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Abstract— The development of fully autonomous vehicles
(AVs) can potentially eliminate drivers and introduce unprece-
dented seating design. However, highly flexible seat config-
urations may lead to occupants’ unconventional poses and
actions. Understanding occupant behaviors and prioritize safety
features become eye-catching topics in the AV research frontier.
Visual sensors have the advantages of cost-efficiency and high-
fidelity imaging and become more widely applied for in-car
sensing purposes. Occlusion is one big concern for this type
of system in crowded car cabins. It is important but largely
unknown about how a visual-sensing framework will look like
to support 2-D and 3-D human pose tracking towards highly
configurable seats. As one of the first studies to touch this
topic, we peek into the future camera-based sensing framework
via a simulation experiment. Constructed representative car-
cabin, seat layouts, and occupant sizes, camera coverage from
different angles and positions is simulated and calculated.
The comprehensive coverage data are synthesized through an
optimization process to determine the camera layout and overall
occupant coverage. The results show the needs and design of a
different number of cameras to fully or partially cover all the
occupants with changeable configurations of up to six seats.

I. INTRODUCTION

The development of autonomous vehicles (AVs) has been
rapidly growing, leading to more machine control and lesser
human interventions. This revolutionary progress will even-
tually remove drivers from the cars and give occupants
the freedom to carry out more flexible activities. Besides
the expected improvement of mobility, efficiency, and com-
fort, this change also increases the difficulty of efficiently
triggering safety features and better protecting occupants
when crashes happen. Without driver interventions, AVs need
to prioritize safety features based on external conditions
and occupant behaviors via enhanced sensor systems [1].
Thus, ”researching occupant protection in alternative vehicle
designs” becomes a higher-focused research topic by the
National Science and Technology Council and the United
States Department of Transportation.
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A. Related Research

Towards traditional manual-driving vehicles, driver mon-
itoring systems have been frequently researched. Different
impaired driver states like distraction [2], [3], drowsiness
[4], fatigue [5], [6], and mind wandering [7] are widely
investigated about their effects on driving safety. Research
also focuses on the corresponding detection algorithms and
mitigation means. Although physiological sensors like EEG,
ECG, heart rate, and other measurements are valid and
reliable indicators for different driver states [4], [7], [8],
camera-based systems are more widely developed and im-
plemented. Studies and practices show that visual sensors are
non-intrusive solutions and more convenient to be integrated
into vehicle-cabins [2], [4], [9], [10]. These driver state
sensing and mitigation systems are initially designed to
reduce impaired driver status and improve safety. However,
with the advantage of vehicle automation levels, driver state
sensing also extends its functionalities and is used in more
complicated conditions.

As level 2 and level 3 autonomous vehicles are coming
into reality, driver monitoring systems become core com-
ponents of the overall advanced driver assist systems and
the autonomous driving systems. AVs road test in California
has demonstrated the problems of automation disengagement
and highlighted the importance of the transition process from
auto-control to manual-control [11], [12]. This control hand-
over process has a list of human factors concerns, including
driver inattention and distraction, situational awareness, and
over-reliance on the technology [13]. These issues may result
in a take-over reaction time between 2 to 10 seconds, a
prolonged take-over completion time from 2 to 20 seconds
[14], and even longer time for a driver to fully stabilize the
car [15]. Considering the various take-over scenarios in terms
of urgency, predictability, and criticality [16], it is important
to monitor the driver’s states before and during the take-over
process to re-engage them via optimized interface design
[13], and adopt appropriate transition strategies [17].

Although more attention starts to focus on rear-seat oc-
cupants’ safety, full-cabin occupant sensing is much less
studied than the driver state sensing systems. Not surpris-
ingly, rear-seat occupants have more differences in terms of
individual characteristics [18] when these seats are treated
as safer for young and older passengers and people in a
more vulnerable status. However, these rear-seat occupants
are equally likely to be involved in car crashes [18], and their
protection becomes a more challenging task. Most of the
full-cabin or rear-seat occupant sensing studies implement
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seat-embedded sensors to detect vital signs or occupancy
of different seats, with one typical study exampled in [19].
In recent years, researchers started to use seat-independent
sensors like Kinect [20] and Ultra Wide-Band Radar [21] to
detect and track all occupants, including those who sit in the
back. However, most of these studies are still in the initial
investigation states and usually only focus on traditional fixed
cabin layouts.

B. Research Objectives and Contributions

To our best knowledge, few studies discuss the sensing
of all occupants in a highly configurable vehicle cabin. To
address this research gap, this study focuses on camera-based
full-cabin sensing given such a dynamic environment. A car
cabin was created on a simulation platform with multiple
seat layouts. Occupants/passengers were designed, and their
key upper body points were identified. Computer simulation
was first conducted to obtain the camera coverage of the
key points across all occupants in different seat layouts
from different angles and positions. An algorithm was then
developed to find the combinations of camera locations and
angles to optimize overall coverage towards different goals.
The contributions of the paper are itemized below:
• Propose the concept of full-cabin occupant sensing with

a highly configurable seat layouts.
• Describe the possible designs of camera-based sensing

framework for L3+ autonomous vehicles.
• Provide a simulation platform to develop and evaluate

camera-based occupant sensing systems.
• Create a novel optimization strategy to study camera

locations and orientations, given the constraints on the
coverage requirements and camera numbers.

(a) Side View

(b) Back View

Fig. 1: Cabin Design

II. SIMULATION METHOD

A. Cabin Design

In order to set up a representative cabin, we surveyed a
list of on-market vehicles, including SUVs and mini-vans
to acquire average cabin measurements. The results of the
survey is explained in Table I.

TABLE I: Cabin Measurements

Axis Parameter Measurement (m)
Z Cabin height 1.41

Occupant head to ceiling 0.11
Y Cabin length 3.25

Leg room row 1 0.11
Leg room row 2 0.5
Leg room row 3 0.35

X Cabin width 1.8
Driver seat from side 0.15

Passenger seat from side 0.15

The angle of the rear window is also averaging existing
car cabins. The final design of the cabin is shown in Fig. 1.
The red line outlines the cabin inside a Ford Transit van from
two angles to illustrate the designed cabin sizes. The cabin
shape is not based on any existing car but represents a typical
size of current three-row vehicles. The cabin design sets up
the simulation boundaries. The same method presented in
this study can be applied accordingly by changing the cabin
dimensions for any given car.

B. Key Body Points

In the simulation environment, we focus on body key
points for each seated occupant. The simulation process will
output the camera coverage of each of these key points for
each occupant in all interested seat layouts from different
positions and angles in the cabin. This research defines six
body locations, including nose, left shoulder, right shoulder,
chest, right waist, and left waist. The body locations are
depicted in Fig. 2.

Fig. 2: Key Body Points



C. Simulation Space

In the simulation environment, we move the camera along
a constructed frame in the cabin. The paths along which the
camera moves is shown as green lines in Fig. (3), following
a step size of 0.1m. At each step, the cameras are rotated at
various roll, pitch, and yaw angles. At all the locations and
angles, the coverage for each body key point is recorded.
Three camera locations on the windshield (illustrated as red
dots) are also recorded.

Fig. 3: Camera Locations

D. Simulation Outputs

The results of the simulation are exported as a .csv file.
The variables in the dataset are Position Index, Seat Index,
Body Area, Coverage Indicator, Camera X, Camera Y, Cam-
era Z, Camera Roll, Camera Pitch, and Camera Yaw. The
Position Index is a unique ID to represent the position of the
camera. The Seat index represents the seat for the occupant
in the vehicle. Body Area is the body key point, as explained
in II-B. The Coverage Indicator/Luminance is a number
showing coverage of the key point if the value is non-zero
(in this research, we use lighting sources to replace cameras,
and use light dominance on different body parts to estimate
camera coverage as well as distance). The Camera X, Cam-
era Y, Camera Z, Camera Roll, Camera Pitch, Camera Yaw
provides the pose of the camera at a particular position, based
on the vehicle coordinate system. An example of the data is
provided in Fig. (4).

E. Simulation Setup

The simulation aims to find the coverage towards each
occupant in multiple seat layouts from all possible angles
and positions of the cameras in the cabin. As an equivalent
process, we decide to use light coverage to represent camera
coverage to use convenient off-the-shelf software. The idea
behind this is that in a 3D environment, if light can illustrate
a body part in the cabin, then a camera in the same
position/angles should also capture the body part. The light
can be adjusted with the same angular ranges as the camera
and can be blocked by the same obstacles.

With that, a simulation environment is firstly constructed
in a 3D virtual environment, including a car CAD model
and movable objects like seats, occupants, and lighting
sources. There are several main features of the simulation
environment:

1) Any car CAD model can be imported into the simula-
tion environment to reflect the actual cabin dimensions.

2) The movable objects can be arranged into different
design layouts in the cabin.

3) The angles of the lights can be adjusted to represent
the simulated camera’s view angles. In this study, we
set up the camera diagonal view range as 94 degrees.

4) Multiple virtual sensors can be attached to the occu-
pants at desired body locations, which will report the
strength of light coverage.

Based on sensor outputs, we can determine if certain body
parts (where the sensors are attached) are visible to the
camera set up at the same locations/angles as the lights. A
program will automatically change the position and orienta-
tion values for the light and enumerate all possible angles and
positions of interest. During this automated process, one light
will move along predetermined routes on the ceiling of the
cabin and the windshield window at a step of 10cm. At each
light location, the light will rotate Roll, Pitch, Yaw angles
in steps of 10 degrees. At each location (XYZ coordinates)
and each direction (RPY angles) of the light, the script will
record all sensors’ readings attached to all occupants. These
readings directly measure the coverage of corresponding
body parts from a camera in the same pose.

This process can be completed for all the interested seat
layouts separately, and the results can then be integrated.
As these light simulation data are reflecting the coverage of
cameras, an optimization algorithm (explained in Section III)
will select the optimal combinations of different camera lo-
cations and angles to maximize the coverage of all occupants
in all simulated seat-layouts.

III. OPTIMIZATION ALGORITHM

The main goal of the optimization algorithm is to cover all
the Body Area of all the occupants with minimum number
of camera. The optimization uses the dataset from the
simulation to find the best possible positions of the camera.
The simulation provides the intensity of light (Luminance)
on each marker as one of the primary variables. As explained
earlier, if the light falls on the marker (Luminance>0), then
the camera can capture the marker and if the marker is not
illuminated (Luminance=0), then the camera cannot capture
the marker. With this idea in mind, the first step in the
algorithm is to convert the luminance measurements into
binary values. This is explained in Algorithm 1.

Luminance = [L1 L2 L3]
L1 = [1.2 5.6 3.4 9.3 6.5 0 0 0

0 0 0 0]
L2 = [0 0 0 0 0 0 0 6.8

4.3 2.2 8.7 9.1]
L3 = [0 0 0 0 1.5 4.9 11.2 3.5

0 0 0 0]
(1)



Fig. 4: Example of Dataset

Algorithm 1 Convert Luminance to Binary Luminance

n→ total number of rows in the dataset
BLuminance = [0]∗ len(Luminance)
for i = 1 : n do

if Luminance(i)> 0 then
BLuminance(i) = 1

end if
if Luminance(i) = 0 then

BLuminance(i) = 0
end if

end for

For example, assuming that Equation. (1) provides the lu-
minance of a two occupant seat layout for three camera
positions. After running through Algorithm 1, the binary
luminance is obtained as given in Equation (2).

BLuminance = [BL1 BL2 BL3]
BL1 = [1 1 1 1 1 0 0 0

0 0 0 0]
BL2 = [0 0 0 0 0 0 0 1

1 1 1 1]
BL3 = [0 0 0 0 1 1 1 1

0 0 0 0]

(2)

The next step in the algorithm is to arrange the Blumi-
nance in matrix form. This step helps in moving forward
with formulating the optimization problem. Each column
of the matrix represents a particular position’s Bluminance.
Assuming there are m total positions that were simulated
and there are p occupants in the scenario, the dimension
of the matrix will be 6p×m. As mentioned earlier, there
are six markers for each occupant and each marker has a
luminance value, which equates to 6p Bluminance values for
each position. The qth column of the BMatrix corresponds
to the qth position.

Algorithm 2 Arrange BLuminance in matrix form

m→ total number of positions in the dataset
p→ number of occupants in the scenario
BMatrix→ zero matrix of dimension 6p x m
j = 1
for i = 1 : m do

BMatrix[:, i] = BLuminance[ j : j+6p−1]
j = j+6p

end for

Continuing with the example provided in Equation. (2), the
BMatrix can be obtained using Algorithm 2. The BMatrix is
given in Equation. (3).

BMatrix =



1 0 0
1 0 0
1 0 0
1 0 0
1 0 1
0 0 1
0 0 1
0 1 1
0 1 0
0 1 0
0 1 0
0 1 0



(3)

The optimization proceeds with the BMatrix as one of the
primary parameters. The main goal of the optimization is to
minimize the number of cameras and to make sure all the
markers are covered. The standard form of the optimization
problem is provided in Equation (4).

min
x

cT x

s.t Ax≥ b,

x = {0,1}
(4)

In Equation (4), the one dimensional vector c has all its
elements as 1. The dimension of c is m×1. The vector x is
the solution to the equation Ax≥ b, where A is the BMatrix
and b is a vector with all the elements as 1, with dimension
6p×1. The vector b indicates that all the Body Area needs
to be covered. This ensures that the objective function is
the sum of all the elements of x. It can be tweaked to
accommodate other requirements also. For obvious reasons,
the constraint on elements of x is that it can be only 0 or
1. Solving for x using the above optimization problem will
provide the best position to place the cameras in the cabin.
The vector x will have 1’s in the indices of the required
positions.

With the BMatrix obtained in the example given in
Equation. (3), the only possible solution to the optimization
problem is the column vector x = [111]T . The value Ax is
given in Equation. (5) and the value of cT x is 3.

Ax = [1 1 1 1 2 1 1 2
1 1 1 1]

(5)

The optimization problem can also be modified to ac-
commodate various other constraints. Assuming that the user



can afford only two cameras in the cabin and requires the
algorithm to cover maximum possible markers. In this case,
the optimization algorithm can be set as given in Equation
(6).

max
x,b

λ
T b

s.t Ax = b,

cT x = 2,
x = {0,1}
b = {0,1}

(6)

In Equation (6), λ is a one dimensional vector with all
the elements as 1 and the dimension is 6p× 1. b is a one
dimensional vector with dimension 6p× 1, which indicates
the coverage of markers. The objective function ensures the
sum of all the elements of b is a global maximum across all
possible combinations of two cameras. The one dimensional
vector c has all its elements as 1. The dimension of c is m×1.
The vector x is consistent with the explanation given for
Equation (4), which stands for the locations of the cameras
needed. cT x = 2 ensures that only a total of two cameras
can be used. The constraints on x and b is to make sure
that the results don not contain cameras at the same location.
Since this optimization problem cannot be solved with linear
programming, we use an iterative method to find all the
possible combinations that will provide the best coverage.

Again, continuing from the example given in Equation.
(3), if the constraint on number of cameras is 2, the best
coverage possible with two cameras is given in Equation.
(7), and the best camera positions to obtain this coverage is
x = [110]T .

Ax = b = [1 1 1 1 1 0 0 1
1 1 1 1]

(7)

IV. OPTIMIZATION RESULT AND VISUALIZATION

Three experiments are conducted using the developed
simulation and optimization methods to picture how a future
camera-based full-cabin occupant sensing frame may look
like and perform in highly configurable cabins. Results are
reported and illustrated separately in this section.

A. Experiment 1: Coverage of all occupants for six seat
layouts independently

The simulation was performed on the six configurations
given in Fig. 5. To better demonstrate all possibilities,
these configurations have two (configurations 4 and 5), four
(configurations 1 and 6), and six (configurations 2 and 3)
occupants correspondingly.

The optimization results show that configurations 2 and 3
require a minimum of three cameras to cover all the markers.
Configurations 1, 5 and 6 require two cameras to cover all
the occupants and configuration 4 requires just one camera.
The results of the optimized positions are shown in Fig. 5.
In Fig. 5, the red circles represent the camera positions.

As explained earlier, the camera is substituted with a light
source (94-degree diagonal field of view). The light sources

Fig. 5: Optimized Camera Positions

were positioned at the optimized camera locations (see Fig.
5) in the cabin, and the resulting visualization is given in
Fig. 6. Here, the dark areas are the locations where the
camera does not see. For example, in Fig. 6f, the legs of both
the occupants are not illuminated and thus look dark. This
means that the cameras cannot see the legs of the occupants,
while the upper body of the occupants are well illuminated,
which infers that the cameras capture the whole upper body.
Likewise, concluding from all the sub-figures of Fig. 6, the
cameras are able to capture all the markers on the upper-
body of all the occupants in the six configurations, proving
the concept of the experiment.

B. Experiment 2: Coverage of occupants in a highly config-
urable cabin

In this experiment, we assume that a cabin with certain
number of seats can be reconfigured between different seat
layouts. In Fig (5), configuration 1 can be reconfigured to
configuration 6 (Fig. (7)), configuration 2 can be reconfigured
to configuration 3 (Fig. (8)), and configuration 4 can be
reconfigured to configuration 5 (Fig. (9)). Then assuming that
the cameras will be fixed, the optimization goal is to find the
camera numbers and locations that maximize the occupant
coverage towards the combinations of configurations.

The results of the above mentioned optimized position are
provided in Fig. (7), Fig. (8), and Fig. (9), respectively. When
there are four seats in the cabin, two cameras are enough to
cover all the four occupants in each of the two configurations
(as shown in Fig. (7). When there are six seats, four cameras



(a) Layout 1-1 (b) Layout 1-2 (c) Layout 2

(d) Layout 3-1 (e) Layout 3-2 (f) Layout 4

(g) Layout 5 (h) Layout 6-1 (i) Layout 6-2

Fig. 6: Visualization of Coverage

Fig. 7: Optimized Camera Positions for Configurations 1
and 6

Fig. 8: Optimized Camera Positions for Configurations 2
and 3

are needed to cover all the occupants’ upper bodies (as
shown in Fig. (8)) as opposed to three cameras needed to
cover each configuration. This is because the middle row in
configuration 3 is facing rearward. If there are two seats,
two cameras are still needed to cover all the body parts in a
highly configurable cabin (as shown in Fig. (9)).

Fig. 9: Optimized Camera Positions for Configurations 4
and 5

C. Experiment 3: Maximum coverage of occupants given
constraints on the number of cameras

Although the experiments above show that as the number
of camera increases, the cameras together can cover all the
interested body parts from all occupants in different config-
urations. However, the total number of cameras is always
limited in reality to reduce cost and system complexity. It is
important to see the trade-offs between camera numbers and
coverage rates. In this experiment, the optimization focuses
on maximizing the coverage of occupant body parts, given
a certain number of cameras.

The first trial assumes that there are only three cameras
available for the six-seat highly configurable cabin (config-
uration 2 and 3). The optimization towards this combination
with three cameras show that out of 72 body parts in
total (across all occupants in all seats), 68 body parts can
be covered with three cameras. The visualization of the
optimization can be observed in Fig. 10. Here, the uncovered
points are the right shoulder and right hip of the occupants
marked in blue circle.

Fig. 10: Optimized Camera Positions for configurations 2
and 3 with three cameras

Another trial focuses on using only one camera for the
highly configurable cabin with two seats in total (configura-
tions 4 and 5). The optimization results in a maximum cov-
erage of 21 out of the 24 body parts (across all occupants in



the two configurations). The visualization of the optimization
is illustrated on Fig. 11.

The experiment results suggest that with limited total
number of cameras, the body coverage is sacrificed. The
trade-off between camera numbers and coverage rates needs
to be investigated based on the sensing needs and algorithm
development requirements.

Fig. 11: Optimized Camera Positions for configurations 4
and 5 with three cameras

V. CONCLUSION

This paper peeks into the future camera-based sensing
framework towards a cabin with highly configurable seat
layouts in L3+ autonomous cars. In particular, a proposed
simulation and optimization process can estimate the number
of cameras, their designs, and the coverage rates of occupant
body parts in all possible seats. The research pictures the
camera design concept for commonly-mentioned driver-less
seat layouts, independently or combined, based on represen-
tative cabin dimensions and occupant sizes.

We conducted three experiments using the proposed sim-
ulation and optimization method. Towards seat layouts with
two, four, or six seats in total, the result shows that the
sensing system needs one, two, or three cameras to cover
all the occupants’ upper bodies. When the cabin is highly
configurable (meaning the seat layout can change from one to
another completely), the sensing system may need more cam-
eras at different poses and can still achieve full upper-body
coverage. Not surprisingly, additional investigation shows
that reducing the total number of cameras will sacrifice
coverage rate to a certain degree. This finding suggests
future development to focus on the trade-off (between camera
numbers and coverage rates) towards specified sensing needs
and system development requirements.
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