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Abstract— Short-term traffic forecasting is one of the key
functions in Intelligent Transportation System (ITS). Recently,
deep learning is drawing more attention in this field. However,
how to develop a deep learning based traffic forecasting model
that can dynamically extract explainable spatial correlations
from traffic data is still a challenging issue. The difficulty
mainly comes from the inconsistency between static model
structures and the dynamic evolution of traffic conditions.
To overcome this difficulty, we proposed a novel multistep
speed forecasting model, Dynamic Graph Filters Networks
(DGFN). The major contribution is that the regular pixel-wise
dynamic convolution is extended to graph topology. DGFN
has a simple recurrent cell structure where local area-wide
graph convolutional kernels are dynamically computed from
varying inputs. Experiments on ring freeways show that DGFN
is able to precisely predict short-term evolution of traffic speed.
Furthermore, we theoretically explain why DGFN is not a pure
“black-box”, but a “gray-box” model that actually reduces
entangled spatial and temporal features into one component
representing dynamic spatial correlations. It permits tracking
real-time interactions among adjacent links. DGFN has the
potential to relate trained parameters in deep learning models
with physical traffic variables.

I. INTRODUCTION
With the development of urbanization, congestion has be-

come a severe issue in many cities. To mitigate the incoming
congestion in advance, timely short-term traffic forecasting
has become one of the core functions in urban traffic control
and guidance systems. For example, [1] and [2] showed that
if travelers and traffic flows in urban areas are dynamically
guided and rerouted using short-term traffic predictions,
congestion and overall travel time can be effectively reduced
during rush hours.

Network-level short-term traffic forecasting has been con-
tinuously studied for many years. This task is challenging
because of the complex nonlinear spatiotemporal character-
istics of traffic phenomena. Some key factors and variables
required in traffic simulation systems, such as driving behav-
iors and origin-destination matrix, are difficult to estimate
or costly to obtain. Therefore, data-driven approaches that
focus on releasing the power of available and reliable data
sources are becoming popular for practical applications.
However, interpreting what these models learn from the
limited observable data becomes a new issue. For traffic
network dynamics, the interaction among adjacent links plays
a critical role. The spatial correlation depends on not only

the network topology, but also on real-time traffic conditions.
How to define and extract these spatial correlations from
data-driven models is pivotal for model interpretations. [3].

Many traffic forecasting models use predefined compo-
nents to describe spatial correlations. For example, Space-
Time Auto-Regressive Integrated Moving Average models
(STARIMA) [4] induced weighting matrices calculated from
the distances among various links to represent spatial correla-
tions. But only upstream links are considered and all adjacent
links share the same contribution coefficient. This simple
assumption cannot reflect the complexity of traffic dynamics.
Latent Space Model (LSM) [5] explicitly learns interactions
between road segments based on their feature vectors. It
permits modeling more complex but still static spatial de-
pendencies. However, this state-independent assumption is
not true according to traffic flow theories

Since 2014, although great effort has been conducted to
apply deep learning techniques in short-term traffic fore-
casting domain [6]–[9], the same challenge still remains.
Many deep learning models use stacked convolutional layers
(regular convolution for route-level forecasting or graph
convolution for network-level forecasting)[9]–[12] to capture
spatial features. The complex inner structure and numer-
ous trainable parameters lead to the “black-box” property.
Additionally, convolutional kernels are fixed after training.
The inconsistency between static convolutional structures
and dynamic spatial correlations hinders us from seeking
real-time explanations. Graph attention networks (GAT) [13]
and its variants [14]–[16] are promising solutions. Dynamic
convolutional kernels are computed from varying inputs to
extract spatial features when applying the graph attention
mechanism. If the specialities of traffic dynamics are con-
sidered properly when constructing model architectures, then
extracting dynamic spatial correlations could be possible.

To this specific end, we proposed a novel graph at-
tention variant, Dynamic Graph Convolution (DGC). The
design of DGC considers one basic fact of traffic dynamics:
Interactions among adjacent links depend on the network
connectivity and area-wide traffic states. It means that traffic
flow properties can only spread in a limited speed along the
links on a road network. The core idea is to learn and mimic
this information flow, such as stop-and-go waves. Next, DGC
modules are implemented in a very simple RNN encoder-
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decoder to realize multistep speed forecasting, named as
Dynamic Graph Filters Networks (DGFN). Validated on real-
life datasets, DGFN yields satisfying short-term predictions
up to 20min. We also theoretically explain that DGFN can
convert spatial and temporal dependencies to dynamic spatial
dependencies. This provides an alternative and simpler tool
to study how deep learning models predict traffic conditions.

II. METHODOLOGY

Traffic dynamics on a road network can be written as a
spatiotemporal graph:

G(VN , E ,AN×N ;XT×N×C) (1)

where VN is the set of N nodes, E is the set of all edges, A
is the adjacency matrix. For T time steps, traffic dynamics
is represented by the tensor X. The feature vector of node i
at time t is Xt,i ∈ IRC , which contains C traffic variables.

Short-term traffic forecasting can be formulated as a
sequence-to-sequence regression task: input is the observed
feature tensor in the past m time steps, output is the predicted
feature tensor in the next p time steps that maximizes the
following conditional probability:

X̂pred
p×N×C = argmax

Xreal
p×N×C

Pr(Xreal
p×N×C |Xobs

m×N×C ; G) (2)

On a spatiotemporal graph G, we note the set of all nodes
within k walks of edges from a node vi as N k

i . If the latent
representation of node vi after applying graph convolution,
noted as ~yi, is a function of all feature vectors within N k

i :

~yi = ϕagg({~xj | j ∈ N k
i }; G) (3)

then ϕagg() is called a k-walk graph aggregator. The dimen-
sion of ~yi depends on ϕagg(). It can be different from the
dimension of inputs.

A. Dynamic Graph Convolution (DGC)

Dynamic Filters Networks (DFN) [17] was one of the
earliest dynamic convolutional neural networks. Our design
is similar to DFN but extends it to graph topology. One
dynamic graph convolutional module has three parts: (I) filter
generation network generates graph convolutional kernels
from real-time inputs; (II) a regular spatial-domain graph
convolution using the generated kernel; (III) post-processing
layer adjusts output dimension. From the view of a central
node i the formula of DGC k-walk graph aggregator is:

sj,i = (
∑
j∈Nk

i

βj,i〈~αi, ~xj〉) + bi

wj,i =
exp(sj,i)∑

j∈Nk
i

exp(sj,i)

~hi =
∑
j∈Nk

i

wj,i~xj

~yi = FCθC′ (
~hi)

(4)

where βj,i, bi are trainable scalars and ~αi is a trainable
vector that has the same dimension as node feature vector

~xj ; 〈 , 〉 represents the inner product of two vectors. The
adjacency matrix, which is not explicitly given in (4), is used
to calculate which nodes belong to N k

i . The first equation
calculates the initial value of each weight sj,i from all feature
vectors in N k

i . Shared weights ~αi and bi effectively reduce
the total number of trainable parameters and the location-
specific weight βj,i preserves the uniqueness of each node.
The second equation is a nonlinear softmax normalization.
All normalized weights wj,i are non-negative and the sum
of them in the receptive field N k

i equals to 1. The third
equation is a regular extended graph convolution [18] using
the generated kernel. The last equation is a shared fully-
connected (FC) layer with C ′ output units. The FC layer
is applied on every node to adjust the output dimension to
C ′. The DGC graph aggregator is visualized in Fig.1. For
simplification, we briefly note a DGC module in the form of
matrices with N × C ′ output dimension and k-walk graph
aggregator as:

Yout
N×C′ = DGCk(Xin

N×C , C
′;G) (5)

Fig. 1: An example of the DGC graph aggregator structure:
k = 1

DGC is a variant of spatial attention mechanism [15].
Compared to another type of spatial attention, graph attention
networks (GAT) [13], DGC is more sensitive to the order of
adjacent nodes because before applying the softmax normal-
ization, the initial weights sj,i are already k-walk graph ag-
gregators. In GAT aggregator, if two adjacent nodes exchange
their feature vectors, the latent representation of the central
node does not change. Because both the computation of pair-
wise similarities and softmax normalization are independent
from the order of nodes in one receptive field.

B. Dynamic Graph Filters Networks (DGFN)

Next, we combine DGC modules with RNN encoder-
decoder models [19] for multistep speed prediction. Sched-
uled sampling strategy [20] is employed to enhance the
learning process. Based on DGC modules, we propose a
simple RNN cell where only a single recurrent link is added.
It is similar to [17] so we give our model a similar name:
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Fig. 2: Architecture of DGFN model (left) and the structure of the corresponding RNN cells (right)

Dynamic Graph Filters Networks (DGFN). The architecture
is shown in Fig.2 and the mathematical formula of the
DGFN cell is given by (6). The DGC module outputs the
prediction of the next time step and a two layer fully-
connected feedforward neural network (FFNN) generates
the new hidden state. There are two hyperparameters: the
receptive field k in the DGC module, and the number of
neurons of the hidden layer in FFNN u.{

Xt+1 = DGCk([Xt,ht−1], 1;G)
ht = FCθ1(FCθu(X

t+1))
(6)

where [ ] represents the concatenation of two feature tensors
along the nodes. Two DGFN cells with different parameters
are implemented in the encoder and the decoder respectively.
The encoding and step-by-step decoding process can be
written as:

h0 = C = Enc(Xobs
(m−1)×N×C)

X̂t+1 = DGCk([Xt,ht−1], 1;G) 1 ≤ t ≤ p
ht = FCθ1(FCθu(X̂

t+1)) 1 ≤ t ≤ p
(7)

Here the input is the observation of the past m time steps,
output is the predictions of the following p time steps.

III. EXPERIMENTS

In this section, we validate the proposed model on selected
freeway datasets. The data is collected and pre-processed by
National Data Warehouse for Traffic Information (NDW).
Missing points in raw data are estimated to give the complete
evolution of traffic conditions.

A. Data preparation

The frequently congested urban freeway around Rotterdam
is selected as a case study. We consider both directions,
clockwise ("CL") and counter-clockwise ("CC"). Both ring
freeways are uniformly partitioned into 200m length links.
Freeway CL has 199 links and freeway CC contains 208 links.
We use one node to represent the traffic state on that link
and construct graphs.

Speed data of the entire year of 2018 were prepared. The
time interval between adjacent two time steps is 2min. All
holidays and weekends are removed from the dataset due to

Fig. 3: The network of ring freeway CC (top) and an
example of congestion patterns during evening peak hours
(bottom). There exists a 5 km segment with lower speed limit
(70 kmh−1) on the north.

the lack of congestion. 27 weeks of highly congested work-
days (135 days) are selected. The 27 weeks are randomly
shuffled and divided into 3 groups: 18 weeks as train set, 4
weeks as validation set, and 5 weeks for testing. We partic-
ularly focus on models’ performances during evening rush
hours, so only the data in the most congested period, 14:00-
19:00, are included in the final dataset. For the forecasting
task, observation window is 30min (15 steps) and prediction
horizon is 20min (10 steps). The network of the ring freeway
CC and an example of its congestion patterns are shown in
Fig.3.

In training, data is normalized between 0 and 1 by dividing
the speed by 120 kmh−1. For testing, the input keeps as
normalized data, but the output is multiplied by 120 kmh−1
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to give real-value predictions. Then the multistep errors are
calculated between the ground-truth and predicted speed
evolution.

B. Benchmark models

DGFN is compared with some selected benchmark mod-
els. Their details and the hyperparameters setting of DGFN
are listed below:
• Historical average (HA): HA is the simplest model that

calculates the average daily speed evolution in historical
datasets as predictions for the future. HA gives the same
prediction everyday and its forecasting accuracy does
not change with prediction horizon. It is chosen as a
baseline.

• K-nearest neighbors (KNN): K-nearest neighbors re-
gression [21] is a widely used statistical model. Given
a query input, it firstly searches the most similar speed
patterns up to the k-th, then calculates the prediction by
the weighted average of the corresponding future traffic
states of these k patterns. In this study, the similarity
is measured by Euclidean distances between two speed
heat maps, where one axis is time and the other is the
spatial coordinate. We scan the entire train set, including
all time periods, to find the most similar patterns and
their weights are normalized by the inverse of Euclidean
distances. We do not consider the similarities across
different nodes. The optimal hyperparameter K = 25
is chosen by grid searching and cross validation.

• AGC-seq2seq (simplified): [12] proposed the Attention
Graph Convolution (AGC)-seq2seq model. To avoid
inducing additional data, we keep the framework but
modify some unnecessary parts: exogenous information
is not added in the encoder, statistics of historical
record is not used in the decoder, and normal scheduled
sampling training strategy is employed.

• GAT: Different GAT [13] modules are implemented in
Gated Recurrent Units (GRU) cells by replacing the
gates. We use the similar encoder-decoder framework
and scheduled sampling training strategy. The only
hyperparameter is k = 3.

• DGFN: Two hyperparameters are receptive field k = 3
and the hidden neurons in the read-out unit u = 64.

Mean average error (MAE) measures the average precision
in all areas; mean average percentage error (MAPE) is
more sensitive to the contours of low-speed congested areas;
root mean square error (RMSE) credits a disproportionately
large effect for the points with bigger speed errors. The
three metrics are used to evaluate models’ performances. In
training, we force the models to focus more on low-speed
congested areas because traffic managers are more interested
in predicting congestion instead of free-flow cases. Thus,
MAPE between multistep predictions and the ground-truth is
chosen as the loss function (The minimal speed is 1 kmh−1):

loss =
1

D

D∑
i=1

|X̂i −Xi|
Xi

(8)

where D is the number of data points.
Adam optimizer is chosen to minimize the loss function.

Initial learning rate, decay rate, and scheduled sampling
parameters are well tuned for each model. Early stopping
on validation set is used to mitigate overfitting. Our experi-
mental platform has one CPU (Intel(R) CoreTMi7-7700 CPU
@ 3.60GHz, 3601 Mhz, 4 Core(s), 8 Logical Processors),
32-GB installed RAM, and one GPU (NVIDIA GeForce
GTX 1070, 16GB). All deep learning models are trained
in parallel and tested on GPU. Source code and details
of parameters setting is open online: https://github.
com/RomainLITUD.

C. Results

Table I lists the performances of the proposed model and
the benchmark models on different freeways. The running
time is the sum of training time and testing time. Fig.4 shows
the relation between multistep MAPE and the prediction
horizon. HA is not given because its performance does
not change with prediction horizon. We have the following
conclusions:
• DGFN outperforms the other models in terms of MAE,

MAPE and RMSE in both forecasting tasks. Especially,
even with simpler recurrent structure, DGFN consis-
tently gives better predictions than GAT within 20min.

• Fig.4 shows that DGFN has bigger advantage over GAT
and AGC-seq2seq(s) in terms of MAPE for shorter
prediction horizons. But compared to GAT and AGC-
seq2seq(s), DGFN’s MAPE increases faster with the
increasing of prediction horizon because its simple
recurrent structure is not as good as GRU for capturing
long-term temporal dependencies.

• Among the three deep learning models, DGFN takes
more running time than AGC-seq2seq(s) because of the
filter generation network in DGC modules. But DGFN
runs much faster than GAT. The complex GAT gate
structures in GRU cells consume more time.

• KNN’s performance is not satisfying, especially for
MAPE. This indicates that the congestion patterns on
these two freeways are very diverse. There are many
unique patterns in the database.

• Generally speaking, selected deep learning models give
better predictions than HA and KNN, but consume more
training time.

In brief, in this section we validate the proposed model on
real-world datasets. By comparing the forecasting precision
of the proposed model with benchmark models, we show that
DGFN is able to give short-term predictions of good quality
during evening peak hours.

IV. SPATIAL CORRELATIONS

In this section, we will interpret how DGFN cells learn
dynamic spatial correlations from a theoretical view. In most
deep learning based traffic forecasting models, temporal
dependencies and spatial correlations are modeled separately
by different attention layers, e.g. [12], [18], [22], but this
disentangled interpretation does not conform to traffic flow
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TABLE I: Prediction performances comparison on two ring freeways during peak hours 14:00 - 19:00

Model MAE(kmh−1) MAPE(%) RMSE(kmh−1) Time(s)
freeway CC CL CC CL CC CL Average
HA 9.83 9.81 12.92 13.74 16.39 16.02 72
KNN 6.95 6.29 17.66 14.9 12.94 11.38 240
AGC-seq2seq(s) 6.35 6.23 12.34 10.15 12.01 10.64 350
GAT 6.50 5.69 12.11 9.74 12.28 10.55 1350
DGFN 5.94 5.07 11.27 9.00 11.66 9.76 600
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Fig. 4: Accumulation of MAPE with prediction horizon on two ring freeways

theories. DGFN actually re-defines dynamic spatial depen-
dencies based on graph convolution, and provides a more
convenient alternative tool.

For simplification, we consider multistep observations but
only one step prediction. The encoder encrypts observed
traffic conditions in the past m − 1 time steps into the
context vector C, and C is concatenated with the current
input Xt. Thus, each node is associated with two features,
(ci, xi), which represent the historical evolution and the
current traffic condition respectively. Because of the softmax
normalization in (4), all weights are positive and the sum of
them in each receptive field equals to 1. It is reasonable to
define the generated dynamic graph convolutional kernel W
as real-time spatial correlations. For example, wj,i represents
the impact of node-j on node-i for the prediction of next
time step (see Fig.1). This definition is dynamic and input-
dependent. We do not need to treat temporal and spatial
dependencies separately.

Further, because the DGC module contains location-
specific trainable parameters βj,i, DGFN can automatically
learn which adjacent node has the highest influence on the
central node not only under different traffic conditions but
also at different locations. It enables us to finely study the
varying spatial correlations.

In summary, DGFN is theoretically not a pure black-
box model. It is possibly able to let us extract real-time
dynamic spatial correlations, compare them with predicted
traffic states or network topology, and help researchers to
better understand how spatial correlations evolve on a road
network.

V. CONCLUSION

In this study, we built a novel deep learning based mul-
tistep traffic forecasting model that is able to dynamically
capture spatial correlations. First we designed dynamic graph
convolution modules to extend dynamic convolution from
normal Euclidean spaces to graph structures. Based on DGC
modules, a multistep deep learning framework, dynamic
graph filters networks, was proposed. DGFN outperforms
the selected benchmark models in terms of different metrics
on two ring freeway data bases. Then we presented a brief
explanation on how to define dynamic spatial correlations
in DGFN. It permits tracking spatial dependencies for each
node and comparing them with real-time traffic states. DGFN
is a gray-box model that learns how condition/location-
dependent information propagates in a network.

The further researches will focus on more detailed model
interpretations. For example, build a statistical relation be-
tween spatial correlations and traffic states, select some
special positions such as on-ramps or off-ramps and study
how DGFN distributes spatial attention to predict splitting
and merging of congestion, find the optimal receptive field
k for different forecasting tasks and study its influence on
models’ performances, etc. These answers can help designing
more explainable and accurate data-driven traffic forecasting
models.
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