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Abstract— Increasing attention to autonomous passenger ve-
hicles has also attracted interest in an autonomous racing series.
Because of this, platforms such as Roborace and the Indy
Autonomous Challenge are currently evolving.
Electric racecars face the challenge of a limited amount of
stored energy within their batteries. Furthermore, the ther-
modynamical influence of an all-electric powertrain on the
race performance is crucial. Severe damage can occur to the
powertrain components when thermally overstressed. In this
work we present a race-time minimal control strategy deduced
from an Optimal Control Problem (OCP) that is transcribed
into a Nonlinear Problem (NLP). Its optimization variables stem
from the driving dynamics as well as from a thermodynamical
description of the electric powertrain. We deduce the necessary
first-order Ordinary Differential Equations (ODE)s and form
simplified loss models for the implementation within the numer-
ical optimization. The significant influence of the powertrain
behavior on the race strategy is shown.

I. INTRODUCTION

The first autonomous race series for all-electric racecars
is called Roborace. Its main goal is to be a platform for the
development of software powering self-driving cars. There-
fore, Roborace is a race format, bringing cars to their limits
of handling [1]. The special requirements for the algorithms
regarding computational resources, real-time capability, and
robustness are thus outstanding [2], [3]. The race format
of autonomous motor-sports delivers perfect conditions for
testing under tough conditions in an enclosed environment.
We, a team from the Technical University of Munich (TUM),
are participating in this race series. Most parts of our
software stack are available online [4]. This paper describes
the extension of our software by a control strategy calculating
the minimum race-time, taking into account energetic and
thermal constraints arising from the powertrain architecture.
The minimum time control strategy is one of three parts of
our race strategy (Fig. 1). As discussed in the results section
of this paper, the powertrain thermodynamics have a major
impact on the entire race strategy.
This paper is based on the ideas for an energy management
strategy for autonomous electric cars as stated in our previous
work [5]. We extend the state of the art by taking into account
multiple race laps as well as the thermodynamics of the all-
electric powertrain in the OCP that needs to be solved.
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A. State of the Art

OCPs dealing with trajectory optimization, which is equiv-
alent to solving a Minimum Lap Time Problem (MLTP)
in motor-sports, are well known in the literature. Different
mathematical approaches are used to solve an MLTP. The
variety ranges from graph search methods [6] over Sequen-
tial Quadratic (SQP) [7] to Second Order Conic Problems
(SOCP) [8]. By the transformation of the OCP into an
NLP, the MLTP can be solved with detailed and complex
double-track vehicle and tire models for the purpose of,
e.g., vehicle parameter optimization for Internal Combustion
Engine (ICE) powered cars [9]–[11]. Latest publications in
the field of trajectory optimization also consider optimal
power distributions within hybrid powertrains [12] or use
Model Predictive Control (MPC)-approaches for the planning
of energy-saving trajectories [13].
However, none of these sources consider the thermodynamics
of the powertrain during their optimizations. Unless the tem-
perature limits of a conventional ICE, the electric machines
of the Roborace cars must not reach temperatures beyond
180 ◦C, the inverter’s limit is 100 ◦C [14]. Additionally,
the efficiency level of an electric machine decreases as it
heats up, leading to further reduction in efficiency [15],
[16]. Furthermore, the energy storage, a lithium-ion battery
in our case, must reduce its output power from 50 ◦C to
0 % output power when reaching 55 ◦C for safety reasons
[14]. In order to therefore prevent the unwanted power loss,
the thermal behavior of the powertrain components must be
considered for consecutive race laps when dealing with all-
electric racecars.
This paper is organized as follows: In Subsection I-B, an
overview of the structure of our race strategy is given.
Section II describes the powertrain architecture including
power loss descriptions, thermodynamical models as well
as the formulation of the optimization problem. Section III
explains the results in detail. A summary of the presented
work is given in Section IV.

B. Structure of the race strategy

The race strategy is split into three levels. All of these
levels have a different optimization horizon as well as a
different problem size stemming from the combination of
their optimization horizon as well as their model complexi-
ties (Fig. 1).
Before the race starts, the global time-minimal trajectories
per lap for the entire race are calculated offline. Here, we
can use a non-linear double track model describing the
driving dynamics as well as a detailed thermal powertrain
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Fig. 1: Three levels of the proposed race strategy.

model to consider all necessary physical effects in detail. The
pre-computed global trajectories are recalculated during the
race, reacting to external disturbances, e.g., overtakes, using
a significantly reduced optimization problem formulation.
For example, the path can often be completely removed
during the replanning phase as it is almost equal for all
the race laps. The global trajectories are then fed into the
local trajectory planner that transforms all given physical
constraints from the global trajectory (e.g., max. power,
max. torque) as well as mathematical requirements (e.g.,
guaranteed feasibility, calculation time) into locally optimal
paths and velocities [17]. Furthermore, the local planner
considers external influences, e.g., overtakes opponent cars
or reacts to speed limits. In this paper we focus on the global
level of the proposed race strategy and describe the offline
optimization.

II. POWERTRAIN ARCHITECTURE & MODELING

The all-eletric powertrain of the racecar (Fig. 2) consists
of
• A battery (B).
• Two power electronics/inverters at rear left and right

(Il/r).
• Two synchronous permanent electric machines (Ml/r).

Two separate cooling circuits are necessary in order to con-
trol the component temperatures Tc. Circuit 1 is responsible
for machines Ml/r and inverters Il/r leveraging radiator RMI.
The same is true for circuit 2, battery B and radiator RB.
For the sake of completeness, the gears (Gl/r), sensors
required for autonomous driving (Ax), as well as the wheels
Wrr/rl, are also displayed within the rear part of the whole
powertrain.
In this work, the index c indicates the powertrain component,
i.e., c ε {M, I,B,RMI,RB}. The second index d of the tem-
perature symbols of both cooling liquids TF1/2,d enumerates
the components the fluids are entering.

A. Power loss models

Meta-models of the powertrain are used to describe the
internal losses of its components within the OCP. Mathemat-

BIl/rMl/rGl/r

Wrl

Wrr

Ax

RMI RB

TF1,ITF1,RMI

TF1,M

TF2,RB TF2,B

Fig. 2: Electric powertrain architecture of a rear-wheel
drive vehicle including two separate cooling circuits.

ically, the meta-models for the electric machines as well as
the inverters can be formulated as second order polynomials
with the output power Pout as free variable (1):

Pin,fit(Pout) = afitP
2
out + bfitPout + cfit. (1)

The Mean Square Error (MSE) eMS,fit,

eMS,fit =
1

N

N∑
i

(Pin,fit,i − Pin,mes,i)
2 (2)

is minimized by fitting the constant parameters afit, bfit, and
cfit. The input power Pin into the single components is a
function depending on the requested output power Pout [8].
Pin,mes stems from measurement data from our Hardware-
in-the-Loop (HiL)-Simulator [18] where detailed non-linear
powertrain models, that are based on real-world measurement
data from the Roborace cars, are implemented. The index i
denotes a counter variable in the range [1 .. N ].
Fig. 3 displays a polynomial fit to simulated data of an
electric machine. The probability distributions of data on
both axis indicate that mainly max- or minimal power
is requested by the racecar. Therefore, the parabolic fit,
showing high accuracy at these points, results in low MSEs.
These are eMS,fit,M = 3.19 % for the electric machine and
eMS,fit,I = 4.16 % for the inverter. The diagonal indicates
100 % efficiency.
We use an open circuit model to describe the internal battery
power [19, p. 51] Pin,B,

Pin,B(Pout,B) =
U2

OCV

2Ri
−UOCV

√
U2

OCV − 4Pout,BRi

2Ri
. (3)

The open circuit voltage is UOCV and Ri is the internal
battery resistance.
The component power loss Plos,c can now be described
using (1) and (3) that can easily be implemented within the
numerical optimization,

Plos,c = Pin,c − Pout,c. (4)

B. Thermal models

As introduced in Section II, the thermal model of the
powertrain is split into two circuits, one cooling the electric
machines Ml/r and both inverters Il/r in series using the
radiator RMI, the other one being responsible for the battery
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Fig. 3: Parabola fit to measurement data to deduce a
polynomial expression of the electric machine’s efficiency.

temperature TB leveraging radiator RB (Fig. 2). Power losses
(4) from the electric components c are directly fed into the
thermal circuits.
In the following, the ODEs describing the powertrain ther-
modynamics, i.e., the heat transfer from the powertrain com-
ponents to the cooling liquids, are deduced. In general, the
product of the thermal heat capacities C and the temperature
gradients dT

dt equal loss Plos and cooling power Pcol for
electric machines, inverters and battery:

CM
dTM

dt
= Plos,M −

TM − TM,∞
RM

=

= Plos,M −
2TM − (TF1,M + TF1,RMI

)

2RM︸ ︷︷ ︸
Pcol,M

(5)

CI
dTI

dt
= Plos,I −

2TI − (TF1 + TF1,M)

2RI︸ ︷︷ ︸
Pcol,I

(6)

CB
dTB

dt
= Plos,B −

TB − TF2

RB︸ ︷︷ ︸
Pcol,B

. (7)

Here and in the following, TF1 = TF1,I. The symbol TM,∞
denotes the temperature of the surroundings of the specific
component M. This temperature can be assumed to be equal
to the mean value of the inflowing and effluent cooling liquid
temperature [20].
To describe the absorbed energy by the coolant fluid from
both inverters the following formulation is used:

2
TI − TI,∞

RI
= ṁF1cF (TF1,M − TF1) , (8)

where ṁF1 describes the coolant mass flow through both
inverters and cF the specific heat capacity of the coolant fluid.
Using TI,∞ = 1

2 (TF1 + TF1,M), the following equations
can be deduced to explicitly describe the temperatures of
the cooling liquid entering electric machines as well as the

radiator RMI:

TF1,M =
TF1 (ṁF1cFRI − 1) + 2TI

1 + ṁF1cFRI
(9)

TF1,RMI
=
TF1 (2ṁF1cFRRMI

+ 1)− 2Tenv

2ṁF1cFRRMI
− 1

. (10)

We can formulate the gradients of TF1 and TF2 using the
cooling power of the powertrain components Pcol as well as
the temperature differences to the environment Tenv,

CF1
dTF1

dt
= 2Pcol,M+

+ 2Pcol,I−

− 1

RRMI

(
TF1,RMI + TF1

2
− Tenv

)
(11)

CF2
dTF2

dt
= Pcol,B −

TF2 − Tenv

RRB

. (12)

The thermal resistance of the motor model RM can be
written as a combination of two thermal resistances R1/2

in parallel as the heat transfer acts from the air gap to
both directions, the environment as well as its shaft (Fig.
4). For this model we make use of [21] that describes the
stator winding temperature TW as highest and most critical.
T̄F1,M = 1

2 (TF1,M + TF1,RMI) denotes the mean temperature
of the cooling liquid through the electric machine. Therefore,

RM =
R1R2

R1 +R2
, (13)

with

R1 =
ln r4

r3

2πLkiro
+

1

2πr4Lhf
(14)

R2 =
ln r2

r1

2πLkiro
+

1

4πLkiro
+

1

2πr3Lhg
. (15)

Fig. 4 indicates the geometry of the electric machine. The
first term in resistance R1 takes into account conduction of
the stator where L denotes its length and kiro the thermal
conductivity of iron. The second term describes the convec-
tive heat flux between the stator and the cooling liquid with
hf being the liquid’s convective heat flux coefficient that can
be assumed constant [22, p. 11]. Resistance R2 consists of
the thermal conductivity of the rotor and shaft [16] as well
as the convection into the air gap with the respective heat
flux coefficient hg.
The thermal resistance of the inverter is assumed to be

RI =
1

AIhI
, (16)

as well as for the battery [20]

RB =
1

ABhB
, (17)

and the radiators

RRMI/B
=

1

ARMI/B
hRMI/B

. (18)

Here, A denotes the surface used for the heat exchange, h
again represents heat flux coefficients.
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Fig. 4: Thermal resistance model of the electric machine.

C. Optimization problem

The OCP transformed into an NLP with equality and
inequality constraints hi and gj has the form [23, p. 478],
[24, p. 127]

min l(x) =

∫ SΣ

0

dt

ds
ds =

∫ SΣ

0

1− nκ
v cos (ξ + β)

ds (19)

s.t.
dx

ds
= f(x(s),u(s)) (20)

hi = 0 (21)
gj ≤ 0 (22)

with i = 1, ...,m and j = 1, ..., r. The independent variable
is s, the distance along the reference line, κ denotes the cur-
vature profile of the race track. The objective is l(x), defined
as the integral over the lethargy dt

ds [8] being minimized over
the entire racing distance SΣ. The lethargy can be interpreted
as the time taken to travel a distance of 1 m.
The state vector x(s) within the OCP is defined as

x(s) =

v β ψ̇ n ξ︸ ︷︷ ︸
Driving

Dynamics

TM TI TB TF1 TF2︸ ︷︷ ︸
Thermo-
dynamics


T

, (23)

consisting of the optimization variables needed to express
the thermodynamics as introduced in Section II-B as well as
the variables defining the driving dynamics. These variables
are the velocity v on the raceline, the side slip angle β, the
yaw angle ψ, the lateral distance to the reference line n, and
ξ as the relative angle of the vehicle’s longitudinal axis to
the tangent on the reference line. For a detailed description
of the driving dynamics as well as their first-order ODEs and
constraints stemming from a nonlinear double track model,
we refer to our previous works [5], [25], as we focus on the
thermodynamical side within this paper.
The box constraints that are translated into inequality con-
straints for the thermodynamical state variables are

Tc,min ≤ Tc ≤ Tc,max, (24)

with every component’s allowed operating temperature range
defining the lower Tc,min and upper boundaries Tc,max.
The input vector has the form

u(s) =
(
Fd Fb δ γ

)T
, (25)

containing driving and braking force Fd/Fb, the steering
angle δ, and the wheel load transfer γ as artificial control
variable.

III. RESULTS

The results were calculated using an i7-7820HQ CPU and
16 GB of memory. The NLP was solved with the primal-
dual interior-point method IPOPT interfaced by CasADi [26]
using a direct collocation transcription. The execution time of
the solver for the NLP for two race laps was approximately
2.5 min. The discretization step size varied along the race-
track. In curves, a finer mesh was implemented to allow for
a better description of the rapidly changing variables and
their gradients leading to a step size of ∆s = 3 m. On the
straight parts, a coarser mesh of ∆s = 9 m was sufficient
to reach high numerical precision in combination with small
computation times. In total, approx. 44·103 decision variables
and 50 · 103 constraints were present.
Two minimum race-time control strategies for a race, con-
sisting of two laps, can be seen in Fig. 6. Two different
cases were considered: In case “cold” (−), the initial tem-
peratures of all the powertrain components Tc,0,− equaled
the environment temperature Tenv. In case “hot” (+), the
initial component temperatures Tc,0,+ were set to the values
given in Table I.

TABLE I: Initial temperature values Tc,0 of powertrain
components.

TM,0 TI,0 TB,0 TF1,0 TF2,0

in ◦C

“cold” (−) 30 30 30 30 30
“hot” (+) 100 70 48 55 40

In case “cold”, none of the components c reached their
maximum allowed temperature. Therefore, the maximum
vehicle power of PΣ = Fv of 270 kW could be requested at
all times when allowed by the driving dynamics as displayed
in the last plot. The maximum physically achievable velocity
of approx. 220 km h−1 for this vehicle on the Monteblanco
race-track resulted on the straights. The battery temperature
TB remained far below the limit of TB,max = 50 ◦C.
Case “hot” shows the necessity and performance of the
developed control-strategy. Here, the initial component tem-
peratures Tc,0,+ were set to a valid combination of rea-
sonable values (Table I) that can occur during a race.
The optimization’s initial battery temperature TB,0,+ almost
equaled TB,max. The race-strategy then was adapted to the
given conditions to reach TB,max exactly when crossing the
finish line at s = 4.73 km to avoid a safety stop during the



race. This was achieved by augmented phases of lift and
coast in comparison with the race-strategy for case “cold”:
As the requested power PΣ,+ shows, the vehicle braked later
before curves. Additionally, the requested power PΣ,+ slowly
decreased on the straights. When the driving resistances
could not be overcome by PΣ,+, the vehicle’s velocity v+ de-
creased till the entry of the next curve. Therefore, the breaks
could be applied late. Still, acceleration phases overlapped
in both strategies, even if they ended in different maximum
velocities v. The requested power maxima differed in their
absolute values. The influence on the vehicle speed v+ in
case “hot” is evident: Physically, maximum velocity was
never reached and mean acceleration as well as deceleration
occurred less aggressively, meaning the velocity’s gradients
were decreased.
The coolant fluid temperature TF2,+ reached an equilibrium
at the end of the optimization horizon since only as much
heat was allowed to be released internally by the battery as
the coolant fluid could dissipate. Coolant circuit F1 could
be neglected in this case. Machine and inverter temperatures
TM,+ and TI,+ did not reach their limits.
Another important point is the difference in the race paths
to be driven in both cases (Fig. 5). In case “hot” velocity
v+ in curve 4 (marked) was higher. This per se had a
positive influence on the lap time. Nevertheless, the higher
curve speed v+ required the path to change slightly within
and immediately after this turn. Since the combined tire
usage was already at the limit here, the race-path radius in
case “hot” increased. By this, its curvature decreased and
the higher speed v+ could feasibly be driven. Nevertheless,
the decreased acceleration after turn 4 led to a diminished
increase of the powertrain temperatures.
The total race times cumulated over the two laps were
142.12 s in case “cold” and 149.59 s in case “hot”.
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Fig. 5: Race paths for case “cold” and “hot”.

IV. CONCLUSION & OUTLOOK

In the next Roborace season, the methods presented in
this publication will be applied to the racecar. On the one
hand, the available energy can then be used as effectively as
possible. On the other hand, the powertrain components can
be exploited as much as possible without loosing race time.
Additionally, powertrain losses and component temperatures
can then be compared with measurement data we receive

when driving the proposed global race lines that were cal-
culated considering the thermodynamical influence.
Furthermore, an additional optimization will be implemented
that allows for the mentioned online re-planning of the race-
strategy in the presence of disturbances. With the help of the
results in this publication this simplified online optimization
can be realized.
Along with these improvements the loss-models will be
replaced by physically more detailed descriptions of the
powertrain components.
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