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Abstract— Predicting the trajectories of other road users
relies to a large extent on the assumption that they adhere to
the legally binding traffic rules. Hence, when this assumption
does not hold anymore, the prediction becomes invalid, putting
autonomous vehicles relying on such predictions in a critical
situation. We propose a solution to this problem by predicting
traffic rule violations. All traffic rules are modeled by temporal
logic, and we provide real-valued generalizations of required
logical predicates to obtain features for prediction with neural
networks. The usefulness of our approach is demonstrated
by predicting rule violations on a dataset recorded from a
highway. Our results show that directly learning traffic rule
violations using the features from temporal logic formulas
often performs better compared to separately predicting and
monitoring trajectories.

I. INTRODUCTION

Incorporating traffic rules into autonomous driving sys-
tems has become a focus of recent research. This trend
does not only help vehicles drive in compliance with traffic
rules but also improves the predictability of other traffic
participants [1]. For instance, another vehicle will most
likely slow down in front of an intersection if it does
not have the right of way. Observations of illegal behavior
have been previously considered by adjusting or removing
the respective predictions [1] or constraints [2], [3] once
a violation has been observed. While these approaches are
suitable for traffic rule violations such as speeding, they
could be insufficient in more critical scenarios, where the
observation of a rule violation comes too late, e.g., running
a red light at an intersection or a pedestrian unexpectedly
crossing the road.

To prevent severe consequences, traffic rule violations in
highly critical scenarios must be explicitly predicted. Ad-
vances in two areas help to realize this goal: Machine learn-
ing techniques have produced remarkable results for predict-
ing trajectories of surrounding vehicles [4], [5]. Furthermore,
recent attempts to formalize traffic rules in temporal logic
have enabled automated traffic rule monitoring [6], [7].
However, research has not specifically targeted the prediction
of traffic rule violations so far. Major challenges for this
task remain as critical scenarios are often inherently difficult
to foresee, occur only rarely, and are thus infrequently
contained in recorded datasets.

A. Related Work

The foundations of predictive monitoring of traffic rules
consist of two major research directions: Formalization of
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traffic rules in temporal logic and predictive monitoring
of temporal logic specifications, which we both present
subsequently.

1) Formalization of Traffic Rules: Incorporating traffic
rules in any kind of computation, e.g., perception, prediction,
planning, etc., first requires their formalization in a machine-
readable manner [8]. Most approaches have identified tem-
poral logic as a suitable specification formalism. Linear
temporal logic (LTL) [9] is based on propositional logic
and temporal operators, such as always, until, next, and
eventually. It has been used for specifying motion [10] and
formalizing traffic rules [6]. To overcome the limitations
of a discrete notion of time in LTL, metric temporal logic
(MTL) [11] has been used to formalize a comprehensive
set of highway traffic rules [7]. While LTL and MTL only
provide Boolean values for satisfaction and violation of a
property, signal temporal logic (STL) [12] with quantitative
semantics [13] allows one to quantify the degree of satisfac-
tion or violation of a property, also known as robustness
degree. Hekmatnejad et al. [14] have formalized the safe
distance rules of the responsibility sensitive safety frame-
work [15] in STL, while Cho et al. [16] and Li et al. [17]
have specified basic traffic rules, e.g., collision avoidance,
lane-keeping, or slowly approaching a pedestrian crossing.

2) Predictive Monitoring: Predicting compliance with de-
fined temporal properties is an important task in different
domains. Quin and Deshmukh [18] used autoregressive in-
tegrated moving average models to predict the probability
of satisfying an STL specification by fitting them to a time
series. They demonstrate their method using specifications
for various applications including automated insulin delivery
and control of an unmanned aerial vehicle. However, the
method requires the predicted quantity to be modeled as
an autoregressive integrated moving average process, which
can only model temporally correlated time series. Thus,
series-spatial correlations, as found in traffic rules [19],
cannot be incorporated. Ma et al. [20] proposed the predictive
monitoring approach CityPM for STL specifications in smart
cities. They extended STL to express uncertainty and first
predict the signals using Bayesian recurrent neural networks
and afterward check satisfaction of the STL specifications
with monitors.

To the best of our knowledge, the first work that incor-
porates a prediction of traffic rule conformance is presented
by Cho et al. [16]. State sequences of vehicles are used as
features for a recurrent neural network (RNN) predicting the
probability distribution of robustness values of STL formulas.
The robustness values are used to eliminate samples of
predicted trajectories not conforming to the predicted robust-



ness values. While their approach explicitly considers STL
specifications, the authors only present results for simple
rules and do not explicitly target the prediction of traffic
rule violations. Li et al. [17] have leveraged existing tra-
jectory prediction algorithms with syntax tree features from
quantitative semantics of STL within a generative adversarial
network to create trajectory predictions aware of traffic rules.
The approach was trained on a dataset with 20% of the
samples violating traffic rules. While the robustness features
used in this approach are similar to ours, only one STL
formula with the always operator has been investigated.
Moreover, the performance of accurately predicting rule
violations has not been evaluated.

Several general and highway-specific traffic rules have
been formalized in LTL and MTL [6], [7]. Only few basic
rules were formalized in STL [14], [16], [17]. However,
traffic rules formalized in STL are widely applicable as they
provide a quantitative measure of rule compliance. Existing
approaches for predictive monitoring of STL specifications
have mostly split the task into a prediction and monitor-
ing task [18], [20]. Approaches that fuse these two tasks
were proposed only for predicting trajectories, but not for
predicting traffic rule violations [16], [17]. By combining
prediction and monitoring, one can optimize the specific
purpose of foreseeing traffic rule violations. Furthermore,
behavior specifications or basic traffic rules for which many
violating training examples exist have been considered.

B. Contributions

We propose a methodology to predict violations of traffic
rules modeled using temporal logic formulas and specifically
contribute the following novelties:
• We provide an approach for predictive monitoring of

temporal logic specifications using neural networks;
• we define the robustness degree of predicates for the

quantitative evaluation of traffic rules in STL; and
• we evaluate the proposed approach on real-world data

using two types of neural networks and compare the
results with a trajectory prediction approach.

The rest of the paper is organized as follows: The theoret-
ical foundations are introduced in Section II. In Section III,
we present our approach for predicting violations of traffic
rules. In Section IV, the neural networks are defined, and
we evaluate our approach on a dataset from highway traffic.
Section V discusses our results.

II. PRELIMINARIES

A. Signals

We use the STL standard definition of signals as the
basis for our work [21, Sec. 2.1] and discrete time steps
to resemble a sampled perception of the environment. A
signal w = w0w1 · · · is a sequence of vectors wk ∈ Rr.
We write w[k] for the signal vector at time step k, w[k, k′]
for a subsequence of w from time step k to k′,

(
w w′

)ᵀ
=(

w[0] w′[0]
)ᵀ (

w[1] w′[1]
)ᵀ · · · for a signal of concatenated

signals and projw′

((
w w′

)ᵀ)
= w′ for projecting a concate-

nated signal to component w′. We define the finite index set

I = {1, ...,m} for the m vehicles present in a scenario and
xp as the state of the vehicle with index p. For the index set
I\{p} without the p-th vehicle, we write I¬p. The signal of a
scenario wI =

(
x1 · · · xm

)ᵀ
is defined as the concatenation

of the signals of all vehicles.

B. Signal Temporal Logic

For the formalization of traffic rules, we use the past
fragment of STL [21, Sec. 2.1], which only reasons about
past signal values. Let I be a time interval of the form [k, k′]
or [k,∞) with k, k′ ∈ N0 and g an arbitrary real-valued
function. The syntax of an STL formula ϕ is

ϕ ::= g(x) ≥ 0 | ¬ϕ | ϕ ∨ ϕ | ϕSI ϕ | > .

We denote wI complying with ϕ at time step k with
wI , k |= ϕ, and the set of predicates used in ϕ with Pϕ.
We refer to [21, Sec. 2.1] for the definition of the semantics
of STL and define the following constants and operators for
convenience [21, Sec. 2.1], [22, Sec. 2.2]:

⊥ ≡ ¬>
ϕ1 ∧ ϕ2 ≡ ¬(¬ϕ1 ∨ ¬ϕ2)

ϕ1 ⇒ ϕ2 ≡ ¬ϕ1 ∨ ϕ2

OI ϕ ≡ >SI ϕ

Pϕ ≡ ⊥S[0,∞) ϕ

where P and OI are untimed previous and timed once
operator. Informally speaking, Pϕ holds, if ϕ was satisfied
in the previous time step, and OI ϕ holds, if ϕ was satisfied
at least once in the past time interval I .

Quantitative semantics for STL has been defined to mea-
sure the robustness degree, i.e., the distance to satisfaction
or violation of an STL formula. Based on the following
equivalences, similar as in [21, Sec. 2.2], the robustness
degree ρ(ϕ,wI , k) of a signal wI , at time step k according
to formula ϕ can be recursively computed:

ρ(>, wI , k) =∞
ρ(¬ϕ,wI , k) = −ρ(ϕ,wI , k)

ρ(g(x) ≥ 0, wI , k) = g(projx (wI) [k])

ρ(ϕ1 ∨ ϕ2, wI , k) = max{ρ(ϕ1, wI , k),

ρ(ϕ2, wI , k)}

ρ(ϕ1 SI ϕ2, wI , k) = max
k′∈(k−I)∩N0

min

{
ρ(ϕ2, wI , k

′),

min
k′′∈[k′+1,k−1]

ρ(ϕ1, wI , k
′′)

}
.

The satisfaction of ϕ, with respect to wI is related to the
sign of the robustness degree:

wI , k |= ϕ ⇐⇒ ρ(ϕ,wI , k) ≥ 0.

C. Environment Model

The state vector of a vehicle is defined as(
s d v a θ

)ᵀ ∈ R5, where s and d are the
corresponding longitudinal and lateral position in curvilinear
coordinates [23], v is the speed, a is the acceleration, and
θ is the orientation. The static map is modeled as lanelet
network L, see [24]. We adopt the following operators
from [7]: lanes(·) for the lanes occupied by a vehicle, O(·)



for the occupancy of an object, l{lb,rb}(·) for the respective
left and right lane boundary, and front(·) as well as rear(·)
for the longitudinal position of the respective frontmost and
rearmost point of a vehicle. Furthermore, we define:
• The set of lanes containing the reference point of a

vehicle:

ref lane(xi) =

{l ∈ lanes(xi)|O(l) ∩ {projs,d (xj)} 6= ∅},

• a sign function based on set membership:

sgn(o,A) =

{
1, if o ∈ A
−1, otherwise,

• the distance between an element and a set:

d(o,A) = min
a∈∂A

‖o− a‖2 ,

• the half-planes left and right of an oriented line b
using the lateral component db of the corresponding
curvilinear coordinate system [23]:

Bl = {o ∈ O(L)|db(o) ≥ 0}
Br = {o ∈ O(L)|db(o) ≤ 0},

• the signed version of the distance and the directed
Hausdorff distance to the left lane boundary:

dl(o, b) = sgn(o,Br(b)) · d(o, b)
dȞ,l(A, b) = max

o∈A
dl(o, b)

and dr and dȞ,r to the right lane boundary analogously.

D. Traffic Rules

Following the scheme of codification and concretiza-
tion [25], we base our work on the existing codification of
traffic rules for German highways in MTL [7]. However, we
reformulate the concretization of the predicates in STL to
obtain their robustness degree. Table I shows the codifica-
tions of the following traffic rules: Keeping a safe distance
to the preceding vehicle (G1), avoiding unnecessary braking
G2∗ (modified version of rule G2; see Appendix for further
details) and adhering to the speed limit (G3).

III. APPROACH

Using neural networks, we combine prediction and mon-
itoring. We start by defining our problem, followed by
an overview of our approach. Afterward, we describe the
computation of the robustness degree for the traffic rules
defined in Section II-D.

A. Problem Statement

Our goal is to give an accurate prediction of traffic rule
violations of other traffic participants, which we express as
a multi-label classification problem [26, Sec. 8.1]. Traffic
rule violations are predicted for a time horizon of H time
steps. Let wf [k − L, k] be the input used for classification,
i.e., the feature vectors wf [i] ∈ RF of the last L time
steps. We define a classifier as φ : RF×L → {0, 1}H .

TABLE I: General traffic rules from [7] with modified rule G2.

Rule Definition of ϕ

G1

∀q ∈ I¬p : in-same-lane(xp, xq) ∧ in-front-of(xp, xq)

∧ ¬O[0,tc](cut-in(xq , xp) ∧P(¬cut-in(xq , xp)))

⇒ keeps-safe-distance-prec(xp, xq)

G2∗
brakes-abruptly(xp)⇒ ∃q ∈ I¬p : precedes(xp, xq)

∧ (¬keeps-safe-distance-prec(xp, xq)

∨ ¬brakes-abruptly-relative(xp, xq))

G3
keeps-lane-speed-limit(xp) ∧ keeps-fov-speed-limit(xp)

∧ keeps-type-speed-limit(xp) ∧ keeps-brake-speed-limit(xp)

An optimal classifier φ∗ϕ(wf [k − L, k]) = b∗ for
rule ϕ returns a classification result b∗, for which
∀i ∈ {1, ...,H} : b∗i = 0 ⇐⇒ wI , k + i |= ϕ holds.

B. Overview

Using neural networks to predict traffic rule violations
requires encoding the relevant environmental information
as inputs. For some rules, e.g., speed limits, providing the
vehicle state or a sequence of vehicle states and the speed
limit may be sufficient. However, more complex rules require
additional information, as we show in our evaluation in
Section IV-B. End-to-end learning techniques [27] implicitly
learn to extract relevant information from camera images.
However, this increases training times and is computationally
expensive, as many trivial tasks would first have to be
learned, such as detecting traffic signs.

A traffic rule formulated in temporal logic exactly defines
which quantities are relevant for its satisfaction and can
be precisely evaluated. Rather than only evaluating whether
a rule is satisfied, we compute the robustness degree of
the corresponding STL formula to obtain information about
whether one gets closer to violating a rule. We derive features
fϕ(wI)[k] = ρ(ϕ,wI , k) from the robustness of wI with
respect to an STL formula ϕ as input for our neural network.

C. Robustness of Traffic Rule Predicates

The definition of the robustness degree for each predicate
is necessary to calculate the robustness degree of a trace with
respect to an STL formula. This section defines these values
for the predicates used in the traffic rules G1, G2∗ and G3.

1) Threshold Predicates: Many predicates used in traffic
rules are defined as inequality constraint g(x) ≥ 0. Their
robustness degree trivially follows from the equivalences
defined in Section II-B: ρ(g(x) ≥ 0) = g(x). Table II shows
robustness degrees that we examine for threshold predicates.

2) In-Same-Lane Predicate: If the vehicles with states
xp and xq occupy at least one common lane, the predicate
in-same-lane(xp, xq) is true. We first define the required
lateral displacement of a vehicle with state xi to be inside or
outside the lanes occupied by another vehicle with state xj ,
using the signed version of the directed Hausdorff distance



TABLE II: Robustness degree of threshold predicates used by traffic
rules G1 to G3.

Predicate ψ(xp, [xq ]) Robustness ρ(ψ(xp, [xq ]))

keeps-fov-speed-limit(xp) vfov − projv (xp)
keeps-type-speed-limit(xp) vtype − projv (xp)
keeps-lane-speed-limit(xp) vmax

sl − projv (xp)
keeps-brake-speed-limit(xp) vbr − projv (xp)

brakes-abruptly(xp) proja (xp)− aabrupt
brakes-abruptly-relative(xp, xq) proja (xq)− proja (xp) + aabrupt

keeps-safe-distance-prec(xp, xq) rear(xq)− front(xp)− dsafe(xp, xq)
in-front-of(xp, xq) rear(xq)− front(xp)

to the lane boundary as follows:

distance-to-lanes(xi, xj) =

min{dȞ,l(O(xi), llb(lanes(xj))),
dȞ,r(O(xi), lrb(lanes(xj)))}.

The robustness of the predicate is calculated as the minimum
of the signed distances to the lanes occupied by the respective
other vehicle:

ρ(in-same-lane(xp, xq)) =

min{distance-to-lanes(xp, xq),

distance-to-lanes(xq, xp)}.
(1)

Fig. 1a shows an example of the robustness for two vehicles.
3) Single-Lane Predicate: If the occupancy of the vehicle

with state xp only occupies a single lane, the predicate
single-lane(xp) is true. The robustness is similarly computed
as for ρ(in-same-lane) by estimating the minimum required
lateral displacement to satisfy the predicate. However, be-
cause all points of the vehicle occupancy must be contained
in a single lane to satisfy the predicate, we use the minimum
signed distance from a vehicle point to the reference lane as
the robustness of the predicate:

ρ(single-lane(xp)) = min{
dl(O(xp), llb(ref lane(xp))),
dr(O(xp), lrb(ref lane(xp)))}.

(2)

Fig. 1b shows the robustness for the vehicle with index p in
a single lane and p′ occupying multiple lanes.

4) Cut-In Predicate: The predicate cut-in(xp, xq) defines
whether the vehicle with state xp enters the lane of the
vehicle with state xq . The robustness of this predicate can
be directly derived from the equivalences of the logical
operators in Section II-B and the previously defined functions
ρ(single-lane) and ρ(in-same-lane):

ρ(cut-in(xp, xq)) =

min
{
− ρ(single-lane(xp)), ρ(in-same-lane(xp, xq)),

max{min{projd (xq)− projd (xp) ,projθ (xp)},
min{projd (xp)− projd (xq) ,−projθ (xp)}}

}
.

(3)

5) Precedes Predicate: For the modified version G2∗ of
rule G2 we define a new predicate precedes(xp, xq), simi-
larly as in [6]. It indicates that xq is the direct predecessor

p
q

p′

Br(llb(l1))

(a) same-lane

p

p′
l2

l1Br(llb(l1))

(b) single-lane

p q ∗(ii) (iii)

(i)
l2

l1

(c) precedes

Fig. 1: Visualization of distances used for the robustness of
predicates. Green and red arrows indicate positive and negative
robustness respectively.

of xp in the same lane. We define a function returning the
set of preceding vehicles:

predecessors(xp) =

{xi|i ∈ I¬p ∧ same-lane(xp, xi) ∧ in-front-of(xp, xi)}.
Using the set of all predecessors, we define the predicate

precedes(xp, xq) ⇐⇒
xq = argmin

xi∈predecessors(xp)

ρ(in-front-of(xp, xi)). (4)

To determine the robustness of the predicate, we analyze
the following necessary conditions: (i) being in the same
lane and (ii) behind the vehicle with state xq as well as
(iii) vehicle with state xq being the closest predecessor. The
robustness of (i) and (ii) are obtained from (1) and Table II
respectively, while (iii) is determined by finding the closest
predecessor of the vehicle with state xp with exception to
the vehicle with state xq:

x∗ = argmin
xi∈predecessors(xp)\{xq}

ρ(in-front-of(xp, xi)),

and calculating the longitudinal distance of the rearmost
points of the two vehicles. The robustness is then defined
as
ρ(precedes(xp, xq)) = min

{
ρ(in-same-lane(xp, xq)),

ρ(in-front-of(xp, xq)),

rear(x∗)− rear(xq)
}
.

(5)

Fig. 1c shows the respective distances used as the robustness
of precedes(xp, xq). The minimal distance is shown with a
green arrow, while the longer distances are shown with gray
arrows.

D. Selection of the Target Vehicle
Some traffic rules are defined pairwise with respect to

either all or at least one other traffic participant, e.g., “keep
a safe distance to all other vehicles”, formalized by ∀ and
∃ quantification:

ϕ∀(xp) = ∀q ∈ I¬p : ϕ(xp, xq)
ϕ∃(xp) = ∃q ∈ I¬p : ϕ(xp, xq).



As we not only use the robustness of the rule as features, but
also the robustness of the predicates, this leads to a variable
input size for our neural network stemming from the pairwise
defined predicates. However, ϕ∀(xp) can be rewritten as a
conjunction of the rule with respect to every other vehicle
and ϕ∃(xp) as a disjunction, which results in the following
robustness degrees:

ρ(ϕ∀, wI , k) = min
q∈I¬p

ρ(ϕ(xp, xq), wI , k)

ρ(ϕ∃, wI , k) = max
q∈I¬p

ρ(ϕ(xp, xq), wI , k).

This is equivalent to monitoring the most or least violating
vehicle for each rule and time step:

tv(ϕ(xp), wI , k) =
argmin
q∈I¬p

ρ(ϕ(xp, xq), wI , k), if ϕ = ϕ∀

argmax
q∈I¬p

ρ(ϕ(xp, xq), wI , k), if ϕ = ϕ∃,

(6)

which we refer to as the target vehicle. In the next section,
we present the evaluation of our approach.

IV. NUMERICAL EXPERIMENTS

To evaluate our approach, we predict traffic rule violations
in highway traffic of the highD dataset [28]. It contains
110 000 extracted trajectories, recorded on six highway
sections in Germany. Our simulation environment is Com-
monRoad [24], and we use RTAMT [29], to evaluate the
robustness of STL formulas, and Tensorflow Keras1 to imple-
ment neural networks. The proposed approach is compared
to a baseline model that first predicts the trajectories of
the vehicles using an RNN-based approach for trajectory
prediction and afterward evaluates the predicted trajectories
for compliance with the STL rules.

A. Machine Learning

1) Neural Networks: In our evaluation, we use two dif-
ferent types of neural networks: A multi-layer perceptron
(MLP) with three hidden layers of sizes 462, 344, and 200,
followed by an output layer of size H with one output
neuron for each time step. The hidden layers use ReLu as an
activation function, whereas the output layer uses the sigmoid
activation function. Our second neural network is an RNN
consisting of two layers with 373 and 110 gated recurrent
units to capture patterns in the time domain, followed by
three fully-connected layers with sizes 90, 24, 113, and an
output layer with the same configuration as in the MLP.

Learning to predict rule violations from recorded data
introduces the challenge of inherent class imbalance between
violating and non-violating behavior with varying extent.
Data-level and algorithm-level techniques exist to mitigate
the problems arising from imbalanced data [30]. We use
random under-sampling on the data level to increase the
percentage of violating examples to 40% by selecting all
violating examples and randomly sampling from the non-
violating partition. On the algorithm level, we use focal

1https://www.tensorflow.org/

TABLE III: State normalization ranges and constants.

Scale Value range Unit Constant Value Unit

Longitudinal
distance

[−200, 200] m vfov 50 m/s

Lateral dis-
tance

[−20, 20] m vbr 50 m/s

Velocity [−69.44, 69.44] m/s vtype (truck) 22.22 m/s
Acceleration [−10.5, 10.5] m/s2 aabrupt −2 m/s2

Orientation [−π, π] rad tc 3 s

loss [31] with variables α = 0.25 and γ = 2. This loss
function was introduced to improve the performance of
supervised learning on imbalanced datasets by focusing on
examples that are more difficult to learn.

The neural networks are trained on an NVIDIA V100
GPU with 16GB of memory. We process the training dataset
with a batch size of 128 with the Adam optimizer [32], and
a learning rate of 6× 10−4. The training is stopped after
20 epochs or once the area under the precision-recall curve
(PR-AUC) [33, Sec. 3.3] on the validation partition has not
improved by at least 1× 10−4 for three epochs.

2) Features: We compare different features f(wI) as
inputs for the neural network:
• fPϕ

: the robustness degrees of the predicates used in ϕ;
• fϕ: the robustness degree of ϕ;
• fp = xp − xp[k]: the difference between the past states

and the current state of the predicted vehicle;
• ftv = xtv−xp: the difference between the states of the

target vehicle and the predicted vehicle.
We also use combinations of features, e.g.,

(
fPϕ

fϕ
)ᵀ

by
concatenating the feature components.

When using the quantitative semantics of STL,
robustness degrees of predicates with different
units and scales are directly compared, e.g., in (3):
min{projd (xq)− projd (xp) ,projθ (xp)}, the minimum
of a distance and an orientation. However, useful bounds
for each unit and scale can be usually determined from
the dynamic model or sensor ranges. Using these bounds,
we normalize and clip terms of the form ρ(g(x) ≥ 0)
according to their respective scale to obtain robustness
values within the interval [−1, 1]. The bounds and constants
for calculating the normalized values of fPϕ and fϕ are
shown in Table III. To improve the stability of the training,
we additionally standardize all features.

3) Baseline Model: The prediction component of the
baseline model is based on the highway trajectory prediction
proposed in [34]. It uses the history of the past 25 time
steps (5 s) of the state and the vehicle type of the predicted
vehicle, as well as the difference of states, the vehicle type
and time-to-collision of up to 9 surrounding vehicles as
inputs. The neural network predicts the lateral position and
longitudinal velocity within the prediction horizon, from
which the state of the vehicle is reconstructed. The prediction
network consists of a long short-term memory layer and two
fully-connected time-distributed layers; for further details see
[34]. After training, the average displacement error in the
testing partition ranges from 0.01m in the first time step to



0.76m in the last. We extend the prediction component with
an STL monitor to obtain predictions for the satisfaction of
the traffic rules. The combined model is referred to as the
baseline model.

B. Evaluation

1) Data Preparation: We use the CommonRoad-highD
converter2 to create scenarios with a maximum length of
100 s and a time resolution of 0.2 s. The resulting 1264
scenarios are randomly assigned to training, validation, and
testing partitions in a proportion of 3:1:1. For every vehicle
and time step of the dataset, we evaluate the robustness
degree ρ(ϕ,wI , k) of the STL formula ϕ ∈ {G1,G2∗,G3}.
In 11.47% of all time steps, the safe distance to the preceding
vehicle (G1) is violated, in 0.02% vehicles brake unneces-
sarily (G2∗) and in 36.65% the speed limit is exceeded (G3).
To create training instances with a fixed size from trajectories
of variable length, we use a sliding window of length L+H
of which the first L = 8 time steps (1.6 s) are taken as the
input of the prediction model, and the remaining H = 20
time steps (4 s) are the expected output used for supervised
learning.

2) Results: We compare the ability to separate future
traffic rule violations from conforming behavior of different
types of neural networks and features, using the PR-AUC
over the prediction horizon. The results of the comparison
are shown in Fig. 2. Note, that for an uninformed classi-
fier, which classifies each class with equal probability, the
expected PR-AUC is equal to the fraction of the positive
(violating) class [33, Sec. 3.3].

The highest performance is achieved for rule G3, which
does not change significantly over the prediction horizon.
This meets our expectation, as in a highway setting, ve-
locities are mostly near-constant, violations are foreseeable,
and occur for prolonged periods. For G3 and G1, both
neural network types perform similarly well, but for G1, the
prediction performance degrades with the prediction horizon.

The prediction of violations for rule G2∗, exhibits signifi-
cantly worse results. Two main reasons can explain this: The
training set for rule G2∗ has a high class imbalance, which
imposes a challenge for the training of neural networks [30].
Furthermore, unnecessary braking is inherently difficult to
predict as, by definition, there does not exist an apparent
reason for braking. Thus, a characteristic pattern to be
learned by the neural network might be absent. While the first
half of the prediction horizon can still be partly predicted,
our neural networks fail to recognize violations of rule G2∗

for time steps more than ≈ 2 s in the future. However, the
RNN has a minor advantage over the MLP during the first
three time steps.

On average, we observed worse results for all rules, when
only the state of the predicted and the target vehicle is used.
This could be due to the absence of critical information,
such as the local speed limit. Besides features fp and ftv,
no strong domination of any other combination of features

2https://gitlab.lrz.de/tum-cps/dataset-converters

can be identified. Hence, the optimal combination is assumed
to depend on the rule to be predicted. However, we find that
fPϕ

is always included in the configuration with the highest
average PR-AUC.

To compare our approach with the baseline model, we se-
lect the best combination of features for each neural network
type based on the average PR-AUC. As missing a violation
can be considered more critical than a false positive, we use
the F2-score [33, Eq. 3.19], i.e., the weighted harmonic mean
of recall and precision, where recall is considered twice as
important as precision. We determine an optimal decision
threshold based on the validation partition for the predicted
probability of each time step within the prediction horizon
for our neural networks.

Fig. 3 shows the result of the comparison. We observe the
superior performance of the MLP and RNN on rule G1 and
equal performance for G3, compared to the baseline model.
For G2∗, our models perform better as the baseline model
until 2.4 s into the future, but detect fewer violations after-
ward. The two types of neural networks perform equally well
for rule G1 and G3, but the MLP is slightly outperformed
by the RNN when predicting violations of rule G2∗.

V. CONCLUSION

This paper presented an approach for explicitly predicting
violations of complex real-world traffic rules expressed in
STL. The robustness degree of the STL formula and its
predicates was used to obtain a generic and compact rep-
resentation of features used as inputs for neural network
prediction. By providing definitions for the robustness degree
of the used predicates, we enhanced an existing formalization
of three highway traffic rules for the evaluation with STL
quantitative semantics. The robustness degree was also used
to select a target vehicle when predicting pairwise defined
traffic rules. We evaluated our approach on a dataset of
highway driving using a multi-layer perceptron and recurrent
neural network to predict traffic rule violations within a
time horizon of 4 s. Compared to only providing vehicle
states or monitoring predicted vehicle trajectories, the results
show that adding features from the historical robustness of
predicates and rules improves the prediction.
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APPENDIX

For our work, we adopt the codification from [7] of the
rules G1 and G3. However, we modify rule G2 as it is
not robust towards accelerations of preceding vehicles. We
argue that the rule should be modified such that braking
with proja (xp) > aabrupt (which is not considered braking
abruptly) is always allowed and only braking stronger with-
out justification (violation of safe distance or vehicle in front
brakes abruptly) violates the rule of unnecessary braking.
This is in accordance with the German road regulations
(StVO) [35, §4(1)] and the Vienna Convention of Road
Traffic (VCoRT) [36, §17(1)]. Additionally, we assume that
this rule is only relevant towards the directly preceding
vehicle, as otherwise breaking abruptly would be justified,
even if a vehicle far in front would break abruptly. The
modified version G2∗ of rule G2 is shown in Table I.


