
Abstract— Identifying interactions of vehicles on the road is 
important for accident analysis and driving behavior 
assessment. Our interactions include those with passing/passed, 
cut-in, crossing, frontal, on-coming, parallel driving vehicles, 
and ego-vehicle actions to change lane, stop, turn, and 
speeding. We use visual motion recorded in driving video taken 
by a dashboard camera to identify such interaction. Motion 
profiles from videos are filtered at critical positions, which 
reduces the complexity from object detection, depth sensing, 
target tracking, and motion estimation. The results are 
obtained efficiently, and the accuracy is also acceptable. The 
results can be used in driving video mining, traffic analysis, 
driver behavior understanding, etc. 

I. INTRODUCTION

Finding interactions of vehicles on the road will be 
valuable for accident analysis and driving behavior 
assessment, because half of the accidents are collision with 
other vehicles, along with road departure [1]. Vehicle 
interactions include cut-in, merging, crossing, frontal 
approaching, etc. Vehicle interaction does not imply an 
accident, but a crash or near crash always starts from an 
interaction. In driving behavior analysis, aggressive drivers 
have more lane changes passing many vehicles and bumper-
to-bumper chasing. A tired driver may drive slowly and be 
passed by most vehicles on multi-lanes. Major accidents are 
bumping into a frontal vehicle or with a cut-in vehicle to the 
same lane if ego-driver does not brake or avoid promptly. 
These interactions have been recorded in Naturalistic Driving 
Videos (NDV) [3] that yield clear visual motion footage. 

Driving video provides rich information to understand 
events between vehicles. We limit our sensing depth up to 
middle range in examining vehicle interactions. A horizontal 
zone reaching middle range in the frames can capture image 
velocity of surrounding vehicles. The range is determined 
from the relative speed and distance of vehicles with the 
camera. A motion profile [4] is sampled from such a zone 
such that surrounding scenes have their trajectories in the 
generated spatial-temporal image. We found that different 
events around camera correspond to unique trajectories. By 
filtering traces at special locations over time, we can classify 
trace types reflecting different events with surroundings.  

Related works on vehicle interactions can be found in [2, 
5, 6, 7, 13]. Traditional methods have spent much more 
efforts to achieve the goal. It starts from object recognition 
using detector [8], which requires more computing resources 
and time. Tracking bounding boxes is followed and motion 
trajectories have to be estimated and classified to interactions 
and events [10]. Our method skips object recognition of 
objects by focuses on vehicle motion observed at special 
locations in video. This reduced the complexity of the 
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problems significantly because the shape recognition of 
vehicles suffers from the variations in vehicle shape, 
orientation, type, color, and illumination conditions. As 
preparation for motion understanding, the temporal profile 
has been proposed in [4] to directly reflect the relative motion 
of surrounding vehicles. The TTC computation has been 
carried out in the motion profiles [11]. Multiple motion 
profiles have been employed to sort the near crashing based 
on the motion trajectories in the field of view [12]. Traffic 
counting at opposite lane has used motion profile as well [9].  

In the following, Section II introduces various 
interactions between vehicles, and their relative motion 
observable in the video. Section III introduces the motion 
profiles employed to capture the vehicle motion at 
surroundings. The motion traces are analyzed for different 
interactions. Section IV proposes an algorithm to detect 
motion traces and interaction type based on filtering at 
critical positions. Section V describes experiments and the 
results, followed with conclusion. 

II. VEHICLE INTERACTIONS ON THE ROAD

Vehicle interactions dealt with here are listed in Table I, 
and some cases are also depicted in Fig. 1. In the ego-vehicle 
centered space, a vehicle interaction happens at a depth up to 
middle range within, e.g., 20m. Further beyond, vehicle 
actions are not considered because they will not cause an 
immediate crash. Vehicle interactions affect safe driving and 
may cause near crash if they are not responded properly.  

(b) Frame view
Fig. 1 Different interactions between ego-vehicle and surrounding vehicles. 
(a) Interactions in a top view where ego-vehicle is moving upward. Many 
interactions are symmetric on left and right sides except for on-coming 
vehicles on left side. (b) Front view with a horizontal zone (M1 in orange
color) covering scenes up to a middle range of road for vehicle motion 
identification. In addition, M0 and M2 zones can also be obtained in the
same way above and below M1 for farther and closer vehicles, respectively. 
(c) Example frames of right turn of an opposite vehicle at an intersection.

We use a dashboard camera to observe vehicle
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interactions on the road. The camera orientation has been 
calibrated so that the planned moving space in front of ego-
vehicle is known. Through mining of NDV, we found that 
lower parts of vehicles contain tire and shadow, which are 
relatively dark in almost all-weather conditions except night 
driving and strong raining on wet road (splash). Road is 
relatively brighter than lower vehicles. This constraint is 
common for all vehicles regardless of vehicle color, shape, 
and types. The vehicle motion on the road is projected as 
horizontal motion in the image with the vertical motion 
representing depth change. A vehicle appears in lower frame 
if its depth is close. Sky and high positions in the field of 
view can be omitted in monitoring. We therefore design an 
approach to find vehicle interactions through motion 
detection in driving videos.  

 
Fig. 2 Front views of driving video in different events. Yellow arrows 
indicate observable vehicle motion. Green arrow is for ego-vehicle. 

Our goal is to sort all the major types of vehicle 
interaction off-line for data mining of driving behavior, 

rather than an early identification of vehicle’s intention and 
responding to it in real time. We can thus refer to the entire 
process of vehicle motion to identify interactions. The 
constraints used in this work are: (1) Vehicles have almost 
the same width according to the design of road system, and 
thus lane widths are approximately similar. (2) Vehicle 
motion is from four-wheeled vehicles along smoothly 
curved path on road plane. (3) Ego-vehicle is on straight 
road locally, otherwise it is marked as turning or lane change 
in a short period. Figure 2 shows some scenarios in frames. 

III. MOTION PROFILES CAPTURING HORIZONTAL MOTION 
A.  Data Reduction of Driving Videos to the Motion Profiles 

To condense driving video for understanding interactions, 
the height of horizon in the video is first located for each 
camera. The frame is located with sampling regions or zones 
as well as sampling lines below the horizon. Top zone, M0, 
is on the horizon to sense horizontal motion of all vehicles 
up to infinity (Fig. 1). A middle range zone, M1, covers 
range 10-20m for understanding actions of surrounding 
vehicles and path planning. A close-range zone, M2, located 
even lower in the image captures the sudden invasion of side 
vehicle and approaching front vehicle for urgent braking.  

In each sampling zone, pixels are averaged vertically to 
produce a line of data. The lines from consecutive frames are 
further concatenated to form a long spatial-temporal image, 
Mi(x,t), i=0, 1, 2, showing motion trajectories of scenes [4]. 
Because we average the pixels vertically in the zone, slanted 
road edges and lane marks in the image are blurred to a wide 
belt in the motion profile. Details in road area and grass at 
roadside are also blurred. Only vertical lines on vehicles 
remain high contrast after the pixel averaging, which further 
form distinct trajectories in the motion profile. Therefore, we 
can focus on trajectories for vehicles and ignore road edges 
and surface marks. As displayed in Fig. 3, a motion profile 
from zone M1 and a road profile from a line in the zone 
show vehicles in both driving lane and next lane moving in 
parallel. The motion profile from closer range M2 does not 

Table I Major vehicle interactions happening on the road and their motion observable in video 
 Interaction Types Observable Positions in frames Relative Motion in the Field of View 
Frontal 
vehicle 

Following it at the same lane Front, middle depth range Width keeps constant, enlarged and reduced  
Crossing vehicle: at intersection from either 
side including a left turn from opposite road 

Side or center, across horizontally at 
least half field of view 

Rightward or leftward across driving lane to 
one margin  

Front crash: to rear-end of front vehicle Center, close depth range Large expansion in width at center 
Side 
vehicle 

Passing (overtaking) vehicle goes ahead faster 
than ego-vehicle in the next lane 

From either side, toward middle depth 
range 

Centered (inward) motion ending at the next 
lane at middle depth 

Passed (overtaken) by ego-vehicle in the next 
lane 

Toward either side, from middle depth 
range 

Motion starting from the next lane at middle 
depth range outward to margin  

Cut-in vehicle or side-crash from the next lane 
into the driving lane of ego-vehicle quickly 

Either side to center, at middle depth. 
Only partially visible in crash 

Centered motion faster than Passing ending at 
the same driving lane of ego-vehicle 

Merging from crossing road or ramp slowly 
merging into the driving lane of ego-vehicle 

From either side, toward center  Faster motion than cut-in from margin 

On-coming in the opposite lane Starting from opposite lane at center, 
middle depth, fast speed leftward 

Fast leftward motion due to fast relative speed 
between opposite vehicles and ego-vehicle. 

Ego-
vehicle 

Stopping for signal or at stop sign Most part of field of view are static 
except crossing vehicles 

Scenes are static except crossing vehicles 
having motion, left-turning vehicle from 
opposite road moving rightward in the view. 

Turning at interaction Scenes shift in entire field of view  Opposite to the turning direction 
Changing lane Scenes shift in entire field of view Short deviation of all scenes 
Speeding Roadside scenes on two sides move 

outward 
Roadside scene expending fast to margins from 
center 

Traffic  High density vehicle flow Many vehicles at middle depth Stable motion near center in the field of view 
Leaving vehicles: turning away from road 
without interaction. 

Two sides Motion outward to a margin 

 
 



  

cover vehicle interaction but can be used for determining 

urgent braking if a vehicle trace is visible in it. On the other 
hand, the motion profile from far away, i.e., M0, has dense 
traces of background, which makes it hard to identify 
vehicle traces against background. We will use them 
occasionally.  

B. Vehicle Trajectories from Different Events 
Through observing vehicle motion in Naturalistic Driving 

Videos as well as the traces in the generated motion profiles, 
we found phenomena of vehicle traces as in Fig. 4. 

• A cut-in vehicle has an inward trace toward center and 
ends up at the same lane as the ego-vehicle. 

• A passing vehicle faster than ego-vehicle on either side 
leaves an inward trace and it disappears at the next lane 
near the image center at middle range.  

• A passed vehicle slower than ego-vehicle on either side 
has a trace toward margin.  

• A frontal vehicle and side vehicle may keep parallel 
motion with ego-vehicle. Their traces maintain vertically 
and in the same widths approximately. 

• A successful merging vehicle may have a fast trace 
toward center while its width may decrease; otherwise, if 
its trace has expansion at the same position, it may yield 
collision and need to brake [11]. 

• If a vehicle leaves away, its width is reducing. Inversely, 
if it is getting closer to camera because it slows down or 
ego-vehicle has a faster speed, the vehicle width is 
expending. The time-to-collision is computable [11]. 

• On-coming vehicles in the opposite lane appear near the 
image center and passing outward to the left margin in a 
very horizontal direction because of a high relative-speed. 
They are more observable from leftist lane on a road [9]. 

• Ego-vehicle turning, and lane change have all the traces 
in the profiles deviated in the opposite direction to the 
turning direction in a short period. 

• A stop period of ego-vehicle produces pure vertical traces 
in the motion profile over the entire field except on some 
crossing vehicles. 

• In the road profiles, lane marks and road edges are 
visible. When the vehicle changes its lane, lane marks are 
bended and pass through the center of profile. This is 
used for detection of lane chance event of ego-vehicle. 

(a) Motion profile M1,.   (b) An example 
Fig. 4 Characters of motion traces in different events. Blue and gray traces 
indicate side and back of vehicles, respectively. The traces can be flipped to 
the other side horizontally except for on-coming vehicle traces. 

C. Other Trajectories Observable in Motion Profiles 
Roadside scenes such as vertical trees and buildings have 

traces in the motion profile fanning out from center [10]. 

t 

 x 

 R1  M1 
Fig. 3 Road profile (R1) and motion profile M1 from middle range in the 
video of 5-min driving. The horizontal axis is the same as the image 
while the vertical axis upward is the time in pixel (frame number).  



  

They are observed in far and middle motion profiles, 

particularly when ego-vehicle is in the rightmost lane. Scenes 
on the other roadside are blurred due to farther distance; their 
traces are less observable. The faster is the ego-vehicle speed, 
the more horizontal are those traces in the motion profile. 

Other traces left in the motion profiles include 
instantaneous illumination changes, e.g., ego-vehicle runs 
into a shadow area or under a bridge. Such dark and instant 
trajectories are close to horizontal in the profiles over the 
entire field of view. Due to the average of pixels in the 
sampling zone, slanted road edges and patterns in the frames 
are blurred. However, some white and yellow lane marks at 
image center may still leave short but wide traces in the 
motion profile. They are weaker after blurring than vehicle 
traces from vertical boundaries and can be filtered out. 

IV. DETECTING MOTION EVENTS OF SURROUNDINGS 
A. Locating Traces by Filtering Motion Direction 
Differential filters D(x) and D(t) are applied horizontally 

and vertically in the motion profile M(x,t). The outputs of 
filters are combined to obtain gradient G(x,t) of strong traces 
in the motion profile. Figure 5(a) displays such trace 
direction image in which pixel contrast is in intensity and the 
tangent direction of trajectories in colors. The trace 
orientation is converted to angle in (-90, +90) degree with 
the vertical (forward direction) as 0 degree. A vehicle trace 
is a bundle of edge traces with a coherent direction. Duo to 
the digitization errors and insufficient temporal resolution of 
motion profile for fast vehicles, close to horizontal traces 
may have angle values jumping between 90 and -90 degree 
after the local filtering of pixels. The trace angle is stored in 
an image A(x,t) for identifying vehicle moving direction. 

Along with the trace direction applied to the motion 
profile, another 1D Laplacian filter LT(t) is applied vertically 
at several horizontal locations p1, p2, p3, p4 in the motion 
profile (Fig. 4) to detect horizontal trace stripes bounded 
with two edges. The length of filter is T obtained from the 
average time of passing and passed vehicles in the driving 
video. The four horizontal positions for monitoring are 
indicated in Fig. 1 by small red boxes. Two outer positions, 
p3, p4, have a close distance from image margins, while two 
inner positions, p1, p2, are at edges of driving lane in a 
middle depth. They are set to sense the relative motion of 
vehicles in next lanes and check cut-in motion into driving 
lane. Figure 5(b) shows the entire motion profile filtered by 
this vertical filter resulting horizontal stripes in L(x,t).  

B. Locating Interaction Events from Traces 
Locating an event trace is based on the trace position and 

direction in L(x,t) and A(x,t). Passing and passed actions are 
monitored at side positions p3 and p4 close to frame margins. 
On-coming vehicles are examined only at p3 near left 
margin. The motion stripes are extracted from high values of 
|L(x,t)| at side positions p3 and p4 with a narrow horizontal 
span. Then the stripe orientation are referred to in the 
direction image A(x,t) with a median filter within the span. 
Passing, passed, and on-coming vehicle traces have their 
orientations inward, outward, and horizontal, respectively.  

A(pi, t) pi < 0                            passing vehicle  
                > 0        i=3, 4 for     passed vehicle 
A(pi, t)   ≅ -90                           on-coming vehicle           (1) 

A cut-in can start as a passing vehicle from rear or a parallel 

(a) (b) 
Fig. 5 (a) Motion direction of distinct trajectories in colors in A(x,t), and 
(b) trace stripe image L(x,t). (a) Vertical traces are marked in blue and 
horizontal traces are close to red or green according to their negative or 
positive direction. The intensigy of color is the gradient value at that 
point. (b) Positive and negative values in red and green after filtering LT. 
 

(a) (b) 
Fig. 5 (a) Motion direction of distinct trajectories in colors in A(x,t), and 
(b) trace stripe image L(x,t). (a) Vertical traces are marked in blue and 
horizontal traces are close to red or green according to their negative or 
positive direction. The intensigy of color is the gradient value at that 
point. (b) Positive and negative values in red and green after filtering LT. 
 



  

moving in the next lane so far. To distinguish a cut-in with 
similar trace as passing vehicle, a further check at position p1 
or p2 is carried out accordingly to see if the vehicle invades 
the driving lane of ego-vehicle at middle range. If a cut-in 
happens at close depth, i.e., a side crash, the front edge of 
cut-in vehicle generates an inward horizontal trace in a large 
span, while the back-side edge may have not appeared as 
illustrated in Fig. 4. Laplacian filter LT(t) also picks up such 
a strong edge from a close cut-in vehicle in M1. 

To monitor a front vehicle motion, the traces of vehicle 
edges are tracked overtime for the vehicle size change. This 
tracking starts from the moment when a front vehicle 
becomes visible in M1 in the middle depth range. We 
allocate two horizontal windows around position p1 and p2 
respectively with their distance adapted to the vehicle width. 
Major edge traces in A(x,t) close to vertical (blue) are 
located by the windows. If two major traces are extracted 
from such windows, we denote their x positions as x1(t) and 
x2(t), the divergence/convergence rate of frontal vehicle is  

S(t) = [tanA(x2(t), t) – tanA(x1(t), t)] / [x2(t) – x1(t)]     (2) 
The front vehicle is approaching if S(t)>0 and is leaving 
away if S(t)<0. It has been derived in [11] that S(t) = 1/TTC. 
On the other hand, a trace of crossing vehicle is examined at 
positions p1, p2, p3, and p4 in L(x,t). For left turn vehicles in 
opposite lane, p1, p2, and p3 are checked.  

Although ego-vehicle motion can be obtained from 
vehicle control parameters via CAN bus, we can also 
identify special moments of stopping, turning, and fast 
speeding by referring to the movement of surrounding 
scenes in the video and motion profiles. For a stopping 
period at an intersection or traffic jam, surrounding scenes 
are relatively static except some crossing traffic or vehicles 
passing on side lanes. This generates many pure vertical 
traces in the motion profile M0 and M1. Such vertical traces 
can be located at points s(x, t) by limiting their angles 
|A(x,t)|<γ, where γ is a small threshold. By counting the 
number of such points, ||s(x, t)||, at frame t, we can declare 
that ego-vehicle is stopping at time t if ||s(x, t)|| exceeds a 
given number.  

V.    EXPERIMENTS, EVALUATION, AND DISCUSSION 
The Naturalist Driving Videos [3] of 1280×720 pixels 

have been used and a subset generates motion profiles. The 
field of view covers 120 degree horizontally, and this covers 
about four lane width in the middle range depth. Three 
motion profiles are sampled at [0, 35], [35, 100], [100, 200] 
pixels below the horizon after it is picked in each video 
clips. Each five-minute of driving video yields 9000-pixel 
long motion and road profiles, notated as Mi(x,t), i=0,1,2, 
and Rk(x,t), k=1,2. The video set contains various types of 
road including rural, urban, highway, and local roads. 
Output events extracted are saved in labels as shown in Fig. 
6. The data reduction from driving video to profiles make 
the computation much faster than the traditional methods 
using vehicle detection, tracking and motion estimation. The 
understanding of temporal process is turned to the 
identification of spatial relation of trajectories in profiles.  

Ego-vehicle is driving in its own lane. The approaches of 
frontal vehicles are detected correctly in ego-vehicle’s lane. 
If a pair of inward traces on left and right sides of ego-
vehicle’s driving lane, it means a front vehicle leaving away 
from to ego-vehicle. Oppositely, a pair of outward traces on 

both sides means a front vehicle approaching closer. The 
TTC can be computed from the traces in the colored areas by 
using (2). Crossing vehicles at intersections are detected by 
the traces through margins, i.e., p3 and p4. If a vehicle trace 
from left lane through center to right, the vehicle is turning 
(its) left from opposite lane at crossing, as shown in Fig. 6. 
                    t          p3                       p1        p2              p4 

 x 
Fig. 6 Detected events of vehicle interactions in color labels. Vertical orange 
lines at p1 and p2 are the ego-vehicle driving lane. The red area at center 
means front vehicle approaching to ego-vehicle, and the green area means 
leaving of front vehicle. At p1 and p2 as well as p3 and p4, yellow and green 
boxes are inward are outward traces respectively. The crossing trace from 
left to right is a right turning vehicle from opposite lane. 
t                G0=M’0                 gradient G1=M’1                             M1                                            

 
Fig. 7 Motion traces with vertical edge points are marked in blue and rest of 
traces in red from motion profiles M0 and M1. The resulting stopping period 
is marked with yellow lines at center.  

For stopping period detection of ego-vehicle, we refer to 
static scenes relative to the camera. Occasional cases of 
parallel driving of a nearby vehicle may generate vertical 
traces locally, but such traces only remain in short segments. 
Figure 7 shows a period of stopping with many vertical 
traces marked in the motion profiles, and the period is 
marked as stopping framewise when such traces exceed a 
given number. 

As motion events detected by color in Fig. 8, green and 
red at center indicate a frontal vehicle at middle range 
moving away and getting closer respectively, computed 
from trace shrinking and expansion. Frequent shrinking and 
expansion mean a bumper-to-bumper traffic scenario. On the 
other hand, red color onside indicates on-coming vehicles, 
and some objects near driving lane due to their fast image 
velocity (traces are close to horizontal). Green and yellow 
further indicate outward and inward traces that are passed 
and passing vehicles on side lane, respectively.  

For the overall evaluation, we select 47 clips of 5-min 
driving with rich vehicle traces in M1. The interactions are 
labeled by humans and detected marks are compared with 
these labels. By counting events and periods, the accuracy is 
evaluated in Table II. Our method reduces the complexity of 
problem based on the camera setting and vehicle motion 
constrained by traffic rules and roads. The filtering at 
focused positions in a motion profile needs much lower 
computation cost than current deep learning methods in the 
recognition of vehicle and their motion. The motion profiles 
are obtained in video rate and all filtering takes at most 0.07s 
for 1s video on MAC with 2.2GHz Intel Core i7. 



  

 (a)  (b) 
Fig. 8 Detected events of vehicle interactions in color labels. 5-mins of 
drivings with time axes upward. Orange lines at center indicate driveable 
width of ego-vehicle. Inward traces are detected in yellow, outward traces in 
green, and horiontal traces in red at sides. Green, red, and yellow at center 
indicate leaving, approach, and fixed distance between ego-vehicle and 
frontal vehicle. Yellow at center also indicates stop of ego-vehicle. (a) Result 
from Fig. 3 in rural driving. (b) Result on a highway with passing vehicles. 

Our interaction classification is based on motion traces at 
critical locations. Some event detection has to wait for the 
entire process happened and is thus more suitable for batch 
processing of NDV than predicting vehicle behavior ahead. 
This work has not considered turning/braking lights on 
vehicles, traffic lights ahead of interactions, or future V2V 
communication during interactions. Recognizing different 
lights requires locating vehicles and then light blinking. 

Table II Accuracy of interaction detection based on motion traces 

 

VI. CONCLUSION 
This paper introduced a new method to capture vehicle 

interactions in driving video for driving behavior analysis. 
Our method captures the motion direction of vehicles at 
focused zones in driving videos without following the 
approach of recognition, tracking, classification, etc. We 
reduce the problem complexity by using filtering in the 
motion profile that is a compact representation of driving 
video. We will scan a large set of NDV and mine the 
frequency of different interactions from personal records for 
understanding driving behavior such as aggressive, fatigue, 
and normal.  
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Events TP FP FN Precision Recall F1 
Passing (faster) 113 11 4 0.91 0.97 0.94 
On-coming 260 27 51 0.90 0.84 0.87 
Passed (slower)  104 13 7 0.89 0.94 0.91 
Cut-in 38 7 2 0.84 0.95 0.89 
Front approach 28 4 1 0.88 0.97 0.92 
Front leaving 36 2 2 0.95 0.95 0.95 
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