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Abstract— This paper presents a modeling and optimization
framework to design battery electric micromobility vehicles,
minimizing their total cost of ownership (TCO). Specifically,
we first identify a model of the electric powertrain of an e-
scooter and an e-moped consisting of a battery, a single electric
motor and a transmission. Second, we frame an optimal joint
design and control problem minimizing the TCO of the vehicles.
Since this problem is nonlinear w.r.t. the motor size and the
total mass of the vehicle, but convex if their value is given, we
efficiently solve the problem for a range of motor sizes with an
algorithm based on second-order conic programming iterating
on the vehicle’s mass. Finally, we showcase our framework on
custom-created driving cycles for both vehicles in hilly and
flat scenarios, providing an in-depth analysis of the results
and a numerical validation with high-fidelity simulations. Our
results show that the characteristics of the area where the
vehicles are employed have a significant impact on their optimal
design, whilst revealing that regenerative braking and gear-
changing capabilities (as in the case of a continuously variable
transmission) may not be worth implementing.

I. INTRODUCTION

IN THE past lustrum, we have been witnessing a pervasive
diffusion of electric micromobility vehicles in all major

cities of the world [1]. Whilst no formal definition exists,
electric micromobility vehicles are generally regarded as
low-speed, light-weight and small-size vehicles with a short
driving range [2]. In particular, this mode of transportation
consists of e-bikes, e-scooters, and e-mopeds. Such vehicles
usually can be accessed either from a docking station or in
designated city areas in a free-floating fashion, using scan-
and-ride frameworks to rapidly unlock the vehicle and pay
via a smartphone app [3]. From a system-level perspective,
these vehicles have the potential to bridge public transporta-
tion gaps in city centers, e.g., covering the first-and-last-mile
legs of people’s journeys in an accessible way [4]. What is
more, compared to car-based on-demand mobility systems
based on conventional vehicles, they require less parking and
driving space, produce significantly less noise and harmful
emission, and positively affect urban congestion [5]. Fi-
nally, combined with the concept of shared economies and
Mobility-as-a-Service rationales, shared electric micromobil-
ity vehicles are a promising technology to explore within
mobility-on-demand frameworks [6].

Given the great potential stemming from the adoption
of micromobility systems, there is still plenty of room for
improvement. Besides mere regulatory issues, the average
lifetime of micromobility vehicles tends to be relatively
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Fig. 1: Systematic overview of the electric powertrain of the e-
scooter and e-moped, consisting of a battery (BAT), an electric
motor (EM), a gearbox (GB), a final drive (FD) and a driven wheel
(W). The grey parameters denote the optimization variables of the
components: battery size, maximum motor power, ratio of the FGT
and minimum and maximum ratio of the CVT.

short [7] and their performance does not always meet require-
ments comparable with other mobility systems: For instance,
in terms of gradeability performance, there are opportunities
for improvement [8]. Arguably, a vehicle designed for a flat
city like Eindhoven may not be suited for a city with high
hill-climbing requirements such as San Francisco. Moreover,
with thousands of vehicles being deployed in each city, the
massive deployment scale of such transportation systems
would already benefit enormously from only slight improve-
ments in the performance of the single vehicles. Therefore, in
order to benefit the most from such a transportation mode,
the design of the single vehicles should be tailored to the
specific application and urban setting, calling for systematic
design approaches.

Against this background, this paper presents models and
algorithms to optimize the design and operation of the
powertrain of electric micromobility vehicles as shown in
Fig. 1. Specifically, this paper will focus on e-scooters with
a fixed gear transmisson (FGT) and a maximum speed of
25 km/h and e-mopeds equipped with a FGT or a continuously
variable transmission (CVT) limited at 45 km/h, whilst leaving
hybrid electric human-driven vehicles such as e-bikes to
future research.

Related literature: Our contribution is related to the design
and control of (hybrid) electric vehicle propulsion systems
and pertains to the following two research lines. In the
context of passenger cars and trucks, this design and control
challenge is usually addressed with either high-fidelity non-
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linear models combined with derivative-free algorithms [9]–
[11], or convex optimization, which sacrifices modeling ac-
curacy in favor of time-efficient optimization algorithm [12]–
[14]. Both these classes of methods have advantages and
disadvantages. Nonetheless, they have not been applied to
optimize the design and control of micromobility vehicles,
which have significantly different requirements.

Narrowing the scope towards previous research on the
design of e-scooters and e-mopeds, we identify the fol-
lowing contributions: Whilst simulation-based approaches
reveal the capabilities of (hybrid) electric two-wheelers [15]–
[17], efforts have been made to optimize the design of the
electric motor of scooters and mopeds using finite-element
modeling [18], [19] combined with gradient-based [20] or
evolutionary algorithms [21]. However, these methods do not
jointly optimize the design and control of the full powertrain
from a system-level perspective, potentially leading to sub-
optimal solutions [22].

Summarizing, to the best of the authors’ knowledge, there
are no methodologies available to optimize the design and
control of electric micromobility vehicles in a joint, system-
atic and computationally-efficient manner, whilst accounting
for their application-specific requirements.

Statement of contribution: To bridge this gap, this paper
presents an algorithm to efficiently compute the optimal
design and control of an e-moped and an e-scooter in
a joint fashion. Specifically, the contribution consists of
the following three items: First, we construct an optimal
control problem that aims at minimizing the total cost of
ownership (TCO) of an e-moped and e-scooter in a partially-
convex fashion, whilst including performance requirements
on acceleration, gradeability, top speed and range. Second,
we create custom driving cycles to asses the performance of
the vehicles in two scenarios, namely a flat and hilly terrain.
Third, we present an iterative, rapidly converging algorithm
that solves the partially-convex problem with second-order
conic programming (SOCP).

Organization: The remainder of this paper is organized as
follows. In Section II, we identify a partially-convex model
of the powertrain and an effective solution algorithm based
on SOCP to jointly optimize the design and control strategies
with respect to TCO. We present numerical results on custom
drive cycles with different altitude profiles in Section III, and
draw the conclusions in Section IV.

II. METHODOLOGY

This section presents a framework based on convex opti-
mization to jointly optimize the design of the components
and control strategies of the electric scooter and moped
powertrain shown in Fig. 1. First, we define the objective
function of the optimization problem at hand. Subsequently,
we present the model of the vehicle dynamics, gearbox, elec-
tric motor (EM), battery and vehicle mass, after which we
derive the performance requirements. Finally, we summarize
the full optimization problem, devise an iterative solving
algorithm and address some points of discussion regarding
the proposed framework.

A. Objective: Total Cost of Ownership

The objective of the optimization problem is to minimize
the TCO defined as

JTCO = Cop + Ccomp, (1)

where Cop and Ccomp are the operational and component
costs, respectively. We define the operational cost as a
function of the battery State-of-Energy (SoE) according to

Cop = ∆Eb · cel ·
Dmax

Dcycle
, (2)

where cel is the cost of electricity, Dmax is the distance that
the vehicle can cover until battery End-of-Life, Dcycle is
the distance covered in one driving cycle and ∆Eb is the
difference in battery SoE defined as

∆Eb = Eb(t0)− Eb(tend), (3)

where t0 and tend denote the start and end times of the
driving cycle, respectively. The components’ costs are

Ccomp = cbat · Eb,max + cem · Pem,max + cadd, (4)

where Eb,max denotes the maximum battery capacity,
Pem,max the maximum EM output power. Moreover, cbat
and cem are the specific costs of the battery and electric
machine (including the gearbox), respectively, and cadd are
additional costs related to the vehicle itself.

B. Longitudinal Vehicle Dynamics

This study uses a quasi-static vehicle modeling approach
in line with current practices [23]. Given a driving cycle
with velocity v(t), acceleration a(t) and gradient θ(t), the
required propulsion power Preq is

Preq(t) = (m · (a(t) + crr · g · cos(θ(t)) + g · sin(θ(t)))

+
1

2
· ρa · cd ·Af · v(t)2) · v(t), (5)

where m is the total vehicle mass including the driver, crr
is the rolling resistance coefficient, g is the gravitational
constant, ρa is the air density, cd is the aerodynamic drag
coefficient and Af is the frontal area of the vehicle and driver.
To improve readability, in the remainder of this paper we will
drop time-dependence whenever clear from the context.

C. Transmission

The e-scooter and e-moped share the same powertrain
topology depicted in Fig. 1, apart from the gearbox. Con-
sidering both vehicles, the gearbox transmission ratio is

γ(t)

{
= γfgt ∀t if FGT
∈ [γmin, γmax] ∀t if CVT,

(6)

where γfgt > 0 is the FGT ratio, and γmin > 0 and γmax > 0
are the lower and upper limits of the CVT ratio, respectively,
which are related via a constant ratio coverage cf :

γmax = cf · γmin. (7)



Fig. 2: Efficiency map of DC-machine, including inverter
efficiency (left) and convex model (right).

On the assumption that the efficiency of the final drive ηfd
and transmission ηgb are constant, the required propulsion
power can be related to the EM power Pem:

Preq =

{
ηfd · ηgb · Pem if Pem ≥ 0

1
ηfd·ηgb·Rb

· Pem − Pbrake if Pem < 0, (8)

where Rb is the regenerative braking fraction which indicates
the amount of braking power that the EM can apply to the
wheels via the gearbox and final drive without destabilizing
the vehicle, and Pbrake ≥ 0 is the required braking power.
To ensure convexity, we can follow the same reasoning as
in [24] and relax (8) to

Preq ≤ min

(
ηfd · ηgb · Pem,

Pem

ηfd · ηgb ·Rb

)
. (9)

Lastly, the rotational speed of the EM ωem is computed
from the gear ratio with

ωem =
v · γfd · γ

rw
, (10)

where γfd is the ratio of the final drive and rw is the effective
rolling radius of the wheel.

D. Electric Motor

Since the most common electric motor types among
micromobility vehicles are brushed and brushless DC ma-
chines [25], we identify our EM model with the DC machine
data shown in Fig. 2.

The EM input power Pdc is defined as
Pdc = Pem + Ploss, (11)

where Ploss is the power loss. Assuming the driving cycle
and mass of the vehicle to be known in advance, the EM
mechanical power Pem can be considered an exogenous
variable. Therefore, in line with [26], we fit the losses
as a sole function of the EM speed as the second-order
polynomial

Ploss = a1(t) + a2(t) · ωem + a3(t) · ω2
em, (12)

where aj , j ∈ [1, 2, 3] are time-dependent loss coefficients
that can be computed from Pem(t) and efficiency data.

Fig. 3: Quadratic fit of the power losses for four different
power levels.

Therefore, we are able to fit the coefficients aj for each
power loss corresponding to a range of EM power values
[−Pem,max, Pem,max], creating a look-up table that returns
the coefficients for a given mechanical EM power. The model
is fitted to brushed DC machine data with a normalized root-
mean-squared error (RMSE) of 1.12%. An overview of the
power loss model for four different power levels is given in
Fig. 3, whilst the original and modeled efficiency maps are
shown in Fig. 2.

Using the approach described above, we are able to pre-
compute the EM power coefficients for each time instance
if the exogenous EM power P em is given. We calculate this
power from an exogenous required power request P req that
is computed with (5), using a fixed a base vehicle mass m.
Thereafter, taking into account that the EM is the only mover
of the powertrain, it is possible to pre-compute the exogenous
EM power P em from P req by relaxing and rewriting (8):

P em = max

(
P req

ηgb · ηfd
, P req · ηgb · ηfd ·Rb, Pem,min

)
, (13)

where Pem,min = −Pem,max. Next, the coefficients are
computed and scaled as a function of maximum EM power:

aj(t) = aj(P em) · Pem,max

P em,max

∀j ∈ [1, 2, 3], (14)

where aj(P em) are the time-dependent coefficients obtained
for the original EM size P em,max and from the exogenous
EM power P em(t).

Similar to [24], the EM electric power is converted to a
convex form by substituting (12) into (11) and relaxing it to

Pdc ≥ Pem + a1(t) + a2(t) · ωem + a3(t) · ω2
em. (15)

This relaxation is lossless, because our objective is to mini-
mize the TCO, which also consists of the operational costs:
Thereby, it would be inefficient to pick a larger value for
Pdc, ensuring inequality (15) to hold with equality [27]. The
same reasoning applies to the other lossless relaxations that
will be performed in the remainder of this paper.

The EM torque is bounded by

Pem ∈ [−Tem,max · ωem, Tem,max · ωem], (16)



where Tem,max is a constant maximum torque, and the EM
power is limited as

Pem ∈ [−km,1 · ωem − km,2, km,1 · ωem + km,2], (17)

where km1 ≤ 0 and km2 ≥ 0 are the maximum power
coefficients subject to identification [14]. Similar to (14), we
scale the maximum torque and coefficients as a function of
maximum EM power using

Tem,max = T em,max ·
Pem,max

P em,max

(18)

km,i = km,i ·
Pem,max

P em,max

∀i ∈ [1, 2]. (19)

Lastly, using (10) and given that ωem ≤ ωem,max, the
maximum EM speed constraint can be rewritten as a function
of γ, which results in

γ(t) ≤ ωem,max · rw
γfd · v

. (20)

E. Battery Pack

We model the battery using the same approach that is
discussed in [24], where the battery is modeled according to
a standard equivalent circuit with internal resistance R and
open-circuit voltage as a function of battery SoE Voc(Eb).
We compute the power at the battery terminals with

Pb = Pdc + Paux, (21)

where Paux is a constant auxiliary power. Furthermore, the
internal battery power Pi, which is responsible for the change
in battery SoE, is related to Pb with

(Pi − Pb) · Poc = P 2
i . (22)

where Poc is the open circuit power which we write as a
function of Eb and Eb,max as

Poc = a1 · Eb + a2 · Eb,max. (23)

where a1 and a2 are coefficients subject to identification.
Then, in order to achieve convexity, we relax (22) and write
it as a second-order order conic constraint:∥∥∥∥ 2 · Pi

Pi − Pb − Poc

∥∥∥∥
2

≤ Pi − Pb + Poc. (24)

We limit the internal battery power as

Pi ∈ [−Pi,max, Pi,max], (25)

where Pi,max is the maximum internal power that is related
to Eb with the affine function

Pi,max = b1 · Eb + b2 · Eb,max, (26)

where the coefficients b1 and b2 are again subject to identi-
fication. In addition, we limit the battery SoE with

Eb ∈ [ζb,min, ζb,max] · Eb,max, (27)

where ζb,min and ζb,max are the minimum and maximum
SoE levels, respectively. Lastly, the internal battery dynamics
are given by

d

dt
Eb = −Pi. (28)

The battery model is fitted to the data from a pack
of INR18650-25R lithium ion cells in 13-series-1-parallel
formation with a normalized RMSE of 0.53% [28]. This
configuration gives the pack a nominal voltage of 48 V and
capacity of 2.5 Ah.

F. Mass

The gross vehicle mass is computed using

m = md +mv (29)

where md is the driver weight and mv is the vehicle mass,
which is calculated using

mv = mem +mbat +mgb +mf , (30)

in which mem is the electric EM mass, mgb is the transmis-
sion mass, mbat is the battery mass and mf is the frame mass.
In contrast to conventional vehicles, the driver mass has to
be included for the optimization of micromobility vehicles,
because it often is greater than or equal to the vehicle weight.
We adjust the mass of the three scalable components of the
powertrain as follows: First, the EM mass is scaled linearly
with the maximum EM power using

mem = ρem · Pem,max, (31)

where ρem is the specific EM mass per power unit, which
also incorporates the mass accounted by the power electron-
ics. Secondly, the battery mass is scaled with the maximum
battery capacity using

mbat = ρbat · Eb,max, (32)

where ρbat is the specific battery weight per unit of energy.
Finally, in line with [24], we scale the transmission mass
quadratically with respect to the gear ratio and relax it as

mgb ≥
{
ρfgt · γ2

fgt if FGT
mcvt,base + ρcvt · γ2

max if CVT,
(33)

where ρfgt and ρcvt are the specific gearbox weights of the
FGT and CVT, respectively, and mcvt,base is the base mass
of the CVT.

G. Performance Requirements

As mentioned in Section I, we include performance
constraints in the optimization problem to ensure that the
gradeability, top speed, acceleration and range of the vehicles
are acceptable. We define the gradeability requirement for the
vehicles as

m · g · sin(θstart) · rw ≤ ηgb · ηfd · Tem,max · γfd · γx (34)

where γx = γfgt for the FGT, γx = γmax for the CVT and
θstart is the gradient from which the vehicle should be able
to start driving from standstill. Subsequently, we ensure that
the vehicle is able to drive at top speed on a flat road, without
passing the torque limit, using

Treq(vmax) ≤ min(Tem,max · ηfd · ηgb · γx · γfd,

(km,1 · γx · γfd + km,2 ·
rw
vmax

) · ηfd · ηgb), (35)



where γx = γfgt for the FGT, γx = γmin for the CVT, vmax

is the top speed and Treq is the required torque to drive at
the top speed, which is calculated as

Treq(vmax) =
Preq(vmax)

vmax
· rw. (36)

Moreover, we ensure that the EM power is high enough
such that the vehicles are able to reach their top speed within
an acceleration time tacc with

Pem,max · ηgb · ηfd ≥
v2max ·m
tacc

. (37)

Lastly, the battery size is determined from the expected
range, energy consumption during one cycle, and the mini-
mum charge level using

Eb,max ≥
∆Eb

1− ζb,min
· Dexp

Dcycle
, (38)

where Dexp is the expected range.

H. TCO Based Component Sizing and Control Problem

In this section, we present the optimization problem,
summarizing the objective function and modeling con-
straints derived in the previous sections. Using second-
order conic programming (SOCP), we solve the joint design
and control problem for the state variable x = Eb, the
control variables u = {Pem, γ(t)}, and the design vari-
ables p = {Pem,max, Eb,max, γi}, where i = fgt and i =
{min,max} for the FGT and CVT, respectively.

Problem 1. The minimum TCO, component sizes and control
strategies are the solution of

min JTCO

s.t. (1)− (7), (9), (10),
(13)− (21), (23)− (38).

Problem 1 is not completely convex because (i) the EM
scaling results in a bi-linearity and (ii) the optimized mass
is not equal to the mass that is used to pre-compute the
EM coefficients, as it is dependent on the components’
size. To this end, we present an iterative solution algorithm
that circumvents these issues and consists of two main
aspects. First, in order to ensure convexity, we fix the EM
size and the mass of the powertrain, including the battery
and the transmission, allowing us to pre-compute the EM
coefficients. Second, we vary the EM size for a vector of
maximum EM powers with a fine discretization and solve
Problem 1 for each of these given values by iterating on the
mass of the powertrain, which would result from the size of
the battery and the transmission.

To go into more detail of this solving procedure we refer
to Algorithm 1, in which we search the optimal vehicle mass
m∗

v for each given value of Pem,max. In particular, we take an
initial guess mv,0 for the vehicle mass, we pre-compute the
EM coefficients aj and solve Problem 1 as an SOCP, which
returns an optimal battery and transmission sizing. Using
this solution, we can update the vehicle mass and follow the
same procedure. We stop the iterations when the mass of
the current iteration coincides with the mass of the previous
iteration, up to the tolerance ε.

Algorithm 1: iterative solving procedure
Given Pem,max:
Initial guess: m∗

v = mv,0,mv = 0
while ||mv −m∗

v|| ≥ ε
mv = m∗

v
m = mv +md

Precompute aj(t)
m∗

v ←− solve SOCP
end
m∗ = m∗

v +md

I. Discussion

A few comments are in order. First, we assume the
EM losses and maximum torque to scale linearly with the
maximum EM power Pem,max, such that the efficiency map
values remain unchanged, which is common practice in such
sizing studies. Since the EM torque scales linearly in EM
length, the EM mass is also scaled linear with respect to
EM power [29]. However, as we are separately solving for
different EM sizes, our framework allows for more accurate
sizing models. Moreover, we scale the battery by adding
branches in parallel, which ensures the open-circuit voltage
to remain constant. Thereby, the battery pack was fitted
with respect to a pack with an output voltage of 48 V,
which corresponds to micromobility applications found in
industry [30]. Lastly, the solution found by Algorithm 1 does
not have global optimality guarantees, because Algorithm
1 is solving Problem 1, which, for a fixed Pem,max, is
still nonlinear with respect to mv. However, the numerical
convergence analysis provided in the extended version of
this paper shows promising results [31]. In addition, as
shown in Section III below, we also solved Problem 1 with
nonlinear programming methods. While we obtained the
same results for the FGT-equipped vehicles, the CVT-case
did not converge, validating and motivating the proposed
approach.

III. NUMERICAL RESULTS

This section presents the numerical results obtained when
leveraging our framework proposed in Section II above to op-
timize the design and control of an e-scooter and an e-moped.
In line with common practices for the design and control
optimization of battery and hybrid-electric vehicles [23],
we use driving cycles consisting of exogenous velocity
and gradient profiles. Official test cycles for micromobility
vehicles are not yet available. Therefore, for the e-scooter,
we measure the driving cycle by completing a representative
driving mission in Eindhoven and using the log data on
speed, distance and height registered with a GPS-based
application like Strava [32]. For the e-moped, we use the
transient phase of an urban cycle (EPA Urban Dynamometer
Driving Schedule [33]) which is speed-limited to 45 km/h. As
both driving cycles result from a flat terrain, we create hilly
scenarios by including a synthetic gradient profile with equal
start and end altitudes and adjust the speed profile to make
it realistic. The resulting cycles are shown in Fig. 4.

In order to solve Problem 1, we discretize it with the Euler
Forward method and a sampling time of 1 s. As mentioned in



Fig. 4: The driving cycles used for the micromobility vehi-
cles.

Section II-H, Algorithm 1 iteratively solves Problem 1 with
respect to the vehicle mass, using SOCP for fixed values
of Pem,max ∈ [300, 800] W for the scooter and Pem,max ∈
[2000, 3000] W for the moped, with a tolerance ε of 0.001 kg.
Thereby, we parse the problem with YALMIP [34] and
solve it using MOSEK [35]. As the TCO-contribution of
the components’ costs is significantly higher than the cost of
electricity (as shown in Table I and II), the optimal motor
size is generally located close to the smallest feasible motor
power. We observed an average computation time of 20 s per
motor size (considering that Algorithm 1 typically converges
to an optimal mass in three iterations) on a machine with an
Intel® Core™ i7-4710MQ CPU and 8 GB of RAM. The total
computation time, including the optimal EM sizing, equals
about 820 s for the e-scooter and e-moped.

Beside leveraging our presented solution algorithm, we
also solve Problem 1 directly as a nonlinear program (NLP).
Thereby, whilst for the FGT-equipped vehicles we obtain
similar computation times and identical results, convergence
cannot be achieved for the CVT-equipped e-moped, motivat-
ing and validating the use of the proposed Algorithm 1 to
solve Problem 1.

A. Case Study: Flatland Compared to Hills

To analyze the impact of the area of employment on the
optimal vehicle design, we use the driving cycles shown in
Fig. 4. Thereby, for each vehicle-type we consider a flat
one (e.g., representing Eindhoven) and a hilly one (e.g.,
representing San Francisco). The results of the case study
are presented in Table I and Table II, and are obtained using
the simulation parameters provided in the extended version
of this paper [31].

Table I shows that in the hilly scenario, the optimal TCO
of the e-scooter increases by 7.4% with respect to the flat sce-
nario. In particular, the components’ and electrical costs rise
by 7.7% and 4.2%, respectively. Similar trends are observed
for the e-moped, whereby the costs increase significantly.
Specifically, the component and electrical costs for the FGT-
equipped vehicle increase by 6.9% and 10.4%, respectively,

TABLE I: Simulation results for the e-scooter.

Flat Hills
J(TCO) [AC] 296 318
Ccomp [AC] 272 293
Cel [AC] 24 25
Pm,max [W] 590 640
Eb,max [Wh] 435 491
mv [kg] 12.7 13.1
γ [-] 5.91 6.77

TABLE II: Simulation results of the e-moped for both
scenarios and transmission technologies.

Scenario Transmission
Flat FGT CVT
J(TCO) [AC] 1713 2018 (+17.8%)
Ccomp [AC] 1175 1411 (+16.7%)
Cel [AC] 538 607 (+13.9%)
Pm,max [W] 2370 2550 (+7.59%)
Eb,max [Wh] 2549 2874 (+12.8%)
mv [kg] 75.1 78.2 (+4.13%)
γfgt [-] 5.03 -
γmin [-] - 2.80
γmax [-] - 7.57
Hills
J(TCO) [AC] 1857 2197 (+18.3%)
Ccomp [AC] 1263 1516 (+20.0%)
Cel [AC] 594 681 (+14.7%)
Pm,max [W] 2490 2580 (+3.6%)
Eb,max [Wh] 2815 3227 (+14.6%)
mv [kg] 76.9 80.0 (+4.03%)
γfgt [-] 5.56 -
γmin [-] - 2.86
γmax [-] - 7.73

whereas they increase by 7.4% and 12.2% for the CVT-
equipped one. Overall, we observe that the type of terrain
has a significant influence on the optimal component sizes
and should be considered prior to deployment. Moreover,
we observe that the influence of the components’ cost on
the TCO is about a factor of ten larger than the electricity
costs for the e-scooter, whilst this difference is reduced to a
factor of two for the e-moped.

In addition, the fixed-gear ratio of the e-scooter increases
from 5.91 for the flat case to 6.77 in the hilly terrain. This
difference is caused by the larger EM size, which allows the
operating points to be shifted towards a more efficient region
at higher speeds, without exceeding the EM torque limits.
The increase in gear ratio for the FGT-moped in the hills
can be explained following a similar reasoning. In contrast,
the maximum and minimum allowable CVT ratios do not
change substantially, because they are related to performance
requirements, which are only affected by the limited increase
in vehicle mass. A further analysis of the difference between
both transmission technologies can be found in the extended
version of this paper [31].

Furthermore, Table II shows that the TCO increases by
more than 17% for the CVT powertrain with respect to
the FGT powertrain in both scenarios. Although the EM
operating points of the CVT are placed in more efficient
regions, the resulting decrease in energy consumption does
not compensate for the lower transmission efficiency and
higher mass and implementation costs. Moreover, the lower
CVT-efficiency requires the motor to be 3.6% larger in order
to meet the constraints, which also increases the TCO. All in



Fig. 5: Mechanical EM power and battery SoE of the e-
scooter in both scenarios.

Fig. 6: Mechanical EM power and battery SoE of the e-
moped for both scenarios and transmission technologies.

all, these factors make the FGT-equipped e-moped the more
cost-effective solution.

Finally, Fig. 5 shows the e-scooter to have a very small en-
ergy recuperation potential, since the ratio of circulative-to-
dissipative energy is significantly lower than for conventional
cars [23] and the kinetic energy of the e-scooter is mostly
dissipated via drag forces, resulting in a very small negative
motor power and increase in Eb. Due to the low energy
recuperation potential, one could even consider to reduce
the TCO by removing the power electronics which enable
energy regeneration and hence reduce the vehicle’s weight.
Following a similar trend, Fig. 6 shows that the influence of
recuperating with an e-moped is also minimal as the increase
in Eb during the braking phase is negligible. However, the
higher mass and velocity result in a larger kinetic energy
and higher negative motor power. Therefore, the potential
energy savings might be able to compensate for the cost of a
regenerative braking system for driver masses above a certain
value. Following this idea, further research could include a
sensitivity analysis on the influence of energy recuperation
on the TCO with respect to the total weight of the electric
moped.

B. Validation

We validate the accuracy of our convex models by simulat-
ing our optimal results with a nonlinear vehicle model based
on the original EM and battery data. Thereby, the difference
in consumption between both models for all vehicles and
transmission technologies lies within a range of 0.42–1.00%,
validating the accuracy of our optimization framework.

IV. CONCLUSION

In this paper, we explored an efficient approach to optimize
the design of electric micromobility vehicles with respect to
their total cost of ownership (TCO). In particular, we focused
on e-scooters equipped with a fixed-gear transmission (FGT)
and e-mopeds equipped with an FGT or a continuously vari-
able transmission (CVT). To this end, we derived a partially-
convex model of their powertrains, defined application-
specific performance requirements, generated custom driving
cycles, and formulated an optimization problem in which the
components’ size and the control of the powertrain are jointly
optimized. In order to achieve convergence in a reasonable
time, we devised an iterative algorithm based on second-
order conic programming that exploits the partial convexity
of the problem.

Our numerical case studies investigated the impact of the
vehicles’ employment area on the optimal solution, revealing
that the presence of hills would result in an increase of TCO
and components’ cost of almost 10%, with respect to flat
regions. This clearly underlines the importance of accounting
for the application terrain when designing and deploying
micromobility vehicles. What is more, our results indicated
that, given the relatively low weight of such vehicles—and in
line with the state of the art—enabling regenerative braking
capabilities would not significantly improve the achievable
performance, whilst using a CVT may even increase the
overall TCO.

This work opens the field for the following extensions:
First, we would like to extend our framework to accom-
modate hybrid-human vehicles such as e-bikes. Second, we
would like to embed our approach within the system-level
design of Mobility-as-a-Service systems such as intermodal
Autonomous Mobility-on-Demand (AMoD), as they would
clearly benefit from the presence of micromobility vehicles
as a mode of transportation [6].
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