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Abstract— Neural networks have become state-of-the-art for
computer vision problems because of their ability to efficiently
model complex functions from large amounts of data. While
neural networks can be shown to perform well empirically for
a variety of tasks, their performance is difficult to guarantee.
Neural network verification tools have been developed that can
certify robustness with respect to a given input image; however,
for neural network systems used in closed-loop controllers,
robustness with respect to individual images does not address
multi-step properties of the neural network controller and its
environment. Furthermore, neural network systems interacting
in the physical world and using natural images are operating
in a black-box environment, making formal verification in-
tractable. This work combines the adaptive stress testing (AST)
framework with neural network verification tools to search
for the most likely sequence of image disturbances that cause
the neural network controlled system to reach a failure. An
autonomous aircraft taxi application is presented, and results
show that the AST method finds failures with more likely
image disturbances than baseline methods. Further analysis of
AST results revealed an explainable cause of the failure, giving
insight into the problematic scenarios that should be addressed.

I. INTRODUCTION

Many autonomous systems interact in complex environ-
ments and operate with high-dimensional data, such as
images. Recent work has shown that neural networks can
be trained efficiently to make decisions for image-based
problems. Mnih et al. use deep reinforcement learning to
train neural network controllers that map Atari screen images
to controller commands to create game-playing agents that
outperform humans [1]. Additional work has shown that
neural networks can play chess [2], classify objects [3], and
recognize digits [4]. In addition, neural networks can be used
to control vehicles, such as steering cars [5], [6], guiding
aircraft to waypoints [7], and controlling quadrotors [8].

Although misclassifying a cat image is undesirable, steer-
ing vehicles off roads or into other vehicles can be catas-
trophic. Recently, tools have been developed that can verify
input-output properties of neural networks, such as those
representing aircraft collision avoidance policies [9]. These
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tools use the simplex method [9], [10], mixed integer linear
programming [11], symbolic interval analysis with linear
relaxation [12], and other approaches [13].

However, verifying input-output properties of systems
acting as closed-loop controllers is insufficient to verify
safety. Additional work has focused on verification of
multi-step properties of neural network controllers acting
within their environment [14]–[17]. Existing closed-loop
verification work is applicable when the network input is
low-dimensional and adequate environmental models exist;
however, when the network input is high-dimensional and
the environment is complex, verification approaches are
intractable. As a result, many image-based neural network
verification approaches focus on local robustness around
validation images [18], [19]. However, local robustness is
an input-output property and does not address closed-loop
safety.

This work focuses on validation of image-based neural
network controllers. Existing work on validation of complex
systems has led to the development of adaptive stress testing
(AST), which uses reinforcement learning to find the most
likely ways systems fail [20], [21]. However, existing work
with AST has only considered low-dimensional problems.

Our method combines ideas from local robustness verifi-
cation with AST black box validation to efficiently search for
sequences of image disturbances that lead to failure. Using
neural network verification tools allows the algorithm to
search for multi-step sequences in a lower-dimensional space
than the size of the image. As a result, this method scales
well to neural networks with hundreds of input variables
without making any assumptions about the environment, al-
lowing the tool to be easily integrated with any existing sim-
ulator. An example aircraft taxiway application is presented
that uses the X-Plane 11 photo-realistic flight simulator [22].
The method is able to find sequences of image disturbances
that cause the neural network to guide the aircraft off the
taxiway, and further analysis reveals explainable weaknesses
of the neural network that were exploited to cause failures.

II. BACKGROUND

This work combines ideas from reinforcement learning
and neural network verification, which are described in this
section.

A. Markov Decision Process

A Markov decision process (MDP) is a general framework
for modeling sequential decision-making problems and is
described by the tuple (S,A, R, T ) [23]. An agent in state
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s ∈ S takes action a ∈ A, transitions to s′ with probability
T (s′ | s, a), and receives reward r = R(s, a, s′). The action-
value function Qπ(s, a) gives the expected value of taking
action a from state s and following the policy a = π(s) for
all future states, computed as

Qπ(s, a) = E

[∑
t=0

γtrt | s0 = s, a0 = a, a′ = π(s)

]
, (1)

where discount factor γ is set to γ = 1 for finite horizon
problems and 0 < γ < 1 for infinite horizon problems. The
goal with an MDP to compute π(s) that maximizes Q(s, a),
denoted as π∗(s) and Q∗(s, a) respectively.

If the transition function is known, then optimization
algorithms can compute π∗(s); however, when the transition
function is unknown or difficult to model, such as with
image-based navigation, alternative methods are needed.
Reinforcement learning is a model-free method that uses sim-
ulations to estimate Q∗(s, a). The following two subsections
describe reinforcement learning algorithms used in this work.

B. Monte Carlo Tree Search

Monte Carlo tree search (MCTS) begins with a root node
with initial state, s0. New states s′ are added to the tree as
leaf nodes from an existing node s via the action a used to
arrive at s′ from s. At each node, the algorithm keeps track
of N(s), the number of times the node with state s has been
visited, N(s, a), the number of times action a ∈ A(s) has
been taken from s, and Q(s, a), the value estimate of taking
action a from state s. MCTS follows three basic steps:

1) Search. Beginning at the root node with state s and
actions A(s) already added to the tree, new actions
are added to the tree if ‖A(s)‖ < kN(s)α, where
k and α are hyperparameters that balance exploration
with exploitation. If a new action is not added, then an
existing action is taken to maximize

Q(s, a) + c

√
logN(s)

N(s, a)
(2)

where c is also a hyperparameter. The search process
repeats from s′ until a new action is selected.

2) Expansion. The tree is expanded with the new action
by simulating the action to compute s′, which is added
as a new leaf node to the tree with an empty A(s′).
This work assumes that transitions are deterministic,
although other versions of MCTS can incorporate
stochastic actions [20].

3) Rollout. Once a new state s′ has been added to the
tree, a random rollout simulation is used to initialize
Q(s, a). The rollout uses a default policy π0(s) to
determine actions taken, and the rollout continues until
a pre-determined depth or terminal state is reached.
Q(s, a) is computed from the rollout simulation using
Eq. (1) with γ = 1 since the rollout has a finite depth.
The estimated Q(s, a) is then propagated up through

all parent nodes according to

N(s, a)← N(s, a) + 1 (3)
q ← R(s, a, s′) + γQ(s′, a′) (4)

Q(s, a)← Q(s, a) +
q −Q(s, a)

N(s, a)
(5)

where Q(s′, a′) is the updated value of the child node.
Once the rollout finishes, MCTS begins another iteration by
searching from the root node until a new state is added. For
further details on the MCTS algorithm, see [20].

C. Deep Q-Learning

While MCTS can simulate many trajectories to optimize
π(s), the algorithm does not generalize from the values
of states already seen to predict values of new states.
Another popular algorithm, deep Q-learning, or deep Q-
networks (DQN), maintains a global functional representa-
tion of Q(s, a) [1]. As a result, updating Q(s, a) for one
state updates the values for nearby states.

DQN uses a deep neural network to approximate Q(s, a),
and the network parameters are updated through gradient
descent methods using a loss value based on the temporal
difference between r + γQ(s′, a′) and Q(s, a). This work
used the OpenAI Baselines implementation of DQN [24]
with prioritized experience replay [24], [25].

D. Neural Network Verification

Recent advancements have produced tools that verify
neural network input-output properties [9], [10], [12]. For
neural networks of the form y = f(x), where f is composed
of computational layers with piecewise-linear activations,
these properties are defined as x ∈ X =⇒ f(x) /∈ Y ,
where X and Y are convex polytopes. The verification tools
provide either a guarantee that the property holds (UNSAT)
or a satisfying x′ such that x′ ∈ X ∧ f(x) ∈ Y (SAT).

When x is an image, neural network verification tools can
compute the robustness of the neural network to noise added
to a given image. Local robustness around an image x for a
neural network with a scalar output can be defined as

‖x̃‖∞ < δ =⇒ |f(x+ x̃)− f(x)| < ε (6)

where δ limits changes to pixels, ε limits change to the
network output, and x̃ is image noise. Verifying robustness
around validation images can check if the network is overly
sensitive to small perturbations, but robustness alone cannot
determine what level of perturbations can be safely tolerated.

III. METHODOLOGY

This section describes the Adaptive Stress Testing method
used to validate image-based neural network controllers.

A. Adaptive Stress Testing

Adaptive Stress Testing (AST), is a particular configura-
tion of model-free reinforcement learning (RL). Rather than
learning a policy that optimizes performance of an agent in
an environment, AST optimizes the environment to cause a
learned agent to fail. AST uses states s that define the state of



the simulator and actions a that define environmental factors
controlled by the simulator. This work considers image-based
neural networks, so actions are disturbances to the input
images of the controller.

AST treats the simulator as a black box and interacts with
the simulator through the following functions:

1) Initialize(s). Load a state of the simulator.
2) Step(s, a). Advance the simulator one step from state

s given action a.
3) IsTerminal(s). Return true if state is a terminal state.
4) IsFailure(s). Return true if the state is a failure state.

The AST reward function R(s, a) encourages RL algorithms
to find the most likely sequence of actions that causes the
system to fail, as discussed in the following subsection.

B. Reward Function

The goal of AST is to find the most likely sequence of
actions a0:t−1 from s0 with si = Step(si−1, ai−1) such
that IsFailure(st) is true. Assuming that each action is
independent, the optimization problem becomes

maximize
a0:t−1

t−1∏
i=0

p(ai) (7)

subject to IsFailure(st)

where p(ai) is the likelihood of the environment producing
action ai.

To incentivize RL algorithms to find such a sequence of
actions, AST uses reward function R(s, a) defined as

R(s, a) =


0, if IsFailure(s)
log p(a), else if not IsTerminal(s)
−α− β × Dist(s), otherwise

(8)
where Dist(s) is some measure of the simulator’s closeness
to a failure, and α and β scale the penalty term given when a
terminal state is reached that is not a failure [21]. In practice
α and β are very large to encourage the simulator to find a
failure before optimizing the action sequence to reach failure.
The following subsection further describes the action space
when testing image-based neural networks.

C. Action Space

In previous work with AST, the action space has been low-
dimensional [20], [21]. However, when the action space is a
high-dimensional image, previous AST algorithms will not
perform well. The size of the action space grows exponen-
tially with the dimensionality, so AST would need to sample
exponentially more actions to achieve good performance.

This work presents a different approach to computing
actions that scales better to high-dimensional spaces. Given
a neural network controller f that maps images x to a scalar
value y, neural network verification tools can compute an
image disturbance x̃ that changes the network output as much
as possible assuming that x+ x̃ is in the neighborhood of a
given image x. This work defines the neighborhood around
x as images where each pixel changes by at most δ, though

Algorithm 1 Parallel image disturbance optimization
Input: f , x, δ, N , tol, ε̄
Output: ε

¯
, x̃

1: ε
¯
, x̃ = 0

2: while ε̄− ε
¯
> tol

3: for i = 1 : N
4: εi = ε

¯
+ (ε̄− ε

¯
)× i/(N + 1)

5: resulti, x̃i = solve(f, x, δ, εi)
6: Run all solve calls in parallel
7: result0, x̃0, ε0 = SAT, x̃, ε

¯
8: resultN+1, εN+1 = UNSAT, ε̄
9: ε

¯
← max εi s.t. resulti = SAT

10: ε̄← min εi s.t. resulti = UNSAT
11: x̃← x̃i s.t. εi = ε

¯
12: return ε

¯
, x̃

other definitions could be used. For a given input image x,
the problem becomes

maximize
x̃

f(x+ x̃)− f(x) (9)

subject to ‖x̃‖∞ ≤ δ.

Equation (9) can also be written with minimize to compute
the perturbation that minimizes the neural network output.

As described in Section II-D, neural network verification
tools can compute local robustness properties and verify
that the output does not change by more than ε (UNSAT)
or provide a counterexample where x̃ satisfies ‖x̃‖∞ ≤ δ
and f(x + x̃) − f(x) ≥ ε (SAT). To use these tools in an
optimization problem as described in Eq. (9) rather than a
satisfiability problem, multiple queries need to be evaluated
to search for the largest ε value that returns SAT. This search
can be done in parallel using the algorithm described in
Algorithm 1, which requires the number of parallel queries
to run, N , ε tolerance, tol, and an upper bound on ε, ε̄. If no
upper bound is known ahead of time, then the algorithm can
be modified to increase ε̄ until the solver returns UNSAT.
Algorithm 1 describes the parallel search for the largest
positive change to the network output; the largest negative
change to the network output can also be computed in a
similar manner. For simplicity, negative values of δ and ε
used in this work imply a search for the disturbance x̃ that
minimizes network output.

Algorithm 1 returns the largest ε for which there exists
a satisfying x̃. Using this approach, the AST action a is
equivalent to the image disturbance x̃, effectively reducing
the action space for AST from the dimensionality of x̃ to
one dimension, δ. Furthermore, since a is constrained by
‖a‖∞ ≤ δ, p(a) can be defined as a function of δ using

p(a) = N (‖a‖∞ | 0, σ2) (10)

= N (δ | 0, σ2)

where σ defines a zero-mean univariate normal distribution.
This approach implies that small image disturbances are
more likely than large disturbances. Using this approach,
AST can be applied to image-based control problems.



Fig. 1. X-Plane 11 aircraft on taxiway (left), view from camera with cropped region shown in red (middle), and downsampled taxiway image (right)

IV. AIRCRAFT TAXI APPLICATION

An aircraft taxi problem is presented here to demonstrate
the neural network adaptive stress testing method. A Cessna
208B Grand Caravan simulated in X-Plane 11 [22] is taxiing
at 5 m/s along runway 04 of Grant County International
Airport and must stay on the taxiway using only images
taken once per second from a camera on the right wing of
the aircraft. A neural network is trained through supervised
learning to map runway images to crosstrack position d and
heading angle θ, which are used to control the aircraft. The
taxiway center is defined as d = 0 m, and the taxiway
heading angle is defined as θ = 0°. The following subsec-
tions discuss the design of the neural network controller,
preliminary validation, and AST experimental setup.

A. Neural Network Design

Existing works show that image-based neural networks are
susceptible to adversarial attacks, where small changes to
pixel values cause large changes to the network output [26],
[27]. Because this application uses runway images as inputs,
the images can be downsampled significantly without losing
important information, which allows the trained network to
be smaller as well. The reduced input representation and
network size may help the network be more robust to pixel
perturbations, and a smaller neural network representation
will be more quickly verified by Marabou.

The following procedure was used to shrink input images
from 200× 360 RGB images to 8× 16 grayscale images:

1) Crop out the sky and airplane nose.
2) Resize image to 128× 256 and convert to grayscale.
3) Downsample image by splitting image into 128 16×16

boxes and averaging the 16 brightest pixels within each
box, resulting in an 8× 16 image.

4) Bias all pixel values so that the average value is 0.5
(when pixel values range from 0 to 1).

Forcing the mean pixel value to be 0.5 helps the network
generalize to different lighting conditions and increases ro-
bustness by adding a constraint to adversarial images.

A neural network with 3 hidden layers and 32 total ReLU
activations was trained. The network is composed of an 8×8
convolutional layer with 8 filters and stride of 8 followed by
two fully connected layers of size 8. The architecture was
designed to contain as few ReLUs as possible while still
providing accurate estimates of d and θ. Network outputs

d and θ are combined into a rudder command r with
proportional control law

r = 0.015d+ 0.008θ. (11)

Because the final layer of the neural network and pro-
portional control law are linear, they can be combined by
modifying the last layer of the neural network. The final
neural network controller maps 8×16 downsampled images
of the runway to rudder commands.

B. Preliminary Validation

To test the controller, 100 random simulations were run
for four cloud conditions with initial crosstrack position
d0 ∼ U(−5 m, 5 m) and heading angle θ0 ∼ U(−20°, 20°)
at a random simulated time between 9am and 3pm. After
20 seconds elapsed, crosstrack position had an average
absolute value of 0.287 m with standard deviation 0.534 m
and maximum value 1.015 m, and the heading angle had an
absolute value under 2° for all 400 simulations.

These results suggest that the controller performs well, but
success in nominal conditions does not mean the controller
will always perform correctly. Taxiways in the real world
have skid marks, reflective puddles, paint spots, and more,
so the controller also needs to perform well when the images
are perturbed. The method proposed here addresses these
questions to better understand the network shortcomings and
failure modes, as discussed in Section V.

C. Experimental Setup

The Marabou tool was used to generate image perturba-
tions because the tool scales well to high-dimensional inputs
and the python interface was easy to integrate to other python
components [10]. Three types of AST experiments were run:
MCTS with Marabou, DQN with Marabou, and MCTS with
random samples. All experiments used a discrete number
of actions, Nactions, with δ ∈ linspace(−δmax, δmax, Nactions).
MCTS begins with a root node near the center of the taxiway,
while the initial state for DQN trajectories is initialized with
d0 ∼ U(−5 m, 5 m) and θ0 ∼ U(−20°, 20°). When random
samples are used instead of Marabou, 5000 random image
perturbations are sampled, and the perturbation that changes
the network output the most is used. The time required
to sample and evaluate 5000 images is approximately the
time used by Marabou. Failure states are defined as |d| >
10 m, and terminal states are defined as more than 200 m
downtrack.



TABLE I
AST RESULTS USING MCTS

Nactions δmax Failure? Steps δmean Log-likelihood

2 0.02 No N/A N/A N/A
2 0.027 No N/A N/A N/A
2 0.028 Yes 26 0.028 −125.812
2 0.029 Yes 24 0.029 −122.975
2 0.035 Yes 21 0.035 −147.923
2 0.040 Yes 11 0.040 −98.108
3 0.035 Yes 35 0.030 −215.913
4 0.035 Yes 35 0.031 −213.871
6 0.035 Yes 46 0.028 −249.541
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Fig. 2. MCTS search trees when using two actions with δmax = 0.02
(top), δmax = 0.035 (middle), and δmax = 0.04 (bottom)

The experiments use NASA’s open source XPlaneConnect
to interface with X-Plane 11. Experiments were conducted
on a desktop with 16GB of RAM, a 6 core Intel i7 processor,
and an NVidia GeForce GTX 1070 Ti GPU. Ten Marabou
queries were run in parallel with a rudder disturbance toler-
ance of 0.003. To speed up MCTS rollouts, a set of rollouts
were pre-computed and used to approximate new rollout
values through linear interpolation.

V. RESULTS

A summary of results using MCTS with Marabou is shown
in Table I. When only two actions are used, δ is always equal
to δmax, while larger numbers of discrete actions also use
actions with δ values less than the maximum. When δmax is
too small, AST cannot find a sequence of image disturbances
that leads to failure, while failure sequences are easily found
for large δmax. At some critical δmax, image disturbances are
just strong enough to control the aircraft off the taxiway.
Increasing the number of actions makes finding a failure
sequence more difficult because MCTS also considers many
weak image disturbances, which are less likely to result in
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Fig. 3. MCTS search tree when using six actions with δmax = 0.035
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d
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Fig. 4. Simulated trajectories using learned DQN policy

failure. As a result, MCTS finds longer sequences to failure,
which has a lower log-likelihood but also a lower δmean.

Figure 2 shows the MCTS search tree T along with
optimized policy π∗(s). For δmax = 0.02 the aircraft never
exceeds 5 m from the centerline. For δmax = 0.04, dis-
turbances that always maximize the neural network output
can push the aircraft off the left side of the taxiway. For
δmax = 0.035, always maximizing the neural network output
will not be enough to leave the taxiway. However, AST is
able to find a failure by first decreasing the network output
to turn the aircraft right before increasing the network output
and turning the aircraft sharply left and off the taxiway. This
failure sequence represents a novel failure mode that is non-
obvious.

Figure 3 shows the search tree for MCTS using 6 discrete
actions. The sequence found is longer than when using only
two actions, but the behavior is similar. The image distur-
bances cause the aircraft to oscillate across the centerline
like a pendulum, eventually gaining enough momentum to
leave the taxiway.

Experimental results using DQN in AST instead of MCTS
are shown in Table II. DQN does not perform as well as
MCTS for low numbers of actions but scales better to larger
number of actions. Whereas MCTS uses only one initial
state, DQN creates a policy that generalizes to any initial
state, as shown in Figure 4. DQN takes more samples to
train the Q-network than to build a search tree, so MCTS
required only 1–6 hours while DQN required 24–36 hours to
run. However, both methods are model-free and return image

TABLE II
AST RESULTS USING DQN

Nactions δmax Failure? Steps δmean Log-likelihood

2 0.035 Yes 28 0.035 -197.23
4 0.035 Yes 39 0.033 -252.94
6 0.035 Yes 27 0.0318 -166.67
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Fig. 5. Images at different times during simulation of AST policy when using MCTS with two actions and δmax = 0.035
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Fig. 6. Simulations of AST policy from different initial downtrack positions

disturbance sequences that lead the aircraft off the taxiway.
When random samples are used instead of Marabou with
δmax = 0.035, the crosstrack position never exceeds 5 m.
This result demonstrates that using tools like Marabou are
important for high dimensional problems.

Figure 5 shows four types of images at different times
along the two action MCTS policy with δmax = 0.035: the
original taxiway image, downsampled image, downsampled
image with perturbation added, and a reconstructed image
of the taxiway image that would produce the perturbed
image if downsampled. Reconstructing the taxiway image
from the perturbed image is an under-defined problem, so
this approach simply biases the brightness of pixels in the
original taxiway image. The images reveal key insights into
how the neural network can be tricked into failure. The
reconstruction shows that AST darkens the taxiway edge
lines until the thin boundary lines are difficult to discern,
indicating that the boundary lines are important for making
accurate predictions.

Furthermore, times t = 14, 15 show that AST guides the
aircraft across the centerline in the gap between centerline
dashes. These images also have much greater ε values than

previous times, which suggests that the neural network is
more easily fooled when the aircraft travels between the
centerline dashes. To investigate this hypothesis, the AST
policy was simulated from different initial points along the
taxiway. As shown in Figure 6, trajectories that cross the
centerline between dashes reach the edge of the taxiway
while other trajectories remain on the taxiway.

VI. CONCLUSIONS

Although neural networks perform well empirically, they
can be susceptible to adversarial attacks. For safety critical
image-based applications acting in the real world, verifying
that failures will never occur is intractable or impossible.
This work presented a method for validation of image-based
neural network controllers that uses reinforcement learning to
find the most likely failure modes. The analysis is tractable
for high-dimensional inputs, and a taxiway navigation ap-
plication demonstrated how the algorithm can be integrated
with a black box simulator. The results showed that adaptive
stress testing finds image disturbances that cause the neural
network to guide the aircraft off the runway and revealed
that the gaps between centerline dashes are more susceptible
to adversarial perturbations.

Future work will study methods for making the neural
network more robust to adversarial attacks and incorporate
continuous actions. In addition, other image perturbations
besides pixel disturbances could be considered, such as large
skid marks or reflective puddles. Future work could also
study how adding an additional camera to the left wing of the
aircraft improves system robustness. Finally, a real aircraft
on a taxiway could be used to validate the accuracy and
applicability of the X-Plane 11 simulator.
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