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Abstract— In order for autonomous vehicles to become a part
of the Intelligent Transportation Ecosystem, they are required
to guarantee a particular level of safety. For that to happen
a safe vehicle control algorithms need to be developed, which
include assessing the probability of a collision while driving
along a given trajectory and selecting control signals that
minimize this probability. In this paper, we propose a speed
control system that estimates a collision probability taking
into account static and dynamic obstacles as well as ego-pose
uncertainty and chooses the maximum safe speed. For that,
the planned trajectory is converted by the control system into
control signals that form input for the dynamic vehicle model.
The model predicts a real vehicle path. The predicted trajectory
is generated for each particle – a weighted by a probability
hypothesis of the localization system about the vehicle pose.
Based on the predicted particles’ trajectories, the probability of
collision is calculated, and a decision is made on the maximum
safe speed. The proposed algorithm was validated on the real
autonomous vehicle. The experimental results demonstrate that
the proposed speed control system reduces the vehicle speed to
a safe value when performing maneuvers and driving through
narrow openings. Therefore the observed behavior of the system
is mimicking a human driver behavior when driving in difficult
and ambiguous traffic situations.

I. INTRODUCTION

The active development of the autonomous vehicles brings
closer their integration into the urban transportation sys-
tem. One of the main advantages of autonomous vehicles
over traditional human-driven cars is an increased driving
safety [1], [2], [3] or, in other words, a decrease in the
number of traffic accidents. However, in reality, there are
many technical and scientific problems, to overcome to
guarantee the safety of autonomous vehicles. One of these
problems is the safe vehicle control, which comprises as-
sessing the collision probability while driving along a given
trajectory and selecting control signals that minimize this
probability [4].

Many existing approaches to motion planning and the col-
lision probability estimation assume the precisely determined
vehicle ego-pose [5], [6]. However, when working in a real
environment, it is crucial to take into account the pose uncer-
tainty caused by unpredictable deviations in vehicle motion,
inaccuracies in sensor measurements, changing environment,
and other uncertainty factors. Thus, the task of assessing the
safety of the motion trajectory under conditions of ego-pose
uncertainty is of high priority, which is confirmed by the
great number of research dedicated to this problem (e.g. [7],
[8]).
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Fig. 1: Approximation of the space distribution of the future
trajectories (A), method to avoid a collision with obstacles
from static occupancy grid map (B), method to avoid a
collision with dynamic obstacles (C).

A common approach to motion planning and collision
probability estimation is Monte Carlo Motion Planning. It
estimates collision probability by repeatedly simulating the
vehicle movement along the desired trajectory [9], [10], [11].
The probability is calculated as the ratio of the number of
simulations in which the fact of a collision was recorded to
the total number of simulations. This approach requires a
large number of experiments to obtain a reliable estimate of
the probability, and, as a result, is computationally complex.

An alternative approach is based on the prior vehicle state-
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space probability distribution propagation along the prede-
fined trajectory [12], [13], [14], [15]. In [16], the authors
propose an extension to this approach, taking into account
that the distribution of states at each moment depends on
whether the distributions at previous time moments were free
from collisions. Accounting is carried out through truncating
the distribution at each step of the algorithm – discarding
hypotheses for which a collision is observed, and approx-
imating the truncated distribution by Gaussian one. Such
an approach makes it possible to propagate the truncated
probability distribution forward along the trajectory and, as a
result, makes it possible to calculate the collision probability
more precisely. The disadvantage of all algorithms based on
the propagation of prior distribution is the approximation of
sensors measurement errors and the uncertainty of vehicle
motion by the normal distribution. Such an approximation
allows one to calculate the collision probability analytically,
however, it is rarely observed in real-world problems.

Some works consider the problem of trajectory safety
assessment, not only taking into account static obstacles but
also considering possible trajectories of other road users [17],
[18], [19], [20].

Even though the tasks of trajectory planning and the
collision probability estimation are widely studied, most
existing approaches do not take into account the uncertainty
of vehicle ego-pose at the time of planning. The vehicles
current position is considered precisely known, and future
uncertainty is usually modeled by a normal distribution
centered in the points of the desired trajectory, which does
not reflect a real motion uncertainty.

A vehicle speed control system is proposed in this work. It
controls the speed to achieve an acceptable value of the colli-
sion probability which is imposed by the probability thresh-
old function. To assess the safety of the vehicle trajectory
under conditions of pose uncertainty the proposed system
accepts as an input an arbitrary probability distribution of
vehicle ego-pose, which also distinguishes it from existing
approaches. Unlike other approaches Monte Carlo method is
not used directly to assess the safety of the trajectory, but
only used to estimate the current probability distribution of
the vehicle position for the evaluation of proposed system.
Although the Monte Carlo localization method is used as
an ego-pose probability source the system can work with
any other type of ego-pose probability distribution (e.g.
Kalman filter). To assess safety, only a part of the future
trajectory, predicted by a vehicle dynamic model, is used.
This significantly reduces computational load and allows the
proposed approach to be used in real-time systems.

There are two main contributions presented in this paper.
The first contribution is the novel safe speed control system
which explicitly accounts for the vehicle ego-pose uncer-
tainty. The second one is the method for collision probability
estimation. The proposed method distinguishes uncertainty
handling for static obstacles specified in the global reference
frame and for dynamic obstacles which are detected in the
vehicle local reference frame.

II. PROBLEM STATEMENT

In this paper, we propose the Safe Speed Control System
Under Ego-Pose Uncertainty for Autonomous Vehicle. The
system has the following inputs:
• estimated vehicle pose Xt in map reference frame at the

current moment of time t;
• probability distribution of vehicle pose

M = {(Xt
i,w

t
i)} , where wt

i is the probability of Xt
i to

be an ego-pose;
• current vehicle speed V t ;
• reference trajectory T – the sequence of waypoints i.e.

global trajectory;
• static occupancy grid map Moc as a binary image;
• a set of detected dynamic obstacles D, where each

obstacle is a polyline that circumscribes the projection
of an obstacle to the road plane in the reference frame
attached to the vehicle.

The output of the system is the maximum safe speed Vs,
such that:

Vs = max
(
Vlim ∈ [0;Vmax]|P(C|Xt ,M,V t ,T,Moc,

D,τ,Vlim)< Ps(Vlim)
)
,

(1)

where Vmax is the maximum possible speed (restricted by
road properties), Ps(Vlim) – collision probability threshold
function, P(C| . . .) (further referred as to PC) – conditional
vehicle collision probability for given Vlim within the predic-
tion horizon [t, t+τ], τ – prediction duration, Vlim is a speed
limit for prediction horizon – the maximum allowed speed
on the predicted trajectory.

Simply put, the objective of equation (1) is to determine
Vs which is the highest speed limit among considered speed
limits Vlim that is considered to be safe, i.e. conditional
collision probability PC is less than collision probability
threshold determined by Ps(Vlim) function within prediction
horizon.

III. KEY ASSUMPTIONS

In order to estimate collision probability within prediction
horizon, it is necessary to analyze the space of all possible
vehicle future trajectories. The variability of future trajecto-
ries firstly depends on ego-pose uncertainty determined in
the map reference frame at the current moment of time,
and secondly on how this uncertainty will change over
time. Possible future changes of estimated pose will lead
to variations of future trajectory shape due to the shift
of new pose estimation relative to the reference trajectory.
Such changes are impossible to predict. We assume that
they may occur randomly at a random moment, then the
best approximation of the spatial distribution of the future
trajectories is shown in Fig. 1 (A). In this figure, green
lines are the copies of the predicted trajectory for current
estimated vehicle pose Xt . Each of them is transferred to
pose of every hypothesis Xt

i , in other words, they capture
the future motion of pose distribution in case of absence of
new sensory data. Red lines are possible trajectories provided
that a random hypothesis became the new estimated pose at
a random moment of time.



Since it is computationally intractable to generate so
many predictions of trajectories with sufficient discretization,
several simplifications are proposed.

In order to avoid a collision with static obstacles we can
predict trajectory for estimated vehicle pose and transfer it to
pose of each hypothesis without varying its shape (same as
green lines from Fig. 1 A). This approach allows us to assess
collision probability within prediction horizon in case of a
complete lack of new data to reestimate pose distribution,
which represents the worst-case scenario. If the collision
probability for the worst-case scenario does not exceed the
threshold value, then it will not exceed the threshold in
any other case. Schematically, this approach is illustrated in
Fig. 1 (B).

With dynamic obstacles, this approach is not suitable,
since their coordinates are measured relative to the vehicle
and for each hypothesis, the relative position of the obstacles
will be the same (provided that the error of the obstacle
detector is neglected). To estimate the probability, we can
consider the case in which the variation in the relative
profiles of predicted trajectories will be maximum. This
case arises if the trajectories will be predicted for each
hypothesis separately, taking it as the estimated vehicle pose.
Schematically, this approach is illustrated in Fig. 1 (C).

IV. SAFE SPEED CONTROL SYSTEM STRUCTURE

Fig. 2: Vehicle Safe Speed Control System flowchart.

The system structure is shown on Fig. 2. Safe speed Vs
is recalculated periodically. The calculation is performed in
cycle, where at each cycle iteration collision probability is es-
timated for given Vlim. The collision probability is determined

by two distinct probabilities: the probability of collision with
static PCstatic and with dynamic PCdynamic obstacles (both
described in the respective sections).

On a lower level, main operations inside the Safe Speed
Control System are:
• Trajectory prediction, described in Trajectory Predic-

tion Module section.
• Checking intersection of trajectories with static obsta-

cles Moc.
• Checking intersection of trajectories with dynamic ob-

stacles D.
• Collision probability estimation based on information

about collision for every trajectory. For static obstacles it
described in section Collision Probability Estimation
With Static Obstacles. With dynamic obstacles, it
works in a similar way.

• Safe speed estimation, i.e. determination of optimal
speed limit Vs based on the calculated collision prob-
abilities PC for various speed limits Vlim (according to
the equation (1)). Described in details in Safe Speed
Estimation section.

V. TRAJECTORY PREDICTION MODULE

Trajectory Prediction Module calculates the future trajec-
tory in real-time based on the dynamic model of the vehicle.
The inputs are vehicle current state (pose Xt , speed V t

and etc.), reference trajectory T, speed limit Vlim, prediction
duration τ . The output is predicted trajectory. The module
structure is shown in Fig. 3.

Fig. 3: Trajectory Prediction Module flowchart.

Trajectory Prediction Module combines the vehicle mo-
tion control system (CS) consisting of trajectory and speed
controllers and a dynamic vehicle model. CS used in this
module is fully identical to the one that controls the vehicle.
This guarantees the complete identity of the control signals
generated by both control systems.

In case of collision probability calculation with static
obstacles, a trajectory prediction is calculated for estimated



vehicle pose Xt only. In case of dynamic obstacles, future
trajectories are generated for each hypothesis separately,
taking its pose Xt

i as the estimated vehicle pose.

VI. COLLISION PROBABILITY ESTIMATION
WITH STATIC OBSTACLES

The collision probability with static obstacles PCstatic is
estimated as follows:
• Trajectory Prediction Module calculates the future tra-

jectory for the estimated vehicle pose Xt (B in Fig. 5).
• The trajectory is transferred to each hypothesis so that

its beginning coincides with the current hypothesis
position, and rotates by the relative yaw angle. Thus,
trajectory of each hypothesis is obtained (C in Fig. 5).

• Every trajectory Ti is checked for collisions with static
occupancy grid map Moc. A trajectory is considered safe
if at every its point vehicle does not intersect with static
obstacles (D in Fig. 5).

• The probability of collision with static obstacles PCstatic
is calculated:

PCstatic =
∫

M P(Cstatic|X = Xi)P(Xi)dXi ≈
≈ ∑

n
i=1 P(Cstatic|X=Xi)wi

∑
n
i=1 wi

=

= ∑
n
i=1 P(Cstatic|X = Xi)wi,

(2)

where
∫

M dXi is an integral over pose distribution. The Monte
Carlo method approximates this space with a discrete set of
particles, so the integral is replaced by the sum over the set
of particles; n is the number of trajectories, each corresponds
to the i-th particle; P(Xi) = wi is the probability of i-th
particle pose to be the current vehicle pose; P(Cstatic|X = Xi)
is the probability of a collision between vehicle projection
R(X) and static obstacles along the trajectory, given that i-th
particle pose is the current vehicle pose:

P(Cstatic|X = Xi) =

{
0, if ∀X′ ∈ Ti : R(X)∩Moc = /0,
1, otherwise.

(3)

VII. COLLISION PROBABILITY ESTIMATION
WITH DYNAMIC OBSTACLES

The collision probability with dynamic obstacles PCdynamic
is calculated in a similar way, except that for each hypothesis
pose Xt

i the trajectory prediction module predicts trajectory
separately (assuming Xt

i to be the vehicle pose). After that,
it is the relative profile of each trajectory in the vehicle
reference frame that is checked for the presence of collisions
with obstacles D (also defined in the vehicle reference
frame).

VIII. SAFE SPEED ESTIMATION

Total collision probability PC with both dynamic and static
obstacles can be calculated as follows:

PC = 1− (1−PCstatic)∗ (1−PCdynamic) (4)

The resulting probability PC is used to calculate the maxi-
mum safe speed Vs. The dependence of PC on speed limit Vlim
for several arbitrary test cases is shown in Fig. 4. We assume
that function PC(Vlim) increases monotonically. According to

experimental results, it holds in most cases however slight
deviations are possible. If we neglect these deviations, then
instead of a brute-force search, the calculation of the safe
speed Vs can be performed by quick search algorithms,
e.g. binary search, i.e. at each iteration of the algorithm,
the obtained collision probability PC for the current speed
limit Vlim is compared with the value of the probability
threshold function Ps for the same Vlim. After this, the
collision probability Ps is recalculated for the new speed limit
value Vlim set according to the binary search algorithm from
the range [0;Vmax].

Fig. 4: Dependence of collision probability on speed limit

IX. EXPERIMENTAL RESULTS

The experiments were performed for collision avoidance
with static obstacles. The car-like robot was used as an
experimental vehicle.

In Fig. 5 on the left, the system step-by-step operation is
visualized. Here, blue indicates the estimated vehicle pose
and predicted trajectory, dark green indicates particles –
pose hypotheses, light green lines – future trajectories for
each particle. Trajectories ending with a red triangle have
collisions.

In Fig. 5 on the right, the vehicle trajectory obtained as
a result of real passage is shown. The trajectory color at
each point corresponds to the instantaneous speed of the
vehicle. Red color corresponds to zero speed, green - to the
maximum possible speed Vmax. The discontinuities observed
in the trajectory arise due to corrections of estimated vehicle
pose by the localization system. It can be seen from the
figure that the speed was severely limited in places where
the pose estimation was not accurate, the movement occurred
close to the walls or in front of difficult sections of the route
such as turns or narrow entrances. After clarifying vehicle
estimated pose or after passing difficult sections, the speed
was recovered.

Fig. 6 in the center shows the dependence of collision
probability PC on speed limit Vlim over time. Data are
recorded from real passage. Along the X-axis the route
passage time is shown. The Y-axis represents the sequence
of speed limit values from 0 to the maximum possible on
this route – 4 m/s. The color (according to the scale on the
left) shows the probability of a collision within the prediction
horizon τ for the entire range of speed limits. Since devia-
tions from the monotonic increase in the PC(Vlim) function
are insignificant, it is possible to use fast search algorithms



Fig. 5: Step-by-step visualization of the safe speed control
system operation (left). Vehicle trajectory with speed profile
obtained by the speed control system (right).

on ordered data to determine the maximum safe speed Vs.
Also probability threshold function Ps must be monotonically
decreasing or constant. It is noticeable that PC(Vlim) varies
greatly over time. Function rapid changes occur mainly
at the moments of localization resampling (resampling of
particles in the Monte Carlo localization algorithm). To avoid
unwanted jerks (alternating high accelerations and braking)
of the vehicle, several probability threshold functions Psi
were analyzed.

The lower part of Fig. 6 shows 3 dependences of the
collision probability PC on the speed limit Vlim over time
from the same passage, where black indicates forbidden
speed limits, the collision probability of which exceeds the
threshold according to Ps function. For clarity, the same
functions Psi, as well as the corresponding maximum safe
speeds Vsi for typical PC(Vlim) dependencies are shown in
Fig. 7. Back to Fig. 6, it is noticeable that when using the
decreasing functions Ps2 or Ps3, the maximum safe speed
limits Vsi change much smoother than when applying the
constant threshold function Ps1, motion becomes less jerky.
Moreover, the decreasing nature of the collision probability
threshold function Ps is justified by the fact that on the high
speeds even small threshold probability cannot be neglected

Fig. 6: Dependence of collision probability on speed limit
over time.

which means the threshold value should decrease with the
increase of speed.

In the central graph in Fig. 6 after the 200-th second,
a region is noticeable where, at low speeds, the collision
probability is close to zero, but when the speed increases it
abruptly becomes close to 1. The situations describing these
cases are shown in Fig. 6 in the upper right and upper center
images, respectively. We can see that the low probability at
low speeds is explained by the high accuracy of localization
in this section of the circular motion. A high probability
is caused by the fact that the trajectory control system is
not capable of completing a maneuver of a turn at such
speeds which leads to a collision. In other areas, the increased
probability of a collision is due, for the most part, to high
ego-pose uncertainty, as in the upper left image of Fig. 6.

X. CONCLUSION
In this paper we proposed the safe speed control system for

autonomous vehicle, based on real-time calculation of safe
speed limit. The main contribution is the method for collision
probability estimation that takes into account the ego-pose
uncertainty for calculation of collision probability with both
static and dynamic obstacles. Experiments showed that the
proposed system allows avoiding collisions by decreasing
vehicle speed.

The proposed approximations for taking into account the
uncertainty of future trajectories made it possible to obtain



Fig. 7: Types of collision probability threshold function and corresponding maximum safe speed values for few PC(Vlim)
charts (constant function on the left, decreasing linear function in the center, decreasing exponential function on the right).

an upper bound of the collision probability as the worst-
case scenario with a minimum number of computational
operations. Also, the use of the discovered property about the
monotonically increasing function of the dependence of the
collision probability on the speed limit allows us to reduce
the computational complexity by an order of magnitude. The
proposed method allows not only to prevent a collision with a
specific obstacle but can also be used to control the quality
of the localization system, i.e. with a high uncertainty of
ego-pose, the number of predicted collisions with arbitrary
obstacles increases, as a result of which vehicle will slowed
down or even stopped until the pose estimation will become
more accurate.

In the future, the proposed method of collision probability
estimation can be expanded by taking into account the error
model of dynamic obstacle detector. It is also possible to take
into account prediction of trajectories of dynamic obstacles.
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