this package. 
Here, we briefly highlight the main ideas. This algorithm has 
three steps: 
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 Take the independence test between any of the 
covariates and the response variable. Stop the 
algorithm if the null hypothesis cannot be 
rejected for all variables. Otherwise, choose the 
covariate Xj with the strongest correlation with 
the response variable Y. 

 Choose the best subset A from Xj that can split 
Xj into two disjoint sets. 

  For each of the splits, repeat steps 1 and two 
respectively.  

This algorithm is based on permutation statistics tests and can 
work under a certain confidence interval without requiring 
any pruning or cross-validation [16]. The only parameters 
required include the required level of confidence (usually 
95%) and the minimum number of cases in leaf nodes or the 
minimum number of weights that are required to split each 
node. This usually depends on the sample size of the training 
set. 

IV. RESULTS AND DISCUSSION 

In this section, we discuss the two decision tree models 
we developed with which we identify rules that can explain 
the structure of tours in freight activity of the agricultural 
products. Each resulting decision-tree is composed of nodes, 
which are numbered with positive integers from the root (e.g. 
top-node 1 in Figure 1) via intermediary nodes to the so-
called leaf nodes (the bottom row of nodes: 3, 5, 6, 11, etc. in 
Figure 1). The first model describes the patterns in departure 
time of tours while the other model provides insight into the 
distinctions of the type of tours. Additionally, this latter 
model simultaneously predicts the average number of stops 
per tour type strategy. Both models are constructed using 
7382 tours scheduled to transport agricultural products. We 
used a random sample of 80% of these data to estimate the 
model and the rest to test the (predictive) performance of the 
model.  Figure 2 shows a schematic view of a tour structure 
and its components.  

 

Figure 2:schematic of a tour structure and its components 

Concerning all these components and dispatchers’ 
perception of the congestion, we utilize the two developed 
models to identify the structure of tours by addressing the 
following five questions:  

1. Under what circumstances are tours scheduled 
in off-peak hours and What type of tour 
strategies is planned to avoid congestion?  

2. How does the activity of logistic nodes 
influence departure time and type of tour 
strategies?  

3. How can tour/trip distance distinguish the 
structure of tours? 

4. How can empty trips or the number of 
commodities affect the scheduling of tours?   

5. How can vehicle type affect routing and 
scheduling of shipments?  

A. Congestion related rules  

In this section, we use both type-of-tour and time-of-day 
models to address question 1. We use all the explanatory 
variables listed in Table 1 as the input.  Figures 3 and 4 are 
the estimated tree structure for the freight departure time 
schedules and type of tour strategies respectively.  To 
understand the congestion avoidance strategies in this market, 
we look at nodes related to the congestion indicator of first 
and later intermediate stops. Following are significant rules 
that identify the structure of tours facing congested zones:  

 Comparing leaf node 3 with leaf nodes 5 and 6 
in figure 3 indicates that the chance of 
scheduling a tour before morning peak hours 
(before 6:00 AM) increases if visiting pick-up or 
delivery locations are located in congested 
zones. 

 Dispatchers schedule Tours in the early morning 
or at night if the average trip distance between 
pick-up and delivery locations is more than 64 
km (see Figure 3, nodes 4 and 5).  

 Tours with 1 or 2 commodities have a high 
chance to depart at the evening peak period 
(Figure 3, node 16).  This means that tours with 
a lower number of commodities usually do not 
avoid the peak period. 

 In general, customers are served in a collection 
or distribution type of tours if they are located in 
congested zones (figure 4). On the other hand, 
planners schedule direct tours more often if there 
is no congestion.   

B. Logistic Nodes specific rules 

We considered three types of logistics nodes in this study: 
Distribution centers, transshipment terminal, and 
producer/consumers. However, the extracted rules related to 
the logistic node activity are very limited in both models. 
From model 1, we obtain three rules regarding to the 
departure time of tours visiting distribution centers (Figure 3, 
nodes: 14, 15, 23).  
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Figure 3:Estimated conditional inference tree for the scheduled departure time of tours 

departure time

→ {

(6: 00 − 11: 00],                           Tripdist ≤ 64 km
(15: 00 − 20: 00], 64 km < Tripdist ≤ 95 km
(20: 00 − 6: 00],                           Tripdist > 95 km

 

Model 2 however does not show any significant rule for 
distribution centers. This is because most of the agricultural 
products in our data are distributed directly from producers 
and rarely go through other distribution centers. Therefore, 
the model does not suggest a significant distinction between 
tour type strategy of producer/consumer and distribution 
centers. It however identifies one significant rule for 
transshipment terminals:  

 Tours visiting transshipment terminals are 
usually planned in a collection type of tour 
with four stops on average.  

This rule implies that most of our tour data that go through 
transshipment terminals belong to the export of agricultural 
products. Third-party carriers pick-up commodities from 
several producers and deliver them to a transshipment 
terminal.  

C. Trip/Tour distance 

Tour and trip distance can be interpreted as transport 
costs. We obtained the following rule regarding tour and trip 
distance to address question 3. 

 Figure 3 - Node 4 shows that the tours with 
higher trip distance (transport cost) are more 
likely to depart at night. The reason for this is 
that carriers usually should deliver 
commodities during working hours. Therefore, 
they depart at night/early morning not only to 
avoid congestion and reducing travel time 

costs but also to arrive during the working 
hours. 

 We can see from Figure 4 – nodes 4 and 5 that 
the shorter the tour distance, the higher the 
number of stops in the distribution type of 
tour. In other words, planners may serve more 
local customers in one tour in a short distance 
and fewer customers in long distance.  

D. Number of Commodities and empty trips  

In this section, we address the question 4. Both models 1 
and 2 indicate that number of commodities is one of the most 
important features to predict time-of-day and type of tour 
activities. The following rules are obtained from our DT 
models: 

 Planners usually plan tours with more than 2 
commodities in the early morning or night 
delivery (see Figure 3).  One possible 
explanation for this rule is that the loading time 
is higher in this case and they must be 
scheduled in a way to avoid the peak periods 
and arrive on time.  

 Neither model 1 nor model 2 identify any 
significant rule for empty trip (i.e. transporting 
empty pallets or empty containers) 

 Given that the pickup and delivery locations are 
congested, Planners usually serve customers 
with : 

Tour type →

{
distribution, number of commodity > 7
collection,      number of commodity ≤ 7
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E. Vehicle type  

Vehicle type is also one of the significant explanatory 
variables in both models. The following rules obtained from 
the models.  

Mode 1 (Figure 3): 

 Trucks have a higher chance of stating a tour 
between 11:00 AM and 3:00 PM.  

 Trailers usually start a tour between 6:00 AM 
and 11:00 Am and also between 3:00 PM and 
8:00 PM when there is no congestion.  

Model 2 (Figure 4):  

 For the vehicle type truck, the chance for the 
collection type of tour with four average stops and 
distribution type of tour with six stops is almost the 
same (see the node 13). 

 Looking at the tours with one or two commodities, 
they are mostly scheduled in a collection type of 
tours. For this type of tour, if the vehicle type is 
truck, the average number of stops is in the higher 
category (8 stops on average, Node 15).  

 However, if the vehicle type is a truck trailer, it 
depends on if a transshipment terminal is visited. in 
this case, the commodities are scheduled in a 
collection tour with a higher number of stops (8 
stops on average, Node 17). Otherwise, they are 
more likely to belong to a collection tour with less 
number of stops (4 in average, Node 19 and 20). 

V. MODEL PERFORMANCE AND EVALUATION 

Table 2 gives information about the model parameters, 
predictive performance, and model fit. The accuracy of the 
models comes from the true positives, true negatives, false 

positives, and false negatives measures derived from the 
confusion matrix. However, to take into account the impact 
of imbalanced class distribution on accuracy, we report the 
F1-score, and one-vs-all (BAcc) accuracy. We also report the 
Kappa indicator which shows that how better the model is 
compared to predicting the class just by a random guess 
(23% in model 1). The goodness-of-fit emodel (0.47 for model 
1)  is equivalent to R2 and is calculated based on the 
probabilistic theta proposed by [17]. eroot is the goodness of 
fit for a tree just on its root. The eincr measures the 
improvement of the model compared to its root model. The 
parameter ISi indicates the effect of each covariate on the 
prediction of the class i and the IS is an indication of the 
overall impact of each variable on the target variable. These 
coefficients are based on Chi-squared statistics between the 
frequency table predicted by the model for each variable and 
the expected frequency table assuming that there is no impact 
of that variable [17].  Besides the impact of the covariates, 
the direction of the impact is also interested. The MSi is 
calculated based on the frequency of the class i under each 
level of the specific condition variable. This indicator is equal 
to 1 if the explanatory variable has a monotonically 
increasing impact on class i and is equal to -1 if it has a 
decreasing impact. If the indicator is between -1 and 1, the 
variable has a non-monotonous positive or negative impact 
on the class i. Note that this indicator is only meaningful for 
the ordinal or binary variables. For example. It does not mean 
anything for variable E2 which is the day of the week. All the 
coefficients in Tables 2 and their signs are also following the 
structure of the tree explained at the beginning of this section. 

Model 2 shows a high accuracy (0.79), high balanced 
accuracy (0.91), and high kappa= 0.7 in predictions. It also 
has relatively high goodness-of-fit = 0.67 on test data. The 
parameter of the models shows the impact of each of the 
explanatory variables on the prediction of the target 
categories.  

 

Figure 4. Estimated conditional inference tree for the joint model of the type-of-tour strategies and number of stops 
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TABLE II.  MODELS PARAMETERS AND PERFORMANCE 

Models  IS IS1 IS2 IS3 IS4 IS5 MS1 MS2 MS3 MS4 MS5 P-
value 

performance 

Model 1 

E1 0.25 0.242 0.312 0.333 0.018 - -1 -1 -1 0.11 - 0.0005 Acc=0.56 

E2 0.17 0.011 0.156 0.166 0.328 - -1 -1 1 1 - 0.0005 BAcc=0.55 

E3 0.17 0.188 0.156 0.166 0.182 - -1 1 1 1 - 0.0005 F1-score=0.39 

E5 0.16 0.217 0.156 0.166 0.098 - 1 1 1 1 - 0.0005 Kappa=0.23 

E6 0.10 0.176 0.048 0.062 0.215 - 1 1 1 1 - 0.0005 e=0.47 

E8 0.07 0.132 0.059 0.051 0.095 - 0.01 0.09 0.02 -0.02 - 0.0005 e0=0.15 

E10 0.07 0.034 0.115 0.055 0.065 - -0.12 -0.15 0.34 0.19 - 0.0005 eincr=0.53 

Model 2 

E1 0.25 0.291 0.472 0.208 0.207 0.300 -1 -1 -1 0.13 1 0.0005 Acc=0.79 

E4 0.19 0.245 0.236 0.191 0.188 0.150 1 1 -1 1 1 0.0005 BAcc=0.91 

E5 0.05 0.077 0.098 0.036 0.053 0.025 1 1 1 1 1 0.0005 F1-score=0.71 

E6 0.13 0.016 0.035 0.189 0.142 0.064 -0.6 1 -0.4 -0.7 -0.4 0.0005 Kappa=0.7 

E7 0.17 0.243 0.015 0.185 0.177 0.123 -1 -1 -1 -1 -1 0.0005 e=0.67 

E9 0.13 0.110 0.044 0.138 0.179 0.141 1 -1 1 1 1 0.0005 e0=0.46 

E10 0.07 0.018 0.101 0.052 0.055 0.198 -0.05 -0.2 -0.3 0.14 0.19 0.0005 eincr=0.39 

 

VI. CONCLUSION 

In this paper, we proposed rule-based time-of-day and 

type of tour models which explain the general rules in 

freight transport of the agricultural product. The model's 

output explains how tours are scheduled in this market. 

Among all extracted rules from freight tour databases, The 

most outstanding findings are: (a) departure time of tours are 

sensitive to the congestion state of the pickup and delivery 

zones. (b) tours with high trip distances are more likely to 

depart in the early morning or night periods. (c) direct tours 

are usually planned for the uncongested zones. (d) in the 

agricultural industry, visiting a transshipment terminal 

happens more often in a collection type of tours. (e)  the 

shorter the tour distance, the higher the number of stops in 

the distribution type of tour. The extension of this modeling 

can be useful for application in the activity-based 

disaggregate freight demand modeling and simulation.   
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