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Abstract— In literature, scientists describe human mobility
in a range of granularities by several different models. Using
frameworks like MATSIM, VehiLux, or Sumo, they often derive
individual human movement indicators in their most detail.
However, such agent-based models tend to be difficult and
require much information and computational power to correctly
predict the commutation behavior of large mobility systems.
Mobility information can be costly and researchers often cannot
acquire it dynamically over large areas, which leads to a
lack of adequate calibration parameters, rendering the easy
and spontaneous prediction of mobility in additional areas
impossible. This paper targets this problem and represents a
concept that combines multiple substantial mobility theorems
formulated in recent years to reduce the amount of required
information compared to existing simulations. Our concept also
targets computational expenses and aims to reduce them to
enable a global prediction of mobility. Inspired by methods from
other domains, the core idea of the conceptional innovation
can be compared to weather models, which predict weather
on a large scale, on an adequate level of regional information
(airspeed, air pressure, etc.), but without the detailed movement
information of each air atom and its particular simulation.

I. INTRODUCTION

Mobility in this paper means spatial mobility, especially
the movement of persons and goods in geographical space. It
can be described with different levels of detail and granulari-
ties. In literature, natural movements are generally classified
according to the distances they overcome within one trip,
referred to Barbosa et al. [1] as jump lengths. Categorizing
mobility with this metric, air transport & airport management
[2, 3] involves the biggest jump lengths, whereas inter-
urban mobility [4, 5] and rural mobility [5–7] are observed
on a smaller regional scale, which involves smaller jump
lengths. Thus, together with intra-urban mobility [8, 9], they
are often represented in microscopic multi-agent simulations
[10–12] that aim to describe mobility behavior precisely for a
region’s road-user subset [13]. Mobility data of the collective
is subsequently extrapolated from the results of the sub-
set simulations. Inspired by particle mass flows, pedestrian
simulations describe mobility behavior on a pedestrian level
[14] to predict forces acting on individuals or the spread of
pathogens during a pandemic [15]. Commutation flows can
be described either statically in time or dynamically [16].
However, literature frequently shows that the smaller the
scope of observation, the more detailed models dominate.
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This stems from the recent tendency in research to derive
knowledge from dynamic multi-agent interactions that re-
quire a precise simulation of individual mobility behavior.
With increasing detail, there comes increasing complexity,
which requires more information to adequately calibrate the
models. Computational expenses usually increase with the
degree of detail, which renders an extensive simulation on
a large scale inappropriate [17, 18]. Figure 1 illustrates
from the macroscopic to the microscopic magnitude how the
simulation performance tends to depend on the degree of
detail and the amount of data the underlying model requires.

Fig. 1. Tendencies of simulation detail, computational performance and
data requirements of mobility simulations depending on their scope of
observation.

Focusing on inter-urban, intra-urban and rural mobility,
the state of the art displays significant improvements in
algorithms for reducing the computational expenses of multi-
agent simulations [19–22]. The synthesis of multi-agent sets
having a realistic socio-ethnic composition for a certain
target area has been well researched in [13, 23, 24]. Al-
though these improvements significantly increase computa-
tional speed and decrease synthesis complexity, they still
have three major downsides that owe their existence to the
nature of multi-agent simulation:

1. To describe the agents’ mobility behavior realistically,
demographic, cultural, and behavioral information of
the society in the target area is required [13, 18].

2. By increasing the simulated area, the number of agents
and computational nodes also increases, which usually
leads to a non-linear increase in computational com-
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plexity [18].
3. Due to the aforementioned disadvantages, only a cer-

tain proportion of local inhabitants can in most cases
be effectively simulated for a region. This causes
discrepancies between the simulation results and real-
world observations. Furthermore, information that is
needed to calibrate the models is often not available
in the required detail which hinders a spontaneous and
flexible simulation of additional target areas.

Considering the disadvantages of micro-scale simulations,
it is necessary to explore alternative mobility concepts.
These concepts should be less detailed and provide sufficient
global mobility indicators while avoiding significant losses
in accuracy. Therefore, this paper proposes a new concept for
modelling mobility in inter-urban and rural areas intending
to make mobility simulations quicker, easier, and more
flexible by limiting the amount of information and computa-
tional expense agent-based frameworks typically require. Our
model combines existing concepts from literature to simplify
mobility simulations, especially for large target areas.

II. RELATED WORK

This paper incorporates existing mobility methods from
literature focusing on the fundamental laws of mobility
established by commutation proportions and constraints. As
the paper concentrates on rural and inter-urban mobility,
literature focusing on macroscopic observations such as
passenger flows between airports or microscopic observa-
tions like individual pedestrian mobility is not considered.
The paper also examines daily and weekly routines that
constitute the most traffic load in rural and inter-urban areas.
Occasional traffic events and transit traffic are thus not con-
sidered. The following subsections describe mobility-relevant
proportionalities, related behavior models, and scaling effects
threaded by the equilibrium approach.

A. Ranked Distributions

1) Proportionality - Zipf’s Law: Many assumptions dis-
cussed in the following chapters are primarily based on
proportions that form distributions. One distribution, named
after its discoverer, George Kingsley Zipf, is of particular
significance. The Zipf’s Law/distribution [25], later improved
by the rank-size rule [26], relates a value fz to the corre-
sponding rank z over all observed values FZ .

fz (z) ∼ 1

zα
| fz ⊂ FZ (1)

.
While Zipf’s Law for instance describes the population

size of towns according to their population rank [26], it is an
integral element of modern publications in multiple domains.
According to Zipf, commodity flows follow the Zipf’s Law
because they underlie the “force of diversification” and the
“force of unification” and balance out at some point to a
proportion. Further, it is possible to derive an estimation of
the goods-flow wij between human settlements according to
their population sizes (Pi, Pj) and distance rij [1]:

wij ∼
PiPj
rij

(2)

Similar rules apply to human needs for commutation as
most people tend to visit locations in their surroundings
repeatedly. According to location visiting ranks zv which
show the locations’ importance in daily life, the visiting
frequencies fv of a location (most simply with α = 1) can
be approximated [27]:

fv(zv) ∼ z−αv (3)

.
The probability function is derived accordingly [27]:

P (fv)|zv ∼ z
−(1+ 1

α )
v (4)

In general, social and cultural activities are subject to the
same fundamental forces of diversification and unification
and are therefore also governed by Zipf’s Law. They reflect
in the gravity model [28–30], the intervening opportunities
model [31] and the radiation [6] model, which will be
discussed in the following section.

B. Periodic Commutation Behavior

For this publication relevant commutation behaviour re-
search was recently published in publications of Zipf [28],
Stouffer [31], Simini et al. [6], Pappalardo et al. [7], Schnei-
der et al. [32], Domenico et al. [33], Song et al. [34],
González et al. [27], Kölbl and Helbing [35]. The publica-
tions are listed in the order of detail, beginning with general
treatments, and discussed in the following paragraphs.

1) Gravity Model: Zipf describes mobility potentials be-
tween geospatial areas with the naturally inspired gravitation
model, whereas Stouffer bases his model of mobility flows
on the social theorems of intervening opportunities. With
a superior view of abstraction that enables predictions in
the absence of detailed data, both models aim to predict the
commutation between different geospatial areas. Lenormand
et al. [36] compare the performance of the models for short
and mid-range trips that are taken daily and conclude that
“the distance seems to play a more important role than the
number of intervening opportunities“. Therefore, the gravity
law with exponential distance decay should be preferred for
daily commutation modeling. The rule draws up as follows:

Pij ∝ pipj · fe (dij) , i 6= j | fe (dij) = e−βdij (5)

where Pij describes the probability of commuting between
two areas with the populations pi, pj at a distance dij to each
other.

2) Extended Radiation Model: In their radiation model,
Simini et al. [6] rank destinations according to their im-
portance to the traveler and combine them with the gravity
model. Yang et al. [37] devises an extension to this model,
the ’Extended Radiation Model’, which is universally appli-
cable and substitutes the population number with the number
of opportunities a destination zone offers (for instance the
opportunity to work, to buy foods or to have a haircut).



Using the α factor the target area is discretized in zzones
quadratic zones with the side length l. The model is sup-
plied with the number ni of opportunities inside the travel
origins zone, the number nj of opportunities inside the travel
destination zone, the total number of opportunities ntotal in
the observed region and the number s of opportunities that
are passed by en route from zone i to zone j. For travel
in inter-urban/rural areas (within a range of: 1 . . . 65km)
the probability PLOC (1|ni, nj , s) of choosing one location
inside the destination zone is calculated by:

PLOC (1|ni, nj , s) =
P> (ni + s)− P>(ni + nj + s)

P> (ni)

〈P> (x)〉 =

1
1+xα −

1
1+nαtotal

1
1+nαavg

− 1
1+nαtotal

, ntotal ≥ x ≥ navg (6)

α =

(
l

36

)1.33

, navg =
ntotal
zzones

3) Returners & Explorers Model: Pappalardo et al. [7]
precisely describe mobility based on GPS and GSM data by
dividing commuters’ into returners’ and explorers’, accord-
ing to their commutation behavior. A crucial metric for this
classification is the radius of gyration r(k)

g defined over the
k most frequently visited locations. The radius calculates the
mean square distance between the center of mass r(k)

cm of
all visited locations (total number of locations: Nk, number
of visits an individual location has: ni) and the individual
location coordinates ri as follows:

r(k)
g =

√√√√ 1

Nk

k∑
i=1

ni

(
ri − r(k)

cm

)2

(7)

Returners are characterized in the publication by the ratio
sk diverging against 1, while explorers are characterized as
diverging against 0:

sk =
r

(k)
g

rg
(8)

where rg defines the total radius of gyration over all visited
locations.

4) Human Mobility Motifs Model: Schneider et al. [32]
differentiate commutation flows in distinct detail by classi-
fying the motifs of human mobility using surveys, models,
and global GSM data into 17 commutation patterns, covering
almost 95% of the observed travel behavior. These motifs
display a transition between the aforementioned ‘return-
ers’ and ‘explorers’ as Figure 2 illustrates. The explorer
probability decreases according to the power law and with
an increasing number of considered locations, “k explorers
gradually become k returners” [7].

5) Socially Confined Interactions & Preference Locations
Model: De Domenico et al. [33] explain balancing effects
that influence commutation through socially confined interac-
tion. They describe that commuters share travel destinations

Fig. 2. Motifs’ transition from returners to explorers, adapted from [7, 32].

with friends, colleagues, family and other people they inter-
act daily. This leads to an alignment of individual mobility
behavior across different mobility groups. Song et al. [34]
and González et al. [27] further mention the daily tendency
of travelers to return to frequent destinations, such as their
homes, workplaces and other locations.

6) Constraint - Physical Travel Energy: It is necessary
to also consider single trip and daily distance constrains to
describe mobility comprehensively. Accordingly, the Lévy
distribution draws up the trip distance distribution PLF of a
single trip and its length r [1]:

PLF (r, µ, c) =

√
c

2π

e−
c

2(r−µ)

(x− µ)
3
2

(9)

To estimate daily commutation distance constraints, in
particular the work of Kölbl and Helbing [35] needs to
be highlighted. Their extensive 25-years-long commutation
study showed that the probability to travel a certain dis-
tance correlates with the personal physical-human energy
a individual spends for the commutation. Accordingly, a
person is willing to spend only a certain amount of his/her
personal energy on daily travel. This amount of energy
virtually underlies a sharply defined canonical distribution
(Figure 3), whereas on an average day the majority of study
participants spent 615 kJ (or below) of their personal energy
on commutation. This energy was used, for instance, to sit
in a vehicle and drive or to walk a short distance several
times a day. It is important to emphasize that the authors
only considered personal energy expenditures intentionally.
Further, the authors claim that “the daily travel time [ti] is
inversely proportional to the rate of energy expended [E]”
and has the probability Pi [35]:

Pi ≈
E

ti
(10)

The aforementioned principles describe commutation be-
havior of people over a short or medium period of time



Fig. 3. Distribution of personal energy for daily travel, from [35].

without the need of multi-agent simulations. To consider the
commuters interactions, equilibrated models are required and
therefore discussed subsequently.

C. Traffic Equilibrium

The simulation of road participants’ routing behavior
requires models that accurately resemble real-life routing
decisions. Without these models, a realistic estimation of
key indicators like fuel consumption, efficiency, and con-
gestion states tends to be impossible. Various publications
in recent decades aimed to optimize individuals’ routing
decisions according to the ’path-finding problem’. Prior
solutions replicated real-life behavior and aimed to reduce
travel time (such as the Expected Value Model) [38] or,
as in more recent publications, additionally increase travel
time reliability [39]. Due to scale effects, the optimization
of individual behavior does not necessarily result in an
optimized overall state. Therefore, individual decisions need
to be balanced over the collective to achieve an equilib-
rium state that admits a preferable routing solution for
the individual while keeping the collectives system in an
optimum at the same time. Traffic equilibrium models can
be used and optimized for different purposes. Either they
calculate the optimum routing solution for the target regions
or they visualize the current real mobility behavior inside
these regions. Individuals differ in their routing-decisions
while traveling [40] and so different equilibrium models exist
according to the participants risk behavior: from risk-averse
(TTB [41], PUE [42]), to risk-neutral (UE [43], SUE[44]),
and risk-prone (CVaR [45], RSUE [46]). The aforementioned
models use resource consuming enumerating methods to
estimate a global loss minimum. However Chen and Zhou
[47] proposed a new lightweight method known as SOTA
(Stochastic On-Time Arrival), which discretizes the problem
into multiple independently solvable routing decisions. A fur-
ther improvement to the SOTA model is the α-reliable path
model [48] that additionally characterizes routes according
to their reliability with an α-value. Commuters are then able

to choose their shortest path based on their risk acceptance.
Finally, Zhou [40] extends this model to create the so-called
mean-excess traffic equilibrium (METE) model that allows
to integrate real-time traffic information within the decision
process and therefore also considers time-variant delays due
to congestions’ or other events. Considering the IOTB [49]
algorithm the system’s computational efficiency for routing
decisions is drastically improved. As METE seems to im-
prove commutation modeling, integrates stochastic measures
of individual risk perception, is capable of incorporating real-
time data, and enables short computation times, it is currently
a favored candidate for the new mobility model described in
the next chapter.

III. UNIFIED MOBILITY ESTIMATION MODEL

The main contribution of this paper is the presentation of
a new mobility concept, which we call the ’Unified Mobility
Estimation Model’ (UMEM). This model presupposes as-
sumptions of human behavior under the following conditions:

1. Commuters
(a) live in the focus areas and leave and return to

their homes on average once a day.
(b) choose similar locations nearby for their daily

routines if living in the same neighborhood.
(c) are familiar with their environment and have a set

of daily and weekly routines.
(d) endeavor to optimize their travels regarding time

and effort.
2. Substantial daily routines, like going to work, going to

school or shopping for food, clothes, etc. generate the
majority of regional trips (excluding transit travel).

3. Transit travel is not considered in the model but can
be added subsequently.

4. Inter-modal travel behavior is not considered in the
model but can be added subsequently.

Our model is based on the fundamental theory that mo-
bility differences are mainly revealed by regional differences
and rather less by social or ethical differences within these
regions. In other words, the regional environment & points
of interests (POIs) adapt to a regional society’s needs within
a consolidated living area, and commutation is strongly
impacted by it considering the aforementioned assumptions.
This balancing phenomenon between supply and demand is
well known in other domains like economics by the mar-
ket equilibrium [50]. Consequently, to estimate the overall
mobility in a region, it is sufficient to consider the regional
infrastructure and distribution of residential homes consid-
ering the aforementioned mobility laws. Mobility metrics of
the population are finally derived from our model without
the need for simulating an individual’s mobility behavior.

A. Step 1 - Target Area Delimitation & POI Identification

In the first step of our model we identified living space
clusters, as they offer a balanced geospatially delimited
system with a working market equilibrium. Good sources for
such an evaluation include building densities from Google



Maps, satellite images, and data from the ’Global Human
Settlement Layer’ (GHSL) published by the European Union.
In the next step we analyzed the density of important POI
categories (supermarket, school, ...) inside the living space
clusters ~vLC that are limited by a boundary ~vTA including
an additional margin of the size ~vPTE that reflects a 95%
probable chance that a traveler would move inside this
boundary within one day according to the ’Physical Travel
Energy (PTE) Law’ from paragraph II-B.6:

~vTA = ~vLC + ~∆vPTE =

[
xCR
yCR

]
+

[
∆xPCA
∆yPCA

]
∀ ~∆vPTE :

∫ E(| ~∆vPTE|)

0

PPTE (2 · xE) dxE < 0.95

(11)

where PPCA is the probability of expending 2 ·xE of en-
ergy over one day, ~∆vPTE the vectorized additional distance
from the boundaries of the living clusters and E

(∣∣∣ ~∆vPTE

∣∣∣)
the expended commutation energy over this distance. The
factor two of xE considers the doubled driving distance
on returning back home. The boundary describes the most
extreme case, in which a commuter travels to only one
destination and back in one day. Under the assumption that
the quantity of POIs in the observed region correlates with
individual consumer demands, by ranking the POIs according
to their importance with respect to the demand zPOI and tak-
ing into consideration the rank-size rule or Zipf’s law from
paragraph II-A.1, we derived the commutation probability
PPOI for different POI categories:

PPOI (zPOI) = cPOI · z
−
(

1+ 1
αPOI

)
POI (12)

where cPOI and αPOI must be calibrated once by empir-
ical data. We assume that the ranks and calibration values in
average do not vary much within a country, as the objects
of demand, i.e. food, water, work, education and clothing
are essentials of life and such demands can be described on
a state or country level (for instance an European country
has different demands to a country in Africa, but within
each individual country, demands are likely to not differ as
much as between countries). Due to the nature of the rank-
size rule, the probability decreases considerably with each
subsequent rank and therefore a few (approximately the first
10) important POIs are significant to the overall result.

B. Step 2 - Weighted Potential Graph for Commutation

In the next step, the target areas need to be segmented
into zzo quadratic zones with a side length of l. We slightly
modified the ’Extended Radiation Model’ mentioned in
paragraph II-B.2 in line with the ranked POI distribution
from Step 1, and generated a multidimensional geospatial
weighted potential-graph for commutation (GWPC) based
on equation (6) by iterating through all zones and calculating
the cumulative visitation probability PER for the surrounding
zones:

PER =
P> (nOZ + sTrack)− P>(nOZ + nDZ + sTrack)

P> (nOZ)

〈P> (x)〉 =

1
1+xα −

1
1+nαTotal

1
1+nαavg

− 1
1+nαTotal

, nTotal ≥ x ≥ navg (13)

α =

(
l

36

)1.33

, navg =
nTA
zzo

∀ nLZ , nDZ , nTotal, sTrack :
∑
Zones

∑
PPOI

PPOI · nPOI |Zone

where nOZ is the number of weighted POI opportunities
(WPO) inside the origin zone, nDZ is the number of WPOs
inside the destination zone, sTrack is the weighted number
of WPOs between the origin zone to the destination zone,
and nTA is the number of weighted zones inside the target
area. The WPOs depend on the daily importance of the POIs
weighted by the PPOI function from equation (12).

C. Step 3 - Trip Generation

As the GWPC only predicts the commutation probability
of the different zones but does not describe travel behavior
en route to these zones (e.g. if it is done in a single trip
or in multiple trips throughout the day), we implemented
further steps to describe mobility overall. In this step, we
depicted commutation behavior by bringing the GWPC zones
in relation with each other taking into consideration the Lévy
flight step size probability and the ’Physical Travel Energy’
distribution from paragraph II-B.6 and the ’Returners’ &
’Explorers’ theory & ’Human Mobility Motifs’ theory from
II-B.3 & II-B.4. Starting from zones where commuters
begin their daily travel (residential clusters), all zones are
connected in steps to form a trip taking evolution strategies
into consideration. The calculation process is discretized, and
trips evolve at each step by adding a new random zone from
the target area to the trip. At each evolution step, a trip-
realisticity value PTrip|Mod. is calculated by considering all
zones (here: Zones) the trip covers:

PPTE,Mod. = PPTE

(
E

( ∑
Zones

dZonei−1,Zonei

))
Pmotif = Pmotif (skZones)

PER =

Zones∏
i=1

PER:Zonei−1,Zonei

PLF =

Zones∏
i=1

PLF (dZonei−1,Zonei)

PTrip|Mod. = PPTE,Mod. · PMotif · PER · PLF

(14)

where dZonei−1;Zonei is the Euclidean distance between
two zones and skZones is the trip’s exploration ratio accord-
ing to II-B.3. In the current concept, the trip as a whole is
unimodal and described for a specific modality mode (here:
Mod.). Intermodality can be achieved by assigning modal-
ities to different sections within a single trip. Unfinished



trips share the same history with their preceding (evolution)
steps and therefore probabilities that rate the commutation
behavior, as defined by the ’Extended Radiation Model’ PER
and by the ’Lévy Flight Model’ PLF , can be taken from
the previous evolution step. Probabilities that rate the trip-
realisticity defined by the ’Physical Travel Energy’ constraint
probability PPTE,Mod. and the ’Travel Motif’ probability
PMotif need to be recalculated at each evolution step. If
an evolution step’s trip-realisticity PTrip|Mod. falls below
PTrip,min, it is rejected, as it no longer appears sufficiently
realistic. Considering the law of reoccurring returns from
II-B.5 and the aforementioned constraints, commuters are
forced to finish their trips at their homes daily.

D. Step 4 - Travel Equilibrium & Road Load Estimation

Figure 4 illustrates the basic steps of the model. Using all
valid trips and their corresponding probabilities PTrip from
Step 3, we derived road loads constrained by a global traffic
equilibrium. In its simplest representation a risk-neutral UE
model (see Section II-C) that only selects the shortest road
connection between the origin zone and destination zones is
chosen. More detailed models, such as METE can also be
used with routing considerations. In all applied equilibrium
models, the path flows FPath for each trip are calculated
directly from the realisticity probability PTrip|Mod., which
is normalized to the sum of realisticity probabilities POrigin
of all trips that start from the origin zone. Combined with
the proportion αModality of users using the selected modality
and the population norigin in the origin zone, the path flow
is calculated as follows:

Fig. 4. Basic steps of the Unified Mobility Estimation Model.

FPath =
PTrip|Mod.

POrigin
· αMod. · norigin

POrigin =
∑

TripsOrigin

PTrip|Mod.

(15)

The final flow within a road segment i of a specific road
is then calculated by summing up all path flows covering the
segment:

FRoad,i =
∑

TripsRoad,i

FPath (16)

The modality proportions αModality of the zones can
initially underlie statistics of greater regions (e.g. country-
level, state-level) and be gradually refined if more detailed
data exists.

IV. SUMMARY

In this paper, we proposed the Unified Mobility Estimation
Model (UMEM), a novel model for simulating mobility. Our
concept relies solely on spatial population data, points of
interest, road networks, and the most essential daily needs
that constitute the main reason for commuting within a
region. The model combines several methods taken from
recent mobility research, that share the aim of describing
mobility on an abstract level rather than by studying the
individuals’ mobility behavior. One major advantage of the
proposed model are the reduced data requirements, which
might enable a worldwide prediction of mobility based on
existing information. Furthermore, the model’s parameters
like the spatial resolution and the number of evolution steps
are highly discretized, which allows adapting calculation
expenses geospatially. In specific regions, the model can
predict mobility with a high level of accuracy, while for
other regions a lower degree of accuracy is chosen. This
enables scalability, flexibility and performance. The UMEM
model forms a theoretical foundation for future work. In
subsequent studies, simulations, and real-world experiments,
we will elaborate on how well adoptions and constraints
adjust with most regions. We will demonstrate how to
calibrate the model’s parameters and analyze the required
degree of detail for input data to obtain adequate results.
Additionally, we will examine if other data sources with a
higher resolution, such as GSM tracking data, will render
the model’s parameters even more robust and accurate for
further predictions.

V. CONTRIBUTIONS

David Ziegler initiated the idea of the paper, conceived
the presented model, developed the theory & theoretical
formalism, and wrote this publication. Johannes Betz con-
tributed to the research design, verified the methods and
contributed to the final version of the publication. Markus
Lienkamp made an essential contribution to the conception
of the research project. He revised the paper critically for
important intellectual content. Markus Lienkamp gave final
approval of the version to be published and agrees to all



aspects of the work. As a guarantor, he accepts responsibility
for the overall integrity of the paper.

REFERENCES

[1] Hugo Barbosa et al. “Human mobility: Models and
applications”. In: Physics Reports 734 (2018), pp. 1–
74. ISSN: 03701573. DOI: 10.1016/j.physrep.
2018.01.001.

[2] R. Guimer and L. A. N. Amaral. “Modeling the world-
wide airport network”. In: The European Physical
Journal B - Condensed Matter 38.2 (2004), pp. 381–
385. ISSN: 1434-6028. DOI: 10 . 1140 / epjb /
e2004-00131-0.

[3] Andrew Cook, ed. European air traffic management:
Principles, practice, and research. London: Rout-
ledge, 2016. ISBN: 9781138255760.

[4] Yihui Ren et al. “Predicting commuter flows in spatial
networks using a radiation model based on temporal
ranges”. In: Nature communications 5 (2014), p. 5347.
DOI: 10.1038/ncomms6347.

[5] E. G. Ravenstein. “The Laws of Migration”. In: Jour-
nal of the Statistical Society of London 48.2 (1885),
p. 167. ISSN: 09595341. DOI: 10.2307/2979181.

[6] Filippo Simini et al. “A universal model for mobility
and migration patterns”. In: Nature 484.7392 (2012),
pp. 96–100. DOI: 10.1038/nature10856.

[7] Luca Pappalardo et al. “Returners and explorers di-
chotomy in human mobility”. In: Nature Communi-
cations 6.1 (2015), pp. 1–8. ISSN: 2041-1723. DOI:
10.1038/ncomms9166.

[8] Susan Hanson. “The importance of the multi-purpose
journey to work in urban travel behavior”. In: Trans-
portation 9.3 (1980), pp. 229–248. ISSN: 0049-4488.
DOI: 10.1007/BF00153866.

[9] Yu Zheng and Xing Xie. “Learning travel recommen-
dations from user-generated GPS traces”. In: ACM
Transactions on Intelligent Systems and Technology
2.1 (2011), pp. 1–29. ISSN: 2157-6904.

[10] Andreas Horni, Kai Nagel, and Kay W. Axhausen,
eds. The Multi-Agent Transport Simulation MATSim.
Ubiquity Press, 2016. ISBN: 9781909188754.

[11] Akshat Kumar. “Multiagent Decision Making and
Learning in Urban Environments”. In: Proceedings of
the Twenty-Eighth International Joint Conference on
Artificial Intelligence (IJCAI-19). Ed. by Sarit Kraus.
[California]: International Joint Conferences on Arti-
ficial Intelligence, 2019, pp. 6398–6402. ISBN: 978-0-
9992411-4-1. DOI: 10.24963/ijcai.2019/895.

[12] Karsten Hager, Jürgen Rauh, and Wolfgang Rid.
“Agent-based Modeling of Traffic Behavior in Grow-
ing Metropolitan Areas”. In: Transportation Research
Procedia 10 (2015), pp. 306–315. ISSN: 23521465.

[13] Bernhard Luger. “Generation of a Synthetic Popu-
lation for MATSim Models Using Multidimensional
Iterative Proportional Fitting and Discrete Choice
Models”. Master’s Thesis. Graz: TU Graz, 2017.

[14] Ioannis Karamouzas, Brian Skinner, and Stephen J.
Guy. “Universal power law governing pedestrian in-
teractions”. In: Physical review letters 113.23 (2014),
p. 238701. DOI: 10.1103/PhysRevLett.113.
238701.

[15] Stephen Eubank et al. “Modelling disease outbreaks in
realistic urban social networks”. In: Nature 429.6988
(2004), pp. 180–184. ISSN: 1476-4687.

[16] Massimiliano Zanin and Fabrizio Lillo. “Modelling
the air transport with complex networks: A short
review”. In: The European Physical Journal Special
Topics 215.1 (2013), pp. 5–21. ISSN: 1951-6355.

[17] Michael Balmer et al. Agent-based simulation of travel
demand: Structure and computational performance
of MATSim-T. 2008. DOI: 10 . 3929 / ETHZ - A -
005626451.

[18] Michael Balmer et al. MATSim-T : Architecture and
Simulation Times. 2009.

[19] Chengxiang Zhuge et al. “An improvement in MAT-
Sim computing time for large-scale travel behaviour
microsimulation”. In: Transportation (2019). ISSN:
0049-4488. DOI: 10 . 1007 / s11116 - 019 -
10048-0.

[20] Rashid A. Waraich et al. “Performance Improvements
for Large-Scale Traffic Simulation in MATSim”. In:
Computational Approaches for Urban Environments.
Geotechnologies and the Environment. Cham and s.l.:
Springer International Publishing, 2015, pp. 211–233.
ISBN: 978-3-319-11468-2. DOI: 10.1007/978-3-
319-11469-9{\textunderscore}9.

[21] David Charypar, Kay W. Axhausen, and Kai Nagel.
Implementing activity-based models: Accelerating the
replanning process of agents using an evolution strat-
egy. 2006. DOI: 10.3929/ETHZ-A-005228611.

[22] Nicolas Lefebvre and Michael Balmer. “Fast short-
est path computation in time-dependent traffic net-
works”. In: Arbeitsberichte Verkehrs- und Raum-
planung (2007). DOI: 10 . 3929 / ethz - a -
005437245.

[23] Rolf Moeckel, Klaus Spiekermann, and Michael We-
gener. “Creating a Synthetic Population”. In: 8th In-
ternational Conference on Computers in Urban Plan-
ning and Urban Management (CUPUM). Center for
Northeast Asian Studies, 2003.

[24] Ana Moreno and Rolf Moeckel. “Population Synthesis
Handling Three Geographical Resolutions”. In: ISPRS
International Journal of Geo-Information 7.5 (2018),
p. 174. DOI: 10.3390/ijgi7050174.

[25] George Kingsley Zipf. “Human behavior and the
principle of least effort: an introduction to human
ecology. By George Kingsley Zipf. Cambridge, Mass.:
Addison-Wesley Press, Inc., 1949.” In: Social Forces
28.3 (1950), pp. 340–341. ISSN: 1534-7605. DOI: 10.
2307/2572028.

[26] Jeroen Hinloopen and Charles van Marrewijk. “Com-
parative Advantage, the Rank-Size Rule, and Zipf’s

https://doi.org/10.1016/j.physrep.2018.01.001
https://doi.org/10.1016/j.physrep.2018.01.001
https://doi.org/10.1140/epjb/e2004-00131-0
https://doi.org/10.1140/epjb/e2004-00131-0
https://doi.org/10.1038/ncomms6347
https://doi.org/10.2307/2979181
https://doi.org/10.1038/nature10856
https://doi.org/10.1038/ncomms9166
https://doi.org/10.1007/BF00153866
https://doi.org/10.24963/ijcai.2019/895
https://doi.org/10.1103/PhysRevLett.113.238701
https://doi.org/10.1103/PhysRevLett.113.238701
https://doi.org/10.3929/ETHZ-A-005626451
https://doi.org/10.3929/ETHZ-A-005626451
https://doi.org/10.1007/s11116-019-10048-0
https://doi.org/10.1007/s11116-019-10048-0
https://doi.org/10.1007/978-3-319-11469-9{\textunderscore}9
https://doi.org/10.1007/978-3-319-11469-9{\textunderscore}9
https://doi.org/10.3929/ETHZ-A-005228611
https://doi.org/10.3929/ethz-a-005437245
https://doi.org/10.3929/ethz-a-005437245
https://doi.org/10.3390/ijgi7050174
https://doi.org/10.2307/2572028
https://doi.org/10.2307/2572028


Law”. In: SSRN Electronic Journal (2006). DOI: 10.
2139/ssrn.943370.
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