
Extending the Multiple Traveling Salesman Problem for
Scheduling a Fleet of Drones Performing Monitoring Missions

Emmanouil S. Rigas, Panayiotis Kolios, Georgios Ellinas

Abstract—In this paper we schedule the travel
path of a set of drones across a graph where the
nodes need to be visited multiple times at pre-defined
points in time. This is an extension of the well-known
multiple traveling salesman problem. The proposed
formulation can be applied in several domains such
as the monitoring of traffic flows in a transportation
network, or the monitoring of remote locations to
assist search and rescue missions. Aiming to find
the optimal schedule, the problem is formulated as
an Integer Linear Program (ILP). Given that the
problem is highly combinatorial, the optimal solution
scales only for small sized problems. Thus, a greedy
algorithm is also proposed that uses a one-step look
ahead heuristic search mechanism. In a detailed eval-
uation, it is observed that the greedy algorithm has
near-optimal performance as it is on average at 92.06%
of the optimal, while it can potentially scale up to
settings with hundreds of drones and locations.

I. Introduction
Unmanned aerial vehicles (UAVs), or simply drones

[1], [2], are used in a plethora of civil applications due
to their ease of deployment, low maintenance cost, high-
mobility and ability to hover [3]. Such vehicles are uti-
lized for real time monitoring of road traffic, search and
rescue operations, civil infrastructure inspection, wireless
coverage, remote sensing, delivery of goods, security and
surveillance, and precision agriculture [4].

A main advantage of drones is that, in contrast to
other vehicles, they are not restricted to traveling over a
road network and thus can swiftly move over disperse lo-
cations. In order to maximize this ability, their scheduled
and coordinated flying is crucial. Thus, in this paper we
propose a generalized graph-based solution to schedule
drones for monitoring missions. Here, it is important to
note that both surveillance and monitoring tasks focus
on developing control laws which enable groups of robots
to transverse and observe a given domain, but with a
slightly different focus. The goal of surveillance is to max-
imize some measure of coverage or information gathering,
while monitoring focuses on ensuring that certain areas of
the domain (usually predefined) are visited with a certain
frequency.

Recently, drone-related problems have been intensively
researched and artificial intelligence (AI) techniques such
as heuristic search, optimization, multi-agent systems

The authors are with the Department of Electrical and Com-
puter Engineering and the KIOS Research and Innovation Cen-
ter of Excellence (KIOS CoE), University of Cyprus, emails:
{rigas.emmanouil, kolios.panayiotis, gellinas}@ucy.ac.cy

and machine learning are becoming extremely popular.
For example, Kitjacharoenchai et al. [5] study a delivery
truck-drone combination problem, where autonomous
drones fly from delivery trucks, make deliveries, and
subsequently fly to any available delivery truck nearby.
Aiming to minimize the arrival time of both trucks and
drones at the depot after completing the deliveries, they
propose two solutions, one using mixed integer program-
ming and another using insertion heuristics to solve large
sized problems. Moreover, Evers et al. [6] study online
stochastic UAV mission planning with time windows
and time-sensitive targets using heuristic methods. In
addition, Delle Fave et al. [7] study the use of drones for
aerial imagery collection and they define this problem
as one of task assignment where the drones dynamically
coordinate over tasks representing the imagery collection
requests. They solve the resulting optimization problem
using an asynchronous and decentralized implementation
of the max-sum algorithm. In a slightly different vein,
Ramchurn et al. [8] model the drones as intelligent
agents and study the way human-agent collectives can
address challenges in disaster response. Specifically, their
proposed methodology utilizes crowd-sourcing combined
with machine learning to obtain situational awareness
from large streams of reports posted by members of
the public. This collected information can be utilized to
inform human-agent teams in coordinating multi-UAV
deployments, as well as task planning for responders on
the ground. In a similar vein, Baker et al. [9] study the
survivor discovery problem and present a solution based
on a continuous factored coordinated Monte Carlo tree
search algorithm. Further, Sharafeddine and Islambouli
[10] study the use of UAVs as instant recovery devices for
cellular networks aiming to decide on the initial location
of the UAVs. The authors propose an optimal solution
using Mixed Integer Linear Programming techniques as
well as an equivalent greedy algorithm. Finally, Menouar
et al. [11] outline the possible applications of drones for
supporting intelligent transportation systems within a
smart city domain.

Against this background, we initially formulate the
problem of scheduling drones across a set of locations
with monitoring demand in predefined points in time
as an Integer Linear Program (ILP) and we solve it
offline and optimally. Given the high complexity of the
problem and the equivalent limited scalability of the
optimal solution, we also develop a greedy algorithm that
uses heuristic search. In our experimental evaluation, we

ar
X

iv
:2

00
6.

01
47

3v
1

 [
cs

.A
I]

 2
 J

un
 2

02
0

observe that the greedy algorithm has very good scalabil-
ity and performance close to the optimal. This problem is
an extension of the Multiple Traveling Salesman Problem
(MTSP) [12], which is based on the well-known Traveling
Salesman Problem (TSP) [13]. Compared to the MTSP,
in this work (i) all agents do not begin their journey
from the same node, and (ii) an agent may pass from
one node multiple times in predefined points in time.
This problem also shares similarities with the Vehicle
Routing Problem [14] but differs in point (ii) mentioned
above. The model of this problem is based on [15] where
the authors study the scheduling of electric vehicles in
a mobility-on-demand scheme. The main differences are
that (a) in this work the agents initiate their traveling in
an autonomous manner, and (b) the execution of a trip
is not directly related to the execution of the previous
one.

The rest of the paper is structured as follows: Section II
provides a detailed problem formulation, Section III
describes the optimal solution of the problem and Sec-
tion IV the equivalent greedy one. Section V evaluates
the proposed solutions in different settings and finally,
Section VI concludes this work and provides insights for
future work.

II. Problem definition

We define the set of UAVs or drones a ∈
A ⊆ N acting as fully cooperative agents.
Each agent has its own type defined by a tuple
pa = {ninit

a , nfin
a , na,t, ea,t, e

max
a , va,t, v

max
a } where

ninit
a , nfin

a , na,t are the initial, final and current location
of the agent, ea,t, e

max
a are the current and maximum

energy level of the agent, va,t is the current velocity and
vmax

a the maximum velocity of the agent. We consider a
set of discrete points in time T ⊂ N, t ∈ T where time
is global for the system and the same for all agents.

All agents are supposed to move across an undirected
fully connected graph G(N,E) where n ∈ N ⊆ N is a
set of nodes and {i, j} ∈ E ⊆ N is a set of edges. Every
edge has a cost c{i,j} ∈ R that denotes the time to travel
across an edge, or the equivalent energy required.

The system aims to schedule the agents to pass from
specific nodes of the graph at specific points in time. To
achieve this, we define the “flying demand” as dn,t ∈
{0, 1} which contains the set of points in time a node
n should be visited by an agent. The trips of all agents
over the edges of the graph must be scheduled and coor-
dinated in order for the flying demand of each node to be
covered to the maximum extend (i.e., fully covering the
demand may be impossible due to insufficient resources).
In this setting, we assume that a fully charged battery
is enough for a drone to cover all trips concerned and
that the agents will not collide while flying over the
same edge as they fly in different altitudes. In this work,
henceforth, the terms agent, UAV and drone are used
interchangeably.

III. Optimal solution
In this section, we model the problem of scheduling

drones as an Integer Linear Program (ILP) and we solve
it optimally using IBM Ilog CPLEX 12.10. We define
4 decision variables: (1) fdn,t ∈ {0, 1} which denotes
whether at least one agent flies over node n at time
t, (2) epn,a,t ∈ {0, 1} which denotes whether agent a
hovers over location n at time t, (3) kn,n′,a,t ∈ {0, 1}
which denotes whether agent a flies across the edge
connecting nodes n and n′ : n′ 6= n at time t and (4)
startTn,n′,a,t ∈ {0, 1} which denotes the time t an agent
a begins traveling across the edge connecting nodes n
and n′ : n′ 6= n.

We define an objective function (Eq. 1) which maxi-
mizes the demand that is actually covered by the agents.
This function consists of the sum of the points in time an
agent passed by a node based on the initial demand and
the sum of all agents’ location changes multiplied by a
very small number µ. The second sum is always smaller
than the first and is subtracted from it, in order to
prevent agents from changing locations when they do not
need to do so. The reader should note that this function
is linearized at run time by CPLEX. This is usually
done by adding two extra decision variables and two
extra constraints. The same is true for all absolute values
used later in the constraints. This objective function is
maximized under a number of constraints:

Objective function:

∑
n∈N

∑
t∈T

(dn,t × fdn,t)−

(
∑
n∈N

∑
n′∈N

∑
a∈A

∑
t∈T−1

(|kn,n′,a,t+1 − kn,n′,a,t|))× µ
(1)

Subject to:
Temporal, spatial, and routing constraints:

epninit
a ,a,t=0 = 1, ∀a ∈ A (2)

ep
n

fin
a ,a,t=T

= 1, ∀a ∈ A (3)

∑
n∈N

epn,a,t ≤ 1, ∀a ∈ A, t ∈ T (4)

∑
n∈N

∑
n′∈N

kn,n′,a,t ≤ 1, ∀a ∈ A, t ∈ T (5)

∑
n∈N

∑
n′∈N

kn,n′,a,t = 1−
∑
n∈N

epn,a,t,∀a ∈ A, t ∈ T (6)

∑
n∈N

∑
n′∈N

startTn,n′,a,t ≤ 1,∀a ∈ A, t ∈ T (7)

epn,a,t − epn,a,t+1 ≤
∑

n′∈N

kn,n′,a,t,

∀n ∈ N, t : t ≥ 0&t ≤ T − 1, a ∈ A
(8)

epn,a,t − epn,a,t−1 ≤
∑

n′∈N

kn,n′,a,t,

∀n ∈ N, t : t ≥ 1&t ≤ T, a ∈ A
(9)

∑
t∈T

|startTn,n′,a,t+1 − startTn,n′,a,t| =∑
t∈T

|kn, n′, a, t+ 1− kn,n′,a,t|,∀n ∈ N,n ∈ N, a ∈ A
(10)

∑
n∈N

∑
t∈T−1

∑
a∈A

|epn,a,t+1 − epn,a,t| =∑
n∈N

∑
n′∈N

∑
t∈T−1

∑
a∈A

|startTn,n′,a,t+1 − startTn,n′,a,t|
(11)

Completion constraints:

fdn,t ≤
∑
a∈A

epn,a,t, ∀n ∈ N, t ∈ T (12)

epn,a,t − epn,a,t+1 ≤
∑

n′∈N

startTn,n′,a,t,

∀n ∈ N, t : t ≥ 0 & t ≤ T − 1, a ∈ A
(13)

∑
t∈T

∑
n∈N

∑
n′∈N

kn,n′,a,t =∑
t∈T

∑
n∈N

∑
n′∈N

startTn,n′,a,t × c{n,n′}, ∀a ∈ A
(14)

∑
t′:t′≥t&t′≤t+c{n,n′}+1 & t′:t+c{n,n′}+1<T

kn,n′,a,t′ ≥

startTn,n′,a,t × c{n,n′},∀n ∈ N,n′ ∈ N, t ∈ T, a ∈ A

(15)

The temporal, spatial, and routing constraints ensure
the proper placement of the drones over time. Thus, each
agent must be at its initial location at time t = 0 (Eq. 2)
and at its final location at time t = T (Eq. 3). Moreover,
each agent can fly over at most one location in each point
in time (Eq. 4) and it can travel across at most one edge
in each point in time (Eq. 5). In addition, each agent
can either fly over one location or fly across one edge in
each point in time (Eq. 6). For each agent and point in
time, at most one trip across an edge can start (Eq. 7). If
an agent departs from node n at time t, then this agent
must be traveling across any edge with initial location n
at time t+ 1 (Eq. 8) and if an agent arrives at node n at
time t, then this agent must be traveling across any edge
with ending location n at time t− 1 (Eq. 9). Finally, for
each agent and locations, the number of times the start
and k decision variables change value form 1 to 0 and
from 0 to 1 must be equal (Eq. 10) and equivalently for
each agent and locations, the number of times the start
and ep decision variables change from 1 to 0 and from
0 to 1 must be equal (Eq. 11). The final two constraints
ensure a continuous flying of an agent across a specific
pair of nodes.

The completion constraints ensure the proper execu-
tion of tasks. Thus, if the initial flying demand for a
node is to be covered, at least one agent must fly over
this location for a certain time period (Eq. 12). Moreover,
for each agent and point in time, if this agent initiates
a trip at time t, then the starting time of this trip is
set to t (Eq. 13). For each agent, the total time it flies
across edges must be equal to the travel time required for
each trip (Eq. 14). Finally, for each agent, location, and
point in time, if a trip begins at time t then this agent
must travel for a period of time equal to t+1+duration
(Eq. 15).

IV. Greedy scheduling
Given that the optimal solution is practical only for

small size problems (see Section V), here we present a
greedy algorithm which applies a one-step look ahead
heuristic search mechanism and scales up to problems in-
volving thousands of agents and locations. The algorithm
consists of two parts, namely the pre-processing (see
Alg. 1) and the main scheduling algorithm (see Alg. 2)
parts.

Regarding the pre-processing part, the initial (Alg. 1,
lines 1 − 3) and final locations (Alg. 1, lines 4 − 6) of
each agent are set. If the start location is different than
the final one, the values for the time to travel between
these two positions is set to −1 (denoted in the greedy
algorithm for simplicity as epa,t ∈ L) (Alg. 1, lines 7 −
8). Note that these values correspond to the minimum
travel time of an agent which is to hover above its initial
location until it must start traveling to its final location
in order to be there at the last point in time.

Algorithm 1 Pre-processing Phase (Initialization of sets
and variables).
Require: N and A and T and ∀a ∈ A : ninit

a , nfin
a and ∀n ∈

N , ∀t ∈ T : dn,t.
1: for all (a ∈ A) do
2: for all (t ∈ T) do {Initialize the location of the

agents.}
3: epa,t=0 = ninit

a

4: for all (a ∈ A) do
5: if (ninit

a) 6= nfin
a then {Set the value for the final

location of the agent.}
6: epa,T−1 = nfin

a

7: for all (t ∈ T : t ≥ |T | − 2 − c{ninit
a ,n

fin
a }&t <

|T |−1) do {If the start location is different that the final
one, set the values for the time to travel between these
two positions to −1.}

8: epa,t = −1

In terms of the main scheduling algorithm, we initially
create a random sequence seq of all agents. Given this,
we iterate through this sequence and for each agent and
each point in time we take the current location of the
agent (Alg. 2, line 4 − 7). If the agent is not currently
traveling across two locations, we check whether a flying
demand exists for this location and point in time. If

this is the case, the sum of covered demand is increased
by one (Alg. 2, lines 9 − 12). In the next step of this
algorithm, we need to decide the next location of the
agent. To do so, we calculate the distance and demand
for all locations, and we schedule the agent to travel
to the closest location, including its current one, where
demand exists and it has enough time to fly from there
to its final destination (Alg. 2, lines 13 − 17). If such a
new location is found, then the agent is set to travel to
this location for a period of time that corresponds to the
actual travel time (Alg. 2, lines 18− 20), and stay there
(Alg. 2, lines 21 − 22) until it is time to fly to its final
destination (Alg. 2, lines 23 − 25). The intuition of this
heuristic is to avoid having agents being idle for a long
period of time, but instead immediately root them to
locations with demand. Given that each agent has its own
initial location, the performance of this algorithm may
be affected by the initial random sequence of the agents.
Thus, we execute the algorithm multiple times, each
time with a different random sequence for the agents.
We continue this execution as long as the solution is
improving, or until a number of threshold iterations are
made without any improvement on the solution (Alg. 2,
lines 1− 2 and lines 26− 29). Note that trying the entire
set of possible sequences of agents would demand |A|!
executions of the algorithm. From this point onward, we
will refer to this algorithm as Greedy.

V. Performance Evaluation

In this section we evaluate our algorithms on a number
of settings in order to determine their ability to handle
potentially large numbers of locations, points in time,
UAVs and demand. In doing so, we consider two settings,
one having 7 locations, 49 edges (i.e., a fully connected
graph), up to 5 agents, 12 points in time, and 15% of
points in time with flying demand for each location, and
a larger one with 20 locations, 400 edges, 100 points
in time, up to 15 agents, and 15% of points in time
with flying demand. In all cases the duration of the
trip between any two locations is between 1 and 3
points in time. The first setting is used to evaluate the
scalability of the optimal algorithm and the efficiency
of the greedy algorithm compared to the optimal. The
second setting is used to evaluate the performance of the
greedy algorithm and its ability to handle large numbers
of locations, agents, and points in time. The evaluation
of our algorithms is executed in three main parts:
• EXP1: The execution time and the scalability of the

optimal and the greedy algorithm.
• EXP2: The performance of the optimal and the

greedy algorithm in terms of the average percentage
of completed flying demand.

• EXP3: The sensitivity of the greedy algorithm on
the number of locations, UAVs, points in time, and
demand.

Algorithm 2 UAV scheduling algorithm.
Require: N and A and T and ∀a ∈ A : ninit

a , nfin
a ,

∀n ∈ N, ∀t ∈ T : dn,t and threshold.
1: count = 0, best = 0 {Initiate auxiliary variables.}
2: while (count < threshold) do
3: totalCov = 0
4: Create a random sequence seq of the systems’

agents.
5: for all a ∈ seq do
6: Create a random sequence seq of the systems’

agents.
7: for all t ∈ T do
8: curLoc = epa,t

9: {If the drone is not currently traveling between two
locations:}

10: if (dcurLoc,t == 1) then {If there is
demand at the current location and point in time}

11: totalCov = totalCov+ 1 {The demand
for the current location and point in time is covered.}

12: dcurLoc,t = 0
13: {Search for the closest location with demand that the

drone can reach based on its current location and can
then travel in time to its final destination.}

14: min = 10000 and newLoc = −1
15: for all k ∈ L do
16: if (dk,t+ccurLoc,k+1 == 1 & t +

ccurLoc,k + ck,nfin
a

< T & ccurLoc,k < min) then
17: newLoc = k, min = ccurLoc,k

18: {If such a location has been found}
19: for all t′ ∈ T : t′ ≥ t+ 1 and t′ < t+ 1 +

ccurLoc,newLoc do
20: epa,t′ = −1 {Set the time period that

the drone is flying from its current location to the
new one.}

21: for all t′ ∈ T : t′ ≥ t + 1 +
ccurLoc,newLoc and t′ < T − 2 do

22: epa,t′ = newLoc {Set the time period
that the drone is to hover over its new location.}

23: if (t+1+ cnewLoc,nfin
a

== T −2) then {If
it is time for the drone to fly to its final location.}

24: for all t′ ∈ T : t′ ≥ t + 1 +
cnewLoc,nfin

a
and t′ < T − 2 do

25: epa,t′ = nfin
a

26: if (best < result) then {If the current result is
better than the best so far, then update the value for
best and set the count equal to zero.}

27: best = totalCov, count = 0
28: else
29: count = count+ 1

A. EXP1: Execution Time and Scalability
Execution time and scalability are typical metrics for

scheduling algorithms. As can be seen from Fig. 1, the
execution time of the optimal algorithm shows a steep

increase with the number of agents. At the same time,
the greedy algorithm has a very low execution time of less
than 0.003 seconds for this small setting which shows a
low rate of increase as it remains under 0.5 seconds even
for the larger setting.

Fig. 1. Execution time: Optimal vs greedy algorithm.

B. EXP2: Performance of the Optimal and the Greedy
Algorithms

In this section, we evaluate our algorithms in terms of
average completion of flying demand. In the small setting
and as can be seen from Fig. 2, the greedy algorithm
performs well with performance reaching 96.81% of the
optimal in the best case, 87.04% in the worst case,
and 92.06% on average. In the large setting and as can
be seen from Fig. 3, the greedy algorithm achieves an
approximately 100% completion of flying demand when
15 drones are used. However, even with 8 drones, the
coverage is already over 90%, and with 11 drones it is
over 99%. Given the limited scalability of the optimal
algorithm, we argue that the performance of the greedy
algorithm is very satisfactory, making it the best choice
for medium- and large-scale settings.

Figure 4 depicts an example execution of the greedy
algorithm for the small setting and for two drones. At
times 1 and 12, the drones are at their initial and final
locations respectively. At the rest of the points in time,
the algorithm tries to cover the demand to the maximum
extend. In doing so, some of the demand is impossible to
be covered as for example at point in time 3 at which time
both drones are covering demand at locations 5 and 7,
and so by definition they cannot be at any other location
at exactly the next point in time. The same is true for
locations 2 and 1 and times 6 and 11, respectively. Note
that the cells which are not colored are the ones where
the drones are flying across two locations.

C. EXP3: Sensitivity of the Greedy Algorithm
The greedy algorithm has already shown to have near

optimal performance. However, we also need to evaluate
how this performance may be affected by the number
of locations, points in time, and density of demand. As
can be seen from Fig. 5 when the number of locations
increases, the performance of the algorithm gradually
drops and close to 100% coverage is achieved only with
high number of drones. This occurs because when the

Fig. 2. Locations coverage percentage: Optimal vs greedy algo-
rithm.

Fig. 3. Locations coverage percentage (greedy algorithm).

Fig. 4. Example execution of the greedy algorithm.

locations increase, the total demand also increases. Fur-
ther, when the locations increase, the drones tend to fly
around more as the demand is more spatially scattered.

In addition, and as can be seen from Fig. 6, when the
locations remain fixed, but the number of the points in
time increases we observe no major change in the per-
formance of the algorithm. It is important to note that
in this case the volume of points in time with demand
increases, but the percentage of the total remains fixed at
15%. Thus, from these two experiments we can conclude
that the performance of the algorithm is affected by the
number of locations, but not from the number of points
in time.

Another dimension that has to be examined, is how
the greedy algorithm is affected by the density of the
demand, in other words the percentage of points in time
with fly over demand. As can be seen from Fig. 7, when
the density of the demand is high, the performance of
the algorithm drops. For instance, if we have 15 drones
and 15% demand the coverage is at approximately 100%,
but when the demand is at 60% the coverage is at ap-
proximately 85%. To explain our decision to experiment
with up to 60% demand, we argue that if the demand is
too high, this leads to a situation where a drone should
constantly fly over each location. In such a setting, a

scheduling algorithm is not really needed.

Fig. 5. Sensitivity of the greedy algorithms when varying the
number of agents and locations.

Fig. 6. Sensitivity of the greedy algorithm when varying the
number of agents and points in time.

Fig. 7. Sensitivity of the greedy algorithms when varying the
number of agents and points in time with demand.

VI. Conclusions and future work
In this work we examined the scheduling of drones

across a graph. In this vein we extended the well-
known multiple-traveling salesman problem by adding
the constraint of multiple visits per node at specific
points in time. Initially, we formulated the problem as
an Integer Linear Program and we solved it offline and
optimally. Given that this solution has limited scalability,
we also developed a greedy algorithm that uses a one-step
look-ahead heuristic function and achieves near optimal
performance while also scaling to large settings.

For future work, we aim to handle the limited range
of the drones by adding the ability to recharge their
batteries between specific routes. We also aim to monitor
and manage the flying altitude of the drones to achieve
collision avoidance. Finally, we aim to develop an online
algorithm for the same problem that will use reinforce-
ment learning techniques.

ACKNOWLEDGMENT
This work was supported by the European Union’s

Horizon 2020 research and innovation programme under
grant agreement No 739551 (KIOS CoE) and from the
Government of the Republic of Cyprus through the
Directorate General for European Programmes, Coordi-
nation and Development.

References
[1] J. Villasenor, “What is a drone, anyway?” Scientific American,

vol. 12, 2012.
[2] C. Kyrkou, S. Timotheou, P. Kolios, T. Theocharides, and

C. Panayiotou, “Drones: Augmenting our quality of life,”
IEEE Potentials, vol. 38, no. 1, pp. 30–36, 2019.

[3] H. Shakhatreh, A. H. Sawalmeh, A. Al-Fuqaha, Z. Dou, E. Al-
maita, I. Khalil et al., “Unmanned aerial vehicles (UAVs):
A survey on civil applications and key research challenges,”
IEEE Access, vol. 7, pp. 48 572–48 634, 2019.

[4] D. Floreano and R. J. Wood, “Science, technology and the
future of small autonomous drones,”Nature, vol. 521, no. 7553,
pp. 460–466, 2015.

[5] P. Kitjacharoenchai, M. Ventresca, M. Moshref-Javadi, S. Lee,
J. M. Tanchoco, and P. A. Brunese, “Multiple traveling sales-
man problem with drones: Mathematical model and heuristic
approach,” Computers & Industrial Eng., vol. 129, pp. 14–30,
2019.

[6] L. Evers, A. I. Barros, H. Monsuur, and A. Wagelmans,
“Online stochastic UAV mission planning with time windows
and time-sensitive targets,” European Journal of Operational
Research, vol. 238, no. 1, pp. 348–362, 2014.

[7] F. M. Delle Fave, A. Rogers, Z. Xu, S. Sukkarieh, and N. R.
Jennings, “Deploying the max-sum algorithm for decentralised
coordination and task allocation of unmanned aerial vehicles
for live aerial imagery collection,” in 2012 IEEE International
Conference on Robotics and Automation, 2012, pp. 469–476.

[8] S. D. Ramchurn, T. D. Huynh, F. Wu, Y. Ikuno, J. Flann,
L. Moreau et al., “A disaster response system based on
human-agent collectives,” J.l of Artificial Intelligence Re-
search, vol. 57, pp. 661–708, 2016.

[9] C. A. Baker, S. Ramchurn, W. Teacy, and N. R. Jennings,
“Planning search and rescue missions for UAV teams,” in
Proceedings of the Twenty-second European Conference on
Artificial Intelligence, 2016, pp. 1777–1778.

[10] S. Sharafeddine and R. Islambouli, “On-demand deployment
of multiple aerial base stations for traffic offloading and net-
work recovery,” Computer Networks, vol. 156, pp. 52–61, 2019.

[11] H. Menouar, I. Guvenc, K. Akkaya, A. S. Uluagac, A. Kadri,
and A. Tuncer, “UAV-enabled intelligent transportation sys-
tems for the smart city: Applications and challenges,” IEEE
Commun. Mag., vol. 55, no. 3, pp. 22–28, March 2017.

[12] T. Bektas, “The multiple traveling salesman problem: an
overview of formulations and solution procedures,” Omega,
vol. 34, no. 3, pp. 209–219, 2006.

[13] C. E. Miller, A. W. Tucker, and R. A. Zemlin, “Integer
programming formulation of traveling salesman problems,”
Journal of the ACM, vol. 7, no. 4, pp. 326–329, 1960.

[14] G. B. Dantzig and J. H. Ramser, “The truck dispatching
problem,” Manage. Sci., vol. 6, no. 1, pp. 80–91, Oct. 1959.

[15] E. S. Rigas, S. D. Ramchurn, and N. Bassiliades, “Algo-
rithms for electric vehicle scheduling in large-scale mobility-
on-demand schemes,” Artificial Intelligence, vol. 262, pp. 248
– 278, 2018.

	I Introduction
	II Problem definition
	III Optimal solution
	IV Greedy scheduling
	V Performance Evaluation
	V-A EXP1: Execution Time and Scalability
	V-B EXP2: Performance of the Optimal and the Greedy Algorithms
	V-C EXP3: Sensitivity of the Greedy Algorithm

	VI Conclusions and future work
	References

