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Abstract— This paper develops a data-driven toolkit for traf-
fic forecasting using high-resolution (a.k.a. event-based) traffic
data. This is the raw data obtained from fixed sensors in urban
roads. Time series of such raw data exhibit heavy fluctuations
from one time step to the next (typically on the order of 0.1-1
second). Short-term forecasts (10-30 seconds into the future) of
traffic conditions are critical for traffic operations applications
(e.g., adaptive signal control). But traffic forecasting tools in
the literature deal predominantly with 3-5 minute aggregated
data, where the typical signal cycle is on the order of 2
minutes. This renders such forecasts useless at the operations
level. To this end, we model the traffic forecasting problem
as a matrix completion problem, where the forecasting inputs
are mapped to a higher dimensional space using kernels. The
formulation allows us to capture both nonlinear dependencies
between forecasting inputs and outputs but also allows us to
capture dependencies among the inputs. These dependencies
correspond to correlations between different locations in the
network. We further employ adaptive boosting to enhance the
training accuracy and capture historical patterns in the data.
The performance of the proposed methods is verified using
high-resolution data obtained from a real-world traffic network
in Abu Dhabi, UAE. Our experimental results show that the
proposed method outperforms other state-of-the-art algorithms.

Index Terms— traffic prediction, high-resolution data, unbal-
anced size, kernelized matrix completion, ensemble learning

I. INTRODUCTION

The ability to predict future traffic is an essential com-
ponent of modern intelligent transportation systems (ITS).
Traffic prediction not only assists system operators to sched-
ule interventions, but also provides travelers with routing
guidance. Previous works on traffic prediction are generally
based on aggregated data over certain time intervals (no
shorter than 5 minutes). Although aggregated data based
prediction methods have been demonstrated to be successful,
the limitation is also apparent: they may not work for
the operational decisions (i.e., signal timing) that require
traffic information in very short interval. On the other hand,
due to the increasing development of Internet-of-Things
(IoT) technologies, especially data processing techniques and
sensor technologies, high-resolution data can be stored by
many traffic systems, e.g., SMART-Signal system [1] and
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Split Cycle and Offset Optimization Technique (SCOOT) [2].
Thus, it is possible to leverage the information obtained from
high-resolution data to predict traffic more effectively.

Nevertheless, accurate traffic prediction based on high-
resolution data is challenging, because high-resolution data
generally exhibit strong fluctuations. For example, the
SCOOT system records detector occupancies every second
as binary variables, where 0 represents an unoccupied sensor
and 1 represents an occupied sensor. Over a short interval, the
occurrence of ‘0’s and ‘1’s is highly irregular. As a result, the
numbers of ‘0’s and ‘1’s in the high-resolution data are typ-
ically unbalanced over time. This lack of ‘balance’ in high-
resolution data presents a challenge to forecasting problems
(particularly when applying traditional variants of time-series
techniques): the data class that is of lower frequency tends to
be overlooked by conventional prediction models, especially
at times when the imbalance is pronounced. In essence, the
lower frequency label is treated as an outlier.

This paper presents a matrix completion approach for
traffic forecasting using high-resolution traffic data. We es-
sentially apply techniques that have shown success in other
data mining applications (e.g., image processing), where we
overcome the noisy nature in the data by observing data over
a longer period of time while applying techniques that can
handle large problems. We apply nonlinear kernels so that
nonlinear trends in the data can be capture implicitly, which
is allowed by the fast estimation techniques that we employ.
We also employ adaptive boosting (AdaBoost) where we
include data from previous days to ‘boost’ the prediction.
This is a shortened version of our full paper, which includes
all proofs and more extensive experimental results; we refer
to [3] for more information.

II. RELATED WORK

Data-driven prediction methodologies fall in one of two
major categories: parametric approaches and non-parametric
approaches. Parametric methods apply theoretical assump-
tions and the model parameters are calibrated using empirical
data. Among parametric methods, traditional regression and
filtering techniques [4]–[6], the autoregressive (AR) family of
models, including autoregressive integrated moving average
(ARIMA) [7]–[9], and vector autoregressive (VAR) [10]–
[14] models have been widely used and demonstrated to
be successful in capturing mean trends in the data but fail
to capture rapid fluctuations. This implies that AR based
models may not be suitable for high-resolution data. On
the other hand, non-parametric methods do not assume a
fixed model form and are typically data-driven. The basic
idea behind non-parametric techniques is that they learn a
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general form from data and use it to predict future data.
Non-parametric methods can be divided into two distinct
types: non-parametric regression such as support vector
regression (SVR) [15]–[18] and artificial neural networks
(ANNs) [19]–[23]. SVR has been successfully applied to
predict traffic data, e.g., flow [16] and travel times [15], as
SVR models have powerful representation learning ability
by using kernels. Alternatively, ANNs are among the first
non-parametric methods that have been applied to traffic
prediction, and thus there is vast literature on the subject,
which extend from the simple multilayer perceptrons (MLP)
[19] to more complicated structures as generative adversarial
networks (GAN) [24], recurrent neural networks (RNNs)
[21], convolutional neural networks (CNNs) [22] and the
combination of RNNs and CNNs [23], [25].

It has become well established that the higher the resolu-
tion of the data, the poorer the performance of the predic-
tion method [26]–[29]. For example, the Highway Capacity
Manual [28] recommends data aggregation at the 15-minute
level and Tan et al. [29] suggest 3 minutes as a lower bound
aggregation threshold for prediction. Consequently, to our
knowledge, no studies have attempted to perform short-term
forecasts with high-resolution traffic data.

III. ENSEMBLED KERNELIZED MATRIX COMPLETION
FOR HIGH-RESOLUTION DATA BASED REAL-TIME

PREDICTION

In this section, the proposed ensembled kernelized matrix
completion (EKMC) algorithm is presented. We start by
recasting traffic prediction problem in the matrix completion
framework, and then propose a kernelized matrix completion
(KMC) algorithm which seeks to extract representative fea-
tures so to achieve better prediction accuracy. Finally, we
present the EKMC algorithm for traffic prediction based on
the high-resolution data with unbalanced sizes.

A. Traffic Prediction as a Kernelized Matrix Completion
Problem

1) Reformulation of Traffic Prediction in the Framework
of Matrix Completion: For traffic prediction, it is common
to assume that the future data can be predicted based on the
recent data. As a result, the task of traffic prediction is to
learn a mapping between the output space of the predicted
data (future data) and input space of predictors (recent data).

Suppose that x(t) ∈ Rn denote a sample of a n-
dimensional multivariate time series at the t-th time stamp.
The recent data and predicted data w.r.t. time stamp t is
expressed as xt = [x(t − L + 1); · · · ;x(t)] ∈ RnL and
yt = x(t + H) ∈ Rn respectively, where L and H denotes
the time lag (the length of recent data used for prediction)
and prediction horizon (steps ahead to be predicted). Assume
a linear relationship between the input xt and output yt, we
have

yt = 〈W,xt〉 , (1)

where W is the regression coefficient matrix that can be
calculated based on training data set {xtrt ,ytrt }. For each

pair of testing data {xtet ,ytet }, the future sample is typically
predicted as:

ytet =
〈
W,xtet

〉
. (2)

Let us define the training matrix pair
{Xtr = [xt, · · · ,xt+t1−1] ∈ RnL×t1 ,Ytr =
[yt, · · · ,yt+t1−1] ∈ Rn×t1} and testing matrix pair
{Xte = [xt+t1 , · · · ,xt+t2+t1−1] ∈ RnL×t2 ,Yte =
[yt+t1 , · · · ,yt+t1+t2−1] ∈ Rn×t2}. The joint matrix
concatenating both training and testing data is formulated
as:

Z ≡
[
Ytr Yte

Xtr Xte

]
∈ R(n+nL)×(t1+t2). (3)

In this way, the prediction of Yte can be formulated
as a matrix completion problem with Yte unknown. As
there are relationships between the input and output, termed[
Ytr Yte

]
= W

[
Xtr Xte

]
, Z is supposed to be low

rank. Thus, the matrix completion of Z can be achieved by
rank-minimization approaches [30], [31].

2) Kernelized Matrix Completion for Traffic Prediction:
As the assumption of linear dependency between recent data
and future data is idealized and uncommon in practice, we
further consider a nonlinear dependency between them. A
popular way to develop such a nonlinear mapping is to first
map the input data to a higher dimensional feature space
and then make a linear regression in that feature space [32].
The nonlinear relationship between the input and output is
expressed as:

yt = 〈W, φ(xt)〉 , (4)

where φ denotes the nonlinear function that maps the input
space to the high-dimensional feature space, W is the
regression matrix. It is worth noting that the inner product
of W and φ(x) can be learned using kernel trick without
explicitly computing the map φ, i.e., see [33], [34]. Likewise,
the joint matrix in this kernel setting is defined as:

Z ≡
[

Ytr Yte

φ(Xtr) φ(Xte)

]
∈ R(n+h)×(t1+t2), (5)

where h ≤ ∞ denotes the dimension of the feature space.
Similarly, Z is deemed to be low rank or be approximately

low rank. Thus, the prediction problem can be formulated as
a matrix completion problem and we seek to find a low rank
approximation Z̃ of the matrix Z.

Let PΩ be a binary mask that satisfies:

PΩ(M) =

{
Mij (i, j) ∈ Ω

0 otherwise
. (6)

where M is an arbitrary matrix. The matrix completion
problem is subsequently formulated as:

Z̃ = arg min
M

rank(M) s.t. PΩ(M− Z) = 0, (7)

where PΩ is used to ensure that all the data are known except
the testing predicted data (Yte). As minimizing the rank is
NP hard, eq. (7) is relaxed to

Z̃ = arg min
M
‖PΩ(M− Z)‖2F + λ‖M‖∗, (8)



where the nuclear norm ‖ · ‖∗ is a convex surrogate of the
rank function, and λ is a Lagrangian multiplier. Eq.(8) is
further equivalent to the following problem [35],

(Ũ, Ṽ)

= arg min
U,V
‖PΩ(UV> − Z)‖2F + λ(‖U‖2F + ‖V‖2F ), (9)

where U ∈ R(n+h)×r, V ∈ R(t1+t2)×r and r ≥ rank(Z̃).
We further divide U and V into two blocks each: a training
block and a testing block:

U =

[
Utr

Ute

]
and V =

[
Vtr

Vte

]
. (10)

This generates the following optimization problem (termed
kernelized matrix completion, KMC):

(Ũtr, Ũte, Ṽtr, Ṽte) = arg min
Utr,Ute,Vtr,Vte

‖Ytr−Utr(Vtr)>‖2F

+ ‖Φtr −Ute(Vtr)>‖2F + ‖Φte −Ute(Vte)>‖2F
+ λ(‖Utr‖2F + ‖Ute‖2F + ‖Vtr‖2F + ‖Vte‖2F ), (11)

where Φtr = φ(Xtr) and Φte = φ(Xte).

B. Optimization for KMC

The optimization of KMC may not be joint convex for
all variables, however, it is convex w.r.t. each of them while
keeping others fixed. Thus, coordinate descent algorithm [36]
is used over blocks to obtain a stationary point.

Denote the KMC objective function by F (R) =
F (R1,R2,R3,R4), where R is the four-block matrix R1 ≡
Utr, R2 ≡ Ute, R3 ≡ Vtr, and R4 ≡ Vte. The block-
coordinate descent solves for each of these four blocks
separately in each iteration. Let Rk denote the solution in
iteration k, then

Rk
1 = arg min

R1

F (R1,R
k−1
2 ,Rk−1

3 ,Rk−1
4 )

= YtrRk−1
3 ((Rk−1

3 )>Rk−1
3 + λI)−1, (12)

Rk
2 = arg min

R2

F (Rk
1 ,R2,R

k−1
3 ,Rk−1

4 )

= (ΦtrRk−1
3 + ΦteRk−1

4 )((Rk−1
3 )>Rk−1

3

+ (Rk−1
4 )>Rk−1

4 + λI)−1, (13)

Rk
3 = arg min

R3

F (Rk
1 ,R

k
2 ,R3,R

k−1
4 )

= ((Ytr)>Rk
1 + (Φtr)>Rk

2)((Rk
2)>Rk

2

+ (Rk
1)>Rk

1 + λI)−1, (14)

and

Rk
4 = arg min

R4

F (Rk
1 ,R

k
2 ,R

k
3 ,R4)

= (Φte)>Rk
2((R2)>R2 + λI)−1. (15)

In each iteration, the above algorithm solves four least-
squared (LS) problems and has a complexity of O(t21r) for
each iteration. Moreover, the number of iterations needed

to obtain a reasonable solution tends to be small, since
solving for R1, R2, R3, and R4 iteratively, we can guarantee
convergence to block-coordinate-wise minimizer and the rate
of convergence is sublinear, i.e., the difference between
the solution Rk in iteration k and the fixed point solution
R∗ is proportional to k−1. We refer to [3] for a detailed
development of both of these claims.

C. Ensembled Kernelized Matrix Completion for High-
resolution Data based Prediction

Considering the unbalanced data size of our high-
resolution data, this section proceeds to propose the en-
sembled kernelized matrix completion (EKMC) method. The
EKMC procedure is detailed below.

1) Data Arrangement: Since traffic data exhibit periodical
patterns, we include data from T time steps before the current
time from the recent d days in the recent w weeks. Given
D = dw days are used in total, the joint matrix is represented
as:[

Ytr
D · · · Ytr

1 Yte

φ(Xtr
D) · · · φ(Xtr

1 ) φ(Xte)

]
∈ R(n+h)×(DT+Tte)

(16)
For simplicity, the joint matrix in (16) is also written as[

Ytr Yte

φ(Xtr) φ(Xte)

]
. (17)

2) Ensembled Kernelized Matrix Completion (EKMC):
The basic idea behind EKMC is to iteratively solve a
KMC problem for prediction, and combine the prediction
results of each problem using a weighted majority strategy.
Specifically, we assign each column of the training data
Xtr(:, i) = R1(:, i) a weight vector θ(i). The weight vector
is updated in each iteration according to the prediction
accuracy of Ytr(:, i), which makes the EKMC algorithm
focus on hard-to-predict samples. Thus, their combination
is expected to generate improved prediction results. The
algorithm is summarized in Alg. 1 below.

Algorithm 1 EKMC Algorithm

Input: Joint matrix Z ∈ R(n+h)×(DT+Tte) in (16);
1: Initialize: Weight vector θ[0](i) = 1, i = 1, · · · , DT ;
2: while convergence criteria not met do
3: Rk+1

1 (:, i) = θk(i)Rk
1(:, i);

4: Estimate [Ỹte,k+1, Ỹtr,k+1] by KMC;
5: Compute the error:

εk+1 =
∑

i θ
k(i)I(Ỹtr,k+1(:,i)6=Ytr,k+1(:,i))∑DT

i=1 θk(i)
;

6: Compute the update factor:
βk+1 = log 1−εk+1

εk+1 ;
7: Weight update:

θk+1(i) = θk+1(i)eβ
kI(Ỹtr,k+1(:,i) 6=Ytr,k+1(:,i));

8: end while
9: Ỹte(:, i) =

∑
k

βk∑
j β

j Ỹ
te,k(:, i), for i = 1, . . . , DT ;

10: Ỹte(j, i) =

{
1, Ỹte(j, i) > 0.5
0, else

Output: Ỹte;



The thresholding in step 10 of the algorithm above can be
generalized to a column-specific threshold, which improves
the performance of the algorithm. We refer to [3] for exam-
ple. For the fixed threshold, it has been established that the
training error after K iterations is bounded by [37]

2KDT

K∏
k=1

√
εk(1− εk). (18)

This bound allows for estimating a number of iterations
before running the algorithm. Suppose K is the number of
iterations selected. Then the time complexity of EKMC is
O(KD2T 2r).

IV. EXPERIMENTAL RESULTS

A. Data Description

High-resolution data are obtained from Al Zahiyah in
downtown Abu Dhabi, UAE. This traffic network consists of
11 signalized intersections and two parallel major arterials,
which are presented in Fig. 1. We select data from three
sensors located at three adjacent intersections marked red in
the figure, where the circles represent the selected intersec-
tions and arrows represent the direction of travel. We test
the proposed method using seven weeks of data (49 days,
from the beginning of the 1st week in December, 2018 to
the end of the 3rd week in January, 2019). It is worth noting
that workdays and weekends are not distinguished in our
experiments as the proposed method is essentially a dynamic
learning approach that is adaptive to time-varying changes.

Fig. 1. Real world network in Abu Dhabi, UAE

B. Experimental Setup

The parameters of the problem are as follows:
1) We test with different prediction horizons, namely H ∈
{1, 10, 60, 120} seconds.

2) The search grid for parameter T is {10, 60, 120, 300}.
The parameter D = 5× 4, which represents 5 days and
4 weeks.

We compare the proposed method with the following
baseline algorithms: Vector Autoregressive (VAR), Support
Vector Regression (SVR) and Recurrent Neural Network
(RNN) with long short-term memory (LSTM) structure. All
the tests are run on a 2.7 GHz intel Core i7 Processor with
16 GB of RAM.

C. Performance Indices

In this work, two indexes are utilized to evaluated the
overall performance of traffic prediction. The first is mean
absolution error (MAE), which is computed as

MAEj =
1

t

t∑
i=1

|Yi,j − Ỹi,j | (19)

where Yi,j denotes the actual traffic data for variable j and
observation i, Ỹi,j is its corresponding prediction and t is
number of observations. Specifically, Yi,j ∈ {0, 1} is sensor
j’s occupancy at time i seconds, where ‘1’ represent an
occupied state and ‘0’ represents an unoccupied sensor. The
second index is the Skorokhod M1 metric [38], which is
defined as

dM1
(Yj , Ỹj) ≡ inf

(uj ,rj)∈Π(Yj)

(ũj ,r̃j)∈Π(Ỹj)

{sup |uj − ũj | ∨ sup |rj − r̃j |}

(20)
where a∨b ≡ max{a, b}, Π(Yj) and Π(Ỹj) are respectively
the sets of parametric representation of Yj = {Yi,j}ti=1

and Ỹj = {Ỹi,j}ti=1. sup |uj − ũj | measures the sensor
state difference and sup |rj − r̃j | measures the time shift
introduced by the parametric representations of the two
signals. In essence, the parametric representations shift the
two signals Yj and Ỹj in a way that they align best (via the
infimum operation) but that shift is penalized by the metric:
the first term sup |uj − ũj | cannot exceed 1 and, hence,
a shift that exceeds 1 second will render the second term
sup |rj − r̃j | will dominate.

D. Results and Discussion

The result of 1-MAE for the proposed method w.r.t. H and
DT are summarized in Table I, from which we can see that
the prediction accuracy of the proposed method can exceed
92% but does not fall below 75%. Note that the prediction
accuracy decreases as H increases, and with the increase
of historical data, the prediction accuracy first increases and
then drops. Historical data contain useful information that
can benefit prediction but for high resolution contexts, this
seems to diminish with more historical data as irrelevant
information impacts performance. As seen in Table I, the best
overall accuracy is observed at H = 1 and DT = 1200 for
all three sensors. Table II shows the results of 1-dM1

for each
sensor with parameters DT = 1200 and H = 1, 10, 60, 120.
It can be observed that the resulting accuracies are no less
than 0.82 with highest one exceeding 0.90.

We further compare the prediction performance of the
proposed method (EKMC) and other baseline algorithms. As
shown in Table III, the proposed EKMC outperforms VAR
and SVR significantly, and achieves comparable performance



TABLE I
PREDICTION PERFORMANCE OF THE PROPOSED METHOD REGARDING

DIFFERENT PARAMETERS

(a) Sensor 1

DT
PH 1 10 60 120

200 0.8848 0.8611 0.8415 0.8018
1200 0.9067 0.8867 0.8495 0.8275
2400 0.8719 0.8487 0.8178 0.8025
6000 0.8455 0.8215 0.8055 0.7818

(b) Sensor 2

DT
H 1 10 60 120

200 0.9045 0.8820 0.8380 0.7878
1200 0.9203 0.9050 0.8500 0.8215
2400 0.8638 0.8355 0.8028 0.7548
6000 0.8358 0.8078 0.7815 0.7505

(c) Sensor 3

DT
PH 1 10 60 120

200 0.8846 0.8648 0.8550 0.8150
1200 0.8950 0.8689 0.8484 0.8300
2400 0.8800 0.8620 0.8327 0.8309
6000 0.8550 0.8348 0.8288 0.8019

TABLE II
PREDICTION PERFORMANCE OF THE PROPOSED METHOD EVALUATED

BY 1-dM1

PH
Sensor 1 2 3 Mean

1 0.8755 0.9089 0.8533 0.8792
10 0.8640 0.8848 0.8615 0.8701
60 0.8309 0.8513 0.8489 0.8437
120 0.8255 0.8235 0.8350 0.8280

as RNN with basic LSTM; the overall prediction accuracy
of RNN is a little higher than EKMC (1-MAE) but EKMC
shows better pattern recognition capabilities (1-dM1

).

TABLE III
PREDICTION PERFORMANCE OF THE PROPOSED METHOD AND OTHER

BASELINE ALGORITHMS

Method
Index 1-dM1

1-MAE

MC 0.8105 0.8674
EKMC 0.8792 0.9073
VAR NAN 0.8014
SVR 0.7805 0.8669
RNN 0.8753 0.9151

Fig. 2 presents an example of the prediction results of
different methods w.r.t. sensor 1. As shown in Fig. 2, sensor
1 has four jumps in the ground truth series (which occur at 2s,
23s, 52s and 98s). The closest prediction results are generated
by RNN, where jumps are predicted as {2, 21, 97, 98}
which almost captures the truth except the jump at time 52
seconds. This is followed by the proposed EKMC algorithm
which predicts the jumps at {3, 24, 54, 99}. Note that the
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Fig. 2. Prediction results of (a) variable 1 and (b) variable 3 based on
different methods (1 = EKMC, 2 = MC, 3 = RNN, 4 = SVR, 5 = VAR, 6
= Ground Truth)

overall prediction accuracy (evaluated by 1-MAE) of RNN is
higher than EKMC while the jump patterns (evaluated by 1-
dM1

) were better captured by EKMC. SVR captures a rough
pattern of jumps with incorrect number of total jumps. As
for the VAR, it only tends to capture the mean trend in the
high-resolution data.

Another advantage of the proposed is interpretability of
the results. This is illustrated by the following example in
Fig. 3 (For simplicity, we adopt the same case shown in Fig.
2), where the top sub-figure is the heatmap of the matrix
consisting of features Vte (each column corresponds to a
feature vector, and we have 20 features), predictions Ytep

and the ground truth Ytru w.r.t sensor 1. The bottom sub-
figure shows the coefficients Utr of features (it is noted
that Ytep = VteU

>
tr). We can see from the heatmap figure

that, despite a small time delay, the features associated with
the time points with jumps (which are marked with black
rectangles) are different from those corresponding to non-
jumps. Moreover, we observe that different features weigh
differently during the calculation of prediction, i.e., features
4, 5, 6 are quite similar to the ground truth (they have
similar colors) and might well represent the truth, thus
their coefficients are large. On the other hand, the colors
associated with feature 7 differ from the ground truth, which
implies that feature 7 may not be a good predictor. Thus,
feature 7 has a very small (negative) coefficient.

Fig. 3. An Illustration of interpretability of features from EKMC

V. CONCLUSION

We propose a novel traffic prediction method based on
high-resolution data, termed ensembled kernelized matrix
completion (EKMC). The kenelized settings allows us to



learn nonlinear dependencies in high-resolution traffic data
and an ensemble learning strategy ensures high prediction
accuracy over all the data (not only the majority of the data).
The KMC algorithm has good convergence properties (i.e.,
sub-linearly convergence) and EKMC has a bounded training
error. We conduct extensive experiments based on real world
high-resolution data from downtown Abu Dhabi, where the
results showcase that the proposed EKMC works well for
high-resolution data prediction, it outperforms VAR and SVR
and even achieves comparable prediction performance with
the powerful RNN with LSTM network. However, in contrast
to the latter, our proposed EKMC is an “open-box” tool in
that it offers simple interpretability features that cannot be
obtained with neural networks.
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