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Abstract— In this paper, we address the much-anticipated
deployment of connected and automated vehicles (CAVs) in
society by modeling and analyzing the social-mobility dilemma
in a game-theoretic approach. We formulate this dilemma as
a normal-form game of players making a binary decision:
whether to travel with a CAV (CAV travel) or not (non-
CAV travel) and by constructing an intuitive payoff function
inspired by the socially beneficial outcomes of a mobility system
consisting of CAVs. We show that the game is equivalent
to the Prisoner’s dilemma, which implies that the rational
collective decision is the opposite of the socially optimum. We
present two different solutions to tackle this phenomenon: one
with a preference structure and the other with institutional
arrangements. In the first approach, we implement a social
mechanism that incentivizes players to non-CAV travel and
derive a lower bound on the players that ensures an equilibrium
of non-CAV travel. In the second approach, we investigate the
possibility of players bargaining to create an institution that
enforces non-CAV travel and show that as the number of players
increases, the incentive ratio of non-CAV travel over CAV travel
tends to zero. We conclude by showcasing the last result with
a numerical study.

I. INTRODUCTION

The reality of connected and automated vehicles (CAVs)
is coming fast to realization [1]. Similarly, with other past
technologies, CAVs promise to be an incoming disruptive in-
novation with vast technological, commercial, and regulatory
dimensions. Recently, there has been a significant amount of
work on the technological or social impact of CAVs (mostly
focusing on congestion, emissions, energy consumption, and
safety). CAVs will transform the transportation system of
today and revolutionize mobility. On the other hand, one
expected social consequence of CAVs is to reshape urban
mobility in the sense of altered tendency-to-travel, and thus,
highly increase demand in the transportation system. To
elaborate on this point, evident from similar technological
revolutions (e.g., elevators), human social tendencies and
society’s perspective have changed the way a technology is
used and applied [2]. Thus, we can most certainly expect that
the deployment of CAVs in society will have unexpected
outcomes, in the form of rebound effects (e.g., increased
overall vehicle miles traveled, decreased use of public trans-
portation, higher demand for road usage, etc.) Although there
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have been numerous studies that provide qualitative analysis
for the social impact [3], [4], our game-theoretical approach
aims to provide a formal analysis of the human decision-
making regarding the expected social-mobility dilemma of
the future travelers.

One may ask “Why do we use Game Theory to analyze
such a problem?” It is the authors’ belief that the emerging
transportation systems - CAVs, shared mobility, electric
vehicles - will be characterized by their socio-economic
complexity: (1) improved productivity and energy efficiency,
(2) widespread accessibility, and (3) drastic urban redesign
and evolved urban culture. This characteristic can naturally
be modeled and analyzed using notions from Mathematical
Psychology and Game Theory. One of the main arguments
in this paper is that the social interaction of humans and
CAVs can be modeled as a “social dilemma.” That is, we are
only concerned with the impact of the human decision before
the vehicle’s engine is even turned on. Informally, a social
dilemma is any situation where there is a subtle yet unwanted
discrepancy between individual and collective interest. It is
for this reason why the authors of this paper argue that social
dilemmas are the appropriate models to be looking at instead
of, for example, congestion games. We want to emphasize
that we are interested in the human choice of commute and
not the selfish routing on a road network.

By considering a normal-form game of n players, we
acquire a significantly improved way to realistically model
social dilemmas that occur in real-life, and most impor-
tantly, we obtain a multiplayer structure that reflects Garrett
Hardin’s “Tragedy of the Commons.” From its conception,
the Tragedy of the Commons has been an important problem
in economics and other fields as it describes a plethora
of phenomena in which independent members of a society
selfishly attempt to maximize their benefit of utilizing at least
one common resource which is scarce. Thus, the individuals’
selfishness leads to the collective degradation of society’s
well-being. Noteworthy, even though the decision-makers
are selfish and their decisions aim to maximize personal
gain, they end up depleting the resource with unavoidable
repercussions and losses [5]. In our context, the common
resource is the road infrastructure shared by all the travelers,
and the utilization is whether to travel with a CAV or not.
Intuitively, one can expect that if all travelers make the selfish
decision to use a CAV for commuting, then congestion is
unavoidable.

In the first decades of the 20th century, Arthur Cecil Pigou
argued that “if a system’s decision-makers take autonomous
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decisions, then the resulting collective outcome most prob-
ably will be inefficient.” This key observation is evident
in many different studies and analyses of in transportation
problems. Social dilemmas have been extensively studied
for systems that exhibit overpopulation, resource depletion,
gridlock, and pollution [6]–[8], while the Prisoner’s dilemma
(PD) game has been used to model vehicle congestion in a
transportation network [9], [10] where travelers decide to
continue driving their vehicles in congested and polluted
cities. One possible solution to the PD was studied in
[11] in which inspired from notions of classical arguments
on the theory of social contract, the author investigated
whether cooperation might emerge in a social dilemma game
with institutional arrangements. Although the social effect
of selfish-mobility behavior in routing networks of regular
and autonomous vehicles has been studied [12], it seems
that the problem of how CAVs will affect human tendency-
to-travel and mobility frequency has not been adequately
approached yet. On the other hand, analytical frameworks
have been proposed to quantify and evaluate the impacts
of CAVs from the technological perspective [13], [14]. Fur-
thermore, coordination of CAVs at different traffic scenarios,
e.g., intersections or vehicle-following, have been extensively
evaluated in the literature [15], [16]. Recently, there has been
research done on the rebound effects which might arise from
the introduction of automation in a transportation system
[17], [18]. For a detailed analysis of the effects of CAVs
technologies on travel demand, see [19]. Recently, in the
literature, it has been recognized that further research is
required to identify and understand the potential impacts of
emerging mobility [20], [21].

The contributions of this paper are:

1) we provide a game-theoretic analysis of the conflict of
interest and model the social-mobility dilemma as a
social dilemma, and

2) we apply two different in mindset mechanisms and
approaches that attempt to prevent negative outcomes,
e.g., similar to the Tragedy of the Commons.

Several research efforts reported in the literature have
focused on studying social behavior regarding semi-
autonomous driving and the selfish social decision-making
of choosing a route to commute in a transportation network
[22]. A key difference between our work and the frameworks
already reported in the literature is that we focus on modeling
the human decision-making of which mode of transportation
to be used rather than modeling selfish routing. Our analysis
will complement these efforts by providing a framework that
attempts to integrate the human social behavior in a mobility
system consisting of CAVs. Moreover, our work in this paper
expands the much-needed discussion on understanding the
social impact and implications of CAVs by providing insights
on how human behavior might react to an emerging mobility
system. More specifically, our most important contribution is
to rigorously show that without a well-thought intervention
via regulations or incentives, a society of selfish travelers
will make the wrong collective decisions, and thus, we will

end up with a catastrophically sub-optimal performance of
the emerging mobility system.

The remaining of the paper proceeds as follows. In Section
II, we provide an overview of Game Theory notions. In
Section III, we present our formulation of the social decision-
making regarding the CAVs as a normal-form game and
show that it is equivalent to a PD game. In Section IV, we
introduce and study a preference structure, and in Section V,
we apply a framework of institutions and provide a numerical
study of the results. Finally, we offer some concluding
remarks and discuss future work in Section VI.

II. MATHEMATICAL PRELIMINARIES

In this section, we present a brief overview of important
notions from non-cooperative Game Theory. First, we as-
sume that the players of the game are rational, in the sense
that each player’s objective is to maximize the expected value
of her own payoff. In addition, we assume that the players
are intelligent, i.e., each player has full knowledge of the
game and has the ability to make any inferences about the
game that we, the designers, can make. In order to develop
a rigorous framework that analyzes the social dilemma as a
game, we need to formally define a few important notions of
Game Theory that will prove instrumental in our analysis.

Definition 1. A finite normal-form game is a tuple G =
〈I,S, (ui)i∈I〉, where
• I = {1, 2, . . . , n} is a finite set of n players with n ≥ 2;
• S = S1 × · · · × Sn, where Si is a finite set of actions

available to player i ∈ I with s = (s1, . . . , sn) ∈ S
being the action profile;

• u = (u1, . . . , un), where ui : S → R, is a real-valued
utility function for player i ∈ I.

Definition 2. Let Si be the strategy profile of player i,
si, s

′
i ∈ Si be two strategies of player i, and S−i be the set of

all strategy profiles of the remaining players. Then, si strictly
dominates s′i if, for all s−i ∈ S−i, we have ui(si, s−i) >
ui(s

′
i, s−i). Also, a strategy is strictly dominant if it (strictly)

dominates any other strategy.

Definition 3. A player i’s best response to the strategy profile
s−i = (s1, . . . , si−1, si+1, . . . , sn) is the strategy s∗i ∈ Si
such that ui(s∗i , s−i) ≥ ui(si, s−i) for all si ∈ Si. A strategy
profile s is a Nash equilibrium (NE) if, for each player i, si
is a best response to s−i.

Next, for completeness, we define the notion of Pareto
domination. First, an “outcome” of a game is any strategy
profile s ∈ S . Intuitively, an outcome that Pareto dominates
some other outcome improves the utility of at least one player
without reducing the utility of any other.

Definition 4. Let G and s′, s ∈ S. Then a strategy profile s′

Pareto dominates strategy s if, ui(s′) ≥ ui(s), for all i, and
there exists some j ∈ I for which uj(s′) > uj(s).

Pareto domination is a useful notion to describe the social
dilemma in a game. However, Pareto-dominated outcomes
are often not played in Game Theory; a NE will always be



preferred by rational players. For further discussion of the
Game Theory notions presented above, see [23].

Next, we provide our formulation and show that it is
equivalent to the PD game.

III. GAME-THEORETICAL FORMULATION

We consider a society of n ∈ N, n > 2, travelers who
seek to commute on a city’s transportation network. We
consider the road infrastructure as the common, yet limited,
resource that is open-access and shared with all travelers.
Each traveler has the option to utilize the roads by traveling
in a CAV, which in turn contributes to the capacity of the
roads. We expect each traveler to utilize the roads selfishly.

Assumption 1. We assume full CAV-penetration, and so
each traveler may choose either to travel in a CAV or
use another mode of transportation, e.g., train, light rail,
bicycling, or walking, thereby not contributing to congestion.

In a game-theoretic context, each traveler represents a
rational player who has two possible actions, namely either
NC for not traveling in a CAV (non-CAV travel) or C for
traveling in a CAV (CAV travel). From now on, we shall
use the terms “player” and “traveler,” interchangeably. All
players receive a benefit c ∈ R>0 for deciding to commute in
the society. On the other hand, traveling using CAVs conveys
benefits arising from flexibility, privacy, convenience, etc. So,
if a player chooses to travel in a CAV, then they receive a
benefit of c + d, where d ∈ R>0 with d · (n − 2) > 2 (this
ensures that d provides a significant incentive for CAV travel
yet the lower bound decreases as n increases). However,
traveling in a CAV is naturally the selfish choice as it exploits
the society’s resources. Hence, for each player that decides
to travel in a CAV, a cost of e ∈ R>0 is imposed to the
society as a whole and is paid out equally by all players, i.e.,
we define φ = e/n as the damage done to society. Without
losing any theoretical insight, let us define e = d + 1 and
assume that the original benefit c is strictly greater than e.

Remark 1. In our formulation, we want to capture the
potential consequence of the players’ decision to travel in
a CAV. For this reason, contributing to the capacity of the
roads (creating congestion, pollution, etc.) is represented by
the cost and overall by the damage done to society.

We can write the final form of player’s i payoff for
traveling in a CAV as (c+ d)− (n− k)φ, and accordingly,
player’s i payoff for not traveling in a CAV as c−(n−k−1)φ,
where k is the number of players who choose not to travel
in a CAV other than player i. Thus, the payoff function is

fi(si, k) =

{
c− (n− k − 1)φ, if si = NC,

c+ d− (n− k)φ, if si = C.
(1)

For player i the benefit of traveling in a CAV is denoted
by fi(C, k) and the benefit of not traveling in a CAV by
fi(NC, k), where k is the number of players who decide to
non-CAV travel other than player i. Note that (1) depends
not only on player i’s own action but also on k.

At this point, we can formally formulate our game denoted
by G. We have the finite set of players I = {1, . . . , n} with
n > 2; for each player i the action set is si ∈ {NC,C}, and
fi(si, k) with k = 0, 1, . . . , n − 1 is the payoff function of
player i. Thus, our game can be represented by the following
tuple:

G = 〈I, (Si = {NC,C})i∈I , (fi(si, k))i∈I〉 . (2)

Next, we fully characterize game G.

Lemma 1. The payoff difference α = fi(C, k)− fi(NC, k)
is positive and constant for all values k ∈ [0, n− 1] and for
all players i ∈ I. Furthermore, fi(NC, k) and fi(C, k) are
strictly increasing in k.

Proof. We have fi(C, k) = c+d−(n−k)φ and fi(NC, k) =
c− (n− k− 1)φ and so the difference is simply fi(C, k)−
fi(NC, k) = c+ d− (n− k)φ− [c− (n− k− 1)φ] = d−φ.
Hence, α is clearly positive by definition of c and d and
also constant for all values k = [0, n− 1]. Furthermore, for
k > k′, we have

fi(NC, k) = c− (n− k − 1)φ, and (3)
fi(NC, k

′) = c− (n− k′ − 1)φ. (4)

Subtracting (4) from (3) gives fi(NC, k) − fi(NC, k
′) =

(k − k′)φ > 0, and so fi(NC, k) > fi(NC, k
′) for all k.

In similar lines, we can show that the benefit of CAV travel,
fi(C, k), is strictly increasing in k. Therefore, we conclude
that fi(NC, k) and fi(C, k) are strictly increasing in k.

From now on, the payoff difference is denoted by α.
We observe that the payoff difference, interpreted as the
non-CAV travel cost, increases as n increases. Interestingly
enough, the payoff difference is independent of how many
players choose not to travel in a CAV. In game-theoretic
terms, we can interpret this as the strategy CAV travel
dominating strategy non-CAV travel with a degree that is
constant and independent of the other players who choose to
CAV travel.

Lemma 2. The payoff function (1) is non-negative for all
k ∈ [0, n − 1], i.e., fi ≥ 0 for all i ∈ I. Furthermore,
mutual non-CAV travel is preferred to mutual CAV travel,
i.e., fi(NC,n− 1) > fi(C, 0) is a Pareto relation.

Proof. We have fi(NC, 0) = c− (n−1)φ = c− (d+1)+φ
and fi(C, 0) = c + d − n · φ = c − 1. As fi(NC, k) and
fi(C, k) are increasing in k, the result follows. Also, we have
fi(C, 0) = c−1 and fi(NC,n−1) = c−(n−(n−1)−1)φ =
c leading to fi(NC,n− 1) > fi(C, 0) for all i ∈ I.

Lemma 2 establishes the fact that game G induces a Pareto
relation, which implies that the equilibrium of mutual CAV
travel is Pareto inferior to the alternative outcome, i.e., all
players choose to non-CAV travel. This is significant since
Pareto relations are directly associated with social dilemmas.

Theorem 1. Game G defined in (2) is equivalent to the PD
game as both games share an equivalent incentive structure.
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Fig. 1. A visualization of the payoff function (1) evaluated using the values
d = 2.2827, c = 4.2827, and n = 25. We notice that, by focusing on the
red circle, with a certain number of non-CAV travelers the overall utility
of non-CAV travel is greater than the utility of CAV travel. This is the true
meaning of a social dilemma in a CAV transportation context.

Proof. By Lemma 1, we have fi(NC, k) < fi(C, k) for all
k ∈ [0, n − 1] which implies that the dominant strategy by
rational players in the game is CAV travel no matter how
many players decide to non-CAV travel. By Lemma 2, the
social dilemma induced structure is equivalent to that of the
Prisoner’s dilemma.

Corollary 1. The game defined in (2) and the PD game
provide equivalent incentives to the players, and thus, they
result in equivalent outcomes.

Next, we show that by construction of the payoff function
(1), non-CAV travel is more attractive from both the societal
and the player’s perspective.

Proposition 1. Consider the game G defined in (2). Note that
the benefit of CAV travel is given by fi(C, k) and the cost of
non-CAV travel given by α (i.e., the payoff difference). Then
the strategy non-CAV travel is socially desirable:

nfi(C, k + 1)− (k + 1)α > nfi(C, k)− kα, ∀i ∈ I (5)

and also individually desirable:

fi(NC, k + 1) > fi(NC, k), ∀i ∈ I. (6)

Proof. Both (5) and (6) can be verified by substitution of the
corresponding functions in (1).

Before we continue, let us introduce the notation bxc,
which denotes the greatest integer that is less than x.

Proposition 2. Consider game G defined in (2). There exists
a unique integer 2 ≤ k∗ ≤ n given by k∗ =

⌊
nd
d+1

⌋
+1 such

that

fi(NC, k
∗ − 2) < fi(C, 0) < fi(NC, k

∗ − 1), (7)

where k∗ is the minimum number of non-CAV travelers.

Proof. By substitution, we get the following equations:

fi(NC, k
∗ − 2) = c− (n− (k∗ − 2)− 1)φ

= c− (n− k∗ + 1)φ, (8)
fi(C, 0) = c− 1, (9)

fi(NC, k
∗ − 1) = c− (n− (k∗ − 1)− 1)φ

= c− (n− k∗)φ. (10)

We want to find a unique k∗ such that (7) holds. So, we have

c− (n− k∗ + 1)φ < c− 1 < c− (n− k∗)φ (11)

which leads to
nd

d+ 1
< k∗ <

nd

d+ 1
+ 1. (12)

As k∗ is an integer, the last inequality (12) is true if and only
if k∗ =

⌊
nd
d+1

⌋
+ 1 and nd

d+1 is not an integer number.

Proposition 2 intuitively implies that we need at least k∗

non-CAV travelers so that the benefit a player receives when
they decide non-CAV travel will be greater than the dominant
strategy f(C, 0) (see in Fig. 1 the red circle).

Next, we seek a way to characterize an outcome of the
game in terms of preference. Now, in most cases, identifying
the “best” outcome is not possible, but there are certain
situations that might be better from a societal standpoint.

Proposition 3. The strategy of universal CAV travel, f(C, 0),
is Pareto dominated by outcomes with k′ ≥ k∗ − 1.

Proof. We want to show that the outcomes with k′ ≥ k∗ −
1 Pareto dominate the dominant strategy of universal CAV
travel. We only have to check two cases, namely k′ ≥ k∗−1
and k′ < k∗ − 1. For k′ = k∗ − 1, we have

fi(NC, k
′) = c−

(
n−

⌊
nd

d+ 1

⌋
− 1

)
φ. (13)

Let
⌊
nd
d+1

⌋
= nd

d+1 − ε, where ε > 0, so that

fi(NC, k
′) = c−

(
n− nd

d+ 1
− ε− 1

)(
d+ 1

n

)
= c− 1 + (ε+ 1)φ. (14)

Subtracting fi(C, 0) from fi(NC, k
′) gives (ε + 1)φ > 0.

Furthermore, for k′ > k∗ − 1, note that fi is a strictly
increasing function in k, thus fi(NC, k′) > fi(NC, k

∗ − 1)
which implies fi(NC, k′) > fi(C, 0). Thus, for all players
i, fi(NC, k′) > fi(C, 0), where k′ ≥ k∗ − 1. On the other
hand, if k′ < k∗ − 1, then fi(NC, k

′) < fi(C, 0) for
all players i by the first inequality relation in Proposition
2. Hence, all outcomes which satisfy k′ ≥ k∗ − 1 Pareto
dominate the dominant strategy of universal CAV travel.

We note that by construction, the payoff function (1)
mutual non-CAV travel is the social optimum but, as a



consequence of Proposition 3, the decision to non-CAV travel
is worthwhile to a player only if there are k∗ or more non-
CAV travelers. Otherwise, everyone is no worse off at the
dominant strategy of universal CAV travel. This gives rise to
the notion of the state of minimally effective non-CAV travel.

Definition 5. The state of minimally effective non-CAV
travel is the minimum number of non-CAV travelers, k∗,
such that an outcome Pareto dominates the universal CAV
travel equilibrium.

Clearly, the state of minimally effective non-CAV travel is
given by Propositions 2 and 3. This is an important notion
that can help in the derivation of the optimal utilization of
CAVs in the emerging transportation systems.

Next, we discuss two solution approaches applied in our
game G. Our goal is to derive conditions that ensure a
coalition of non-CAV travel, which are at least as large as
the minimum state of non-CAV travel.

IV. NASH EQUILIBRIA AND THE POPULATION
THRESHOLD

A. Preference Structure

Usually, in Game Theory, we assume that players are only
interested in their own payoff. One of our goals is to study,
in a more realistic setting, the players’ social behavior, and
so we impose to our game G a “preference structure.”

A preference structure allows us to model a particularly
interesting scenario: the rational players are interested not
only on their own payoff but also on the relative payoff
share they receive, i.e., how their standing compares to that
of others [24]. The authors in [25] designed the “equity,
reciprocity, and competition (ERC)” model which is a simple
model capable of handling a large population of players with
an “adjusted utility” function constructed on the premise that
players are motivated by both their pecuniary payoff and
their relative payoff standing. Notice that we changed our
terminology of payoff function to adjusted utility function
here. We do this to differentiate the difference between the
absolute payoffs that players get from (1) and the adjusted
payoffs players will get in a preference structure. One of
the reasons we use the ERC model is because it has been
successful in explaining the behavior of selfish players in
social experiments than other standard modeling techniques.

Now, we observe that players rarely play against the same
other players, and so it is reasonable enough to analyze each
game as one-shot. To further justify this, we only have to
argue that it is highly unlikely to “meet” other travelers in a
major metropolitan city. Let the absolute payoff of player i
be given by fi from (1). Each player i seeks to maximize the
expected utility of her motivation function vi = vi(fi, σi),
where

σi = σi(fi, γ, n) =

{
fi/γ, if γ > 0,

1/n, if γ = 0.
(15)

Equation (15) represents player i’s relative share of the
payoff and γ =

∑n
j=1 fj is the total pecuniary payout.

We can think of the motivation function vi as the expected
benefits that drive the players’ behavior. We assume that vi
is twice differentiable.

Next, we allow each player to be characterized by ai/bi
which is the ratio of weights that are attributed to the pe-
cuniary and relative components of the motivation function.
For example, strict relativism is represented by ai/bi = 0, so
argmaxσi

vi(γσi, σi) = π = 1/2, where πi(γ) is implicitly
defined by vi(γπi, πi) = vi(0, 1/n) for πi ≤ 1/n. Strict
narrow self-interest is the limiting case ai/bi → ∞, so
argmaxσi

vi(γσi, σi) = 1 and s → 0 [25]. Based on the
above, the adjusted utility function then is given by:

ui(fi, σi) = aiq(fi) + bir(σi), (16)

where q(·) is strictly increasing, strictly concave, and differ-
entiable; r(·) is differentiable, concave, and has its maximum
at σi = 1/n. Let us discuss a simple example from [25].

Example 1. We can explicitly define both q and r as:

q(fi) = fi and r(σi) = −
1

2

(
σi −

1

n

)2

, (17)

where function q(·) expresses the standard preferences for
the payoff functions (1); function r(·) describes in a precise
way the collective importance of equal division of the payoffs
(this is also called the “comparative effect.”) Consequently,
the further the allocation moves from player i receiving an
equal share, the higher the loss from the comparative effect.

B. Analysis for the Nash Equilibria and the Threshold of
Non-CAV Travel

Our analysis in this subsection follows [24], but we apply
it to our game G defined in (2) along with the preference
structure. Our goal is to study what influences strategic
agents to non-CAV travel in our game G.

We start our analysis by looking at the necessary and
sufficient conditions for player i to non-CAV travel, i.e.,

ui(fi(NC, k + 1)) ≥ ui(fi(NC, k)). (18)

Equivalently, we have from [24] that ai/bi ≤ δ(k), where

δ(k) =

r

(
fi(NC,k+1)

nfi(C,k+1)−(k+1)α

)
− r
(

fi(C,k)
nfi(C,k)−kα

)
q
(
fi(C, k)

)
− q
(
fi(NC, k + 1)

) . (19)

From (19), we can deduce that player i will non-CAV travel
if, and only if, there is overcompensation for the loss in
absolute gain by moving closer to the average gain [24].
Hence, we can state the general conditions of a NE:

ai/bi ≤ δ(k − 1), for k players non-CAV travel, (20)
ai/bi ≥ δ(k), for n− k players CAV travel. (21)

We now have a better understanding of how the number of
other non-CAV travelers, and its value can make non-CAV
travel a rational strategy.

Lemma 3. For a given distribution of ERC-types, δ(k−1) >
0 is necessary but not sufficient to get a coalition size of k



where n − k players free-ride. For a given payoff structure
with δ(k − 1) > 0, there exist ERC-types such that k is an
equilibrium coalition size.

Proof. If δ(k−1) < 0, it is impossible for a coalition to form
in the game of size k. On the other hand, if ai/bi > δ(k−1)
then condition (20) cannot hold for any player. However,
conditions (20) and (21) imply that if δ(k−1) > 0, then there
are types (ai/bi)i∈I such that k players non-CAV travel and
n− k players free-ride.

Proposition 4. By construction of the game G together with
the ERC preference structure, there always exists a Nash
equilibrium of universal CAV travel.

Proposition 4 follows directly from Lemma 3. We are
though interested in finding a threshold of players that decide
to non-CAV travel. The next proposition will help us do that.

Proposition 5. The necessary condition for an equilibrium
of non-CAV travel δ(k − 1) > 0 is equivalent to

n [(k − 1)fi(C, k)− kfi(C, k − 1)]+

+ [nfi(C, k − 1)− (k − 1)α] [2k − n] > 0. (22)

Proof. In order to obtain δ(k∗ − 1) > 0, it is necessary
that by choosing the strategy CAV travel, a player further
deviates from the equal share 1/n than by choosing strategy
non-CAV travel, i.e.,

fi(C, k − 1)

nfi(C, k − 1)− (k − 1)α
− 1

n
>

1

n
− fi(NC, k)

nfi(C, k)− kα
. (23)

Rearranging and by eliminating the denominators, we get

nfi(C, k − 1)(nfi(C, k)− kα)+
+ n(fi(C, k)− α)(nfi(C, k − 1)− (k − 1)α)

− 2(nfi(C, k − 1)− (k − 1)α)(nfi(C, k)− kα) > 0,

where we have used α = fi(C, k)− fi(NC, k). Substituting
the payoff functions from (1) and further simplification yield

n [(k − 1)fi(C, k)− kfi(C, k − 1)]+n(2k−n)fi(C, k−1)
− (k − 1)α[2k − n] > 0. (24)

Simplifying (24) gives

n [(k − 1)fi(C, k)− kfi(C, k − 1)]+

[nfi(C, k − 1)− (k − 1)α] [2k − n] > 0. (25)

Therefore, the result follows immediately.

We are now ready to prove the main result of the section.

Theorem 2. For any given vector of types, a rational player
chooses to non-CAV travel when at least half of the players
non-CAV travel.

Proof. We only have to check on what conditions relation
(22) is positive. By construction the payoff functions are non-
negative, and thus nfi(C, k − 1)− (k − 1)α > 0, i.e.,

nfi(C, k− 1)− (k− 1)α = n(c− 1)+ (k− 1)(1+φ) (26)

which is clearly positive for all values of n, c, and k. Hence,
the second component of (22) is positive for 2k − n > 0.
Next, we look at the first component of (22). By substituting
the payoff function from (1), we get

(k − 1)fi(C, k)− kfi(C, k − 1) = 1− c, (27)

which is negative for all values of c. We observe though that
the second component is much bigger and dominates the first
component as long as 2k − n > 0. Hence, relation (22) is
positive and we have δ(k − 1) > 0 for 2k > n. Therefore,
for any given vector of types, if a player cooperates at the
equilibrium, then at least half of the players cooperate.

The interpretation of Theorem 2 is that for any coalition
to exist with size k ≥ 2, a minimum of n/2 players must
join. We showed that given the specific payoff structure of
our game G and along with the ERC preference structure, a
coalition of players choosing strategy non-CAV travel could
be formed provided that it is rather large. Thus, even if we
impose a social mechanism that enforces strategy non-CAV
travel in a society of travelers and satisfying (22), a coalition
of at least size n/2 must be formed to create an equilibrium
of non-CAV travel. Therefore, the social mechanism will
require significant influence over the players’ behaviors in
order to create a state of effective non-CAV travel. On the
other hand, this result is promising as it shows that a social
solution can potentially prevent self-centered and destructive
behavior towards society.

V. CREATING AN INSTITUTIONAL ARRANGEMENT

In this section, we take advantage of the equivalency of
our game G to the Prisoner’s dilemma in order to use the
non-cooperative game model of institutional arrangements
framework of [11]. We prove in Theorem 3 that the ratio
of non-CAV travel and CAV travel in a deregulated society
as the number of players increases, tends to zero. In other
words, as the society becomes larger and larger, the incentive
to cooperatively agree not to travel in a CAV tends to zero.

Players are free to create a social institution that binds
them by selecting their actions. In other words, players agree
to have an institutional arrangement with the purpose of
enforcing an agreement of non-CAV travel. The first stage is
the creation of a social institution, and this is done through
participation negotiations, and thus the first stage is called
“participation decision stage.” All players have to decide
whether they will participate in negotiations for collective
decision making, or not, without any knowledge of each
others’ decisions. The outcome of the game at this first stage
is either that some group of players is formed or not. All
players decide to participate in negotiations or not based
on their expectations about what will happen in the rest of
the game. The possibility of non-CAV travel is significantly



affected by the number of players. That means that the
outcome of the institutional arrangements depends on the
players’ decisions in the first stage [11].

Remark 2. In contrast to Cooperative Game Theory, there
is no external binding enforcement, and players are free to
make their decisions (whether it is beneficial to them only).
Thus, we treat the institutional arrangements framework as
a non-cooperative game.

The goal here is to investigate the question: does the
number of travelers affect the possibility of non-CAV travel?

The next proposition addresses the basic cases.

Proposition 6. ([11]) Let di = 1 denote a player i’s decision
to participate in bargaining for installing an enforcement
agency; otherwise di = 0. When k∗ = n, the participation
decision stage has a unique solution d∗ = (1, . . . , 1).

It is interesting enough that in the special case n = 2,
both players agree to create an enforcement agency and also
to non-CAV travel in the institutional arrangements.

Definition 6. The incentive ratio of non-CAV travel and CAV
travel can be defined as a positive number given by:

β =
fi(NC, k

∗ − 1)− fi(C, 0)
fi(C, k∗ − 1)− fi(NC, k∗ − 1)

. (28)

In words, β represents the ratio of players’ incentive to
form the minimum group for non-CAV travel, i.e., the group
of k∗ non-CAV travelers, over their incentive to deviate
unilaterally from the minimum group for non-CAV travel.
Given our game G defined in (2), we have

β =
k∗φ− d
d− φ

=
k∗(d+ 1)− nd
d(n− 1)− 1

. (29)

Proposition 7. ([11]) The uncooperative solution of the
institutional arrangements for our game G prescribes the
following player behavior:

1) If n =
⌊
nd
d+1

⌋
+ 1 = k∗, then all players participate

in bargaining and they agree to non-CAV travel.
2) If n ≥

⌊
nd
d+1

⌋
+ 2, then every player participates in

bargaining with probability t(n) satisfying:

β =
∑

k∗≤k≤n−1

(n− k∗) · . . . · (n− k)
k∗ · . . . · k

(
t

1− t

)k−k∗+1

,

where k∗ and β are given by Proposition 2 and (29),
respectively.

We are ready now to prove our main result of this section,
which has to do with the limiting behavior of β.

Theorem 3. As the number of players increases, the incen-
tive ratio of non-CAV travel and CAV travel vanishes, i.e., β
tends to zero as n tends to infinity.

Proof. Substitute k∗ =
⌊
nd
d+1

⌋
+ 1 into β to get

β =

(⌊
nd
d+1

⌋
+ 1
)
(d+ 1)− nd

d(n− 1)− 1
. (30)

By Proposition 2, nd
d+1 is not an integer, thus we can write⌊

nd
d+1

⌋
= nd

d+1 − ε, where ε > 0. Now taking the limit of β
as n goes to infinity gives

lim
n→∞

β = lim
n→∞

(⌊
nd
d+1

⌋
+ 1
)
(d+ 1)− nd

d(n− 1)− 1
, (31)

or equivalently

lim
n→∞

β = lim
n→∞

( ndd+1 − ε+ 1)(d+ 1)− nd
d(n− 1)− 1

(32)

= lim
n→∞

nd+ (−ε+ 1)(d+ 1)− nd
d(n− 1)− 1

(33)

= lim
n→∞

(−ε+ 1)(d+ 1)

d(n− 1)− 1
. (34)

We divide both numerator and denominator by 1/n and using
the standard limit limx→∞

1
x = 0 gives the result, i.e.,

limn→∞
(−ε+1)(d+1)

n

d− limn→∞
d
n − limn→∞

1
n

= 0. (35)

Thus, we conclude that limn→∞ β = 0.

To complement our understanding, we performed a numer-
ical study of the limiting behavior of t(n), given in Table I.
In the table, we have included the additional probabilities:
pA(n) shows the probability of some group of size k∗ or
greater reaching an agreement, pI(n) the probability of each
player being an insider of some group with at least k∗ non-
CAV travelers, and pF (n) is the probability of each player
being a free rider, i.e., existing outside of a group of at least
k∗ non-CAV travelers.

n k∗ β t(n) pA(n) pI(n) pF (n)

3 3 0.930 1.000 1.000 1.000 0.000
4 3 0.166 0.333 0.111 0.086 0.025
5 4 0.253 0.503 0.192 0.160 0.032
6 5 0.302 0.602 0.236 0.204 0.031
7 5 0.066 0.139 0.001 0.001 0.000
8 6 0.129 0.269 0.006 0.005 0.001
9 7 0.175 0.363 0.014 0.011 0.003
10 7 0.037 0.078 0.000 0.000 0.000
11 8 0.083 0.174 0.000 0.000 0.000
12 9 0.120 0.252 0.000 0.000 0.000
13 9 0.023 0.048 0.000 0.000 0.000
14 10 0.059 0.124 0.000 0.000 0.000
15 11 0.089 0.188 0.000 0.000 0.000
20 14 0.034 0.072 0.000 0.000 0.000
25 17 0.002 0.004 0.000 0.000 0.000
30 21 0.033 0.070 0.000 0.000 0.000
35 24 0.011 0.023 0.000 0.000 0.000
40 28 0.033 0.069 0.000 0.000 0.000
45 31 0.016 0.033 0.000 0.000 0.000
50 34 0.002 0.004 0.000 0.000 0.000

TABLE I
NUMERICAL STUDY FOR GAME G WITH THE INSTITUTIONAL

ARRANGEMENTS WHERE d ≈ 2.

From Theorem 3, the incentive ratio goes to zero as the
number of players increases. In addition, from the numerical
study summarized in Table I and Figure 2, the likelihood of



Fig. 2. Plot of t(n) as a function of the number of CAV travelers. The
blue line shows the sequence of t(n) as n increases from 0 to 100.

bargaining for an institution, t(n) and probability of being
an insider, pA(n) approach zero as n gets large. This implies
that for large societies, the impact of self-realized non-CAV
travel is non-existent, and the universal CAV travel strategy
dominates. For small societies with k∗ = n, it is a certainty
that players agree to bargain and create an institution for
CAV travel (which is not ideal).

VI. CONCLUSION

In this paper, we addressed the problem of the social
consequences of decision-making of human interaction with
connectivity and automation in a game-theoretic setting.
We formulated the problem as a multiplayer normal-form
game and showed that the incentive structure is equivalent
to the PD game. The proposed approach has the benefit
of capturing the social dilemma that is expected to arise
from the future social-mobility dilemma. We considered two
different approaches: one was with a preference structure and
one with institutions. We investigated and derived conditions
for the unselfish strategy, i.e., non-CAV travel, to appear in
the game. In the first case, we came up with conditions for
a NE and derived a threshold for non-CAV travel; in the
second case, we allowed players to create an institution that
can enforce non-CAV travel. We concluded that the incentive
ratio of non-CAV travel over CAV travel tends to zero as the
number of players increases.

Ongoing work includes the design of a framework that
analyzes the impact of decision-making by relaxing the
assumptions of complete information (e.g., inducing a
Bayesian setting) aiming to capture the informational lim-
itations of players in the game.
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