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AI-Based Transport Mode Recognition for Transportation Planning Utilizing
Smartphone Sensor Data From Crowdsensing Campaigns

Philipp Grubitzsch1, Elias Werner2, Daniel Matusek1, Viktor Stojanov1 and Markus Hähnel1

Abstract— Utilizing smartphone sensor data from crowdsen-
sing (CS) campaigns for transportation planning (TP) requires
highly reliable transport mode recognition. To address this,
we present our RNN-based AI model MovDeep, which works
on GPS, accelerometer, magnetometer and gyroscope data. It
was trained on 92 hours of labeled data. MovDeep predicts
six transportation modes (TM) on one second time windows.
A novel postprocessing further improves the prediction results.
We present a validation methodology (VM), which simulates
unknown context, to get a more realistic estimation of the
real-world performance (RWP). We explain why existing work
shows overestimated prediction qualities, when they would be
used on CS data and why their results are not comparable
with each other. With the introduced VM, MovDeep still
achieves 99.3% F1-Score on six TM. We confirm the very
good RWP for our model on unknown context with the Sussex-
Huawei Locomotion data set. For future model comparison,
both publicly available data sets can be used with our VM. In
the end, we compare MovDeep to a deterministic approach as
a baseline for an average performing model (82 – 88% RWP
Recall) on a CS data set of 540k tracks, to show the significant
negative impact of even small prediction errors on TP.

I. INTRODUCTION

Adequate transportation planning (TP) requires information
about the movement behavior with Transport Modes (TM)
like pedestrians, bicycles, cars, buses, streetcars, trains and
their combined usage a.k.a multi-modal transportation in a
large urban area. From the movement behavior of a nominal
part of the overall traffic, detailed insights about the road
network can be derived (e.g. traffic volumes). Crowdsens-
ing (CS), utilizing smartphone sensors to track participants
movements is potentially able to provide this information
continuously from a huge number of road users without
establishing a cost-intense capturing infrastructure in the
whole road network.

One major issue with CS are participants who do not track
their expected TM. In our CS data set (3.4 M tracks) of a
city cycling campaign, we observed tens of thousands of
non-bicycle tracks recorded by cars, streetcars, buses, trains,
and even airplanes or ferries. The impact of single falsely
classified trips on the result data for bicycle TP scenarios
can be enormous. E.g., in our data set we found a >600 km
bus trip of identical 10 km round trips in a small city.
Were it recognized as bicycle, traffic volume and average
speed information for bicycle TP, would be massively biased.
Because bad classification leads to wrong decisions and
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waste of tax money, a Transport Mode Recognition (TMR)
for TP, which works on CS data must be highly reliable.

While traffic engineers use deterministic approaches [1]
with limited accuracy, the state of the art for TMR in com-
puter science nowadays bases on artificial intelligence (AI)
models and achieves seemingly good results. When studying
existing work as a starting point for a concept to process
data from our cycling campaign (GPS@1 Hz, accelerome-
ter (ACC), gyroscope (ROT) and magnetometer (DIR): 3-
axes@100 Hz), we recognized none of them leveraging the
full information potential in our data. Moreover, they all
neither show any Real World Performance (RWP) nor use
a comparable model validation regarding the processing of
CS data. Thus, the contribution of our paper is as follows:
First, we discuss the conceptual and RWP limits of related
work when processing CS data for TP scenarios. In the
main part we introduce our AI model concept MovDeep to
overcome the issues of existing work in detail, including
sensor data preprocessing, a new Recurrent Neural Network
(RNN) architecture to classify six common TM (feet, bike,
car, bus, streetcar, train) on one second time windows and
a Post Processing (PP) to further improve prediction results.
Moreover, we propose a new validation methodology (VM),
which works on unseen data only, to provide a better estima-
tion about RWP of AI models when processing CS data. In
the evaluation, we first introduce our data sets and verify our
proposed VM. We evaluate the importance of the data from
each involved sensor and the chosen scaler. Consequently
we show MovDeep with PP achieves 99.3 % F1-Score on
six TM on our own unseen data set and we confirm the
good RWP with the Sussex-Huawei Locomotion (SHL) data
set. Both data sets are available publicly for future model
comparisons regarding RWP. Finally, we show the negative
impact of a model with a RWP of 84 % F1-Score compared
to MovDeep on a 540 k tracks CS data set.

II. RELATED WORK

Table I presents related work with focus on AI-based TMR
which are considerable for TP. Using location data is subject
to signal loss in certain environments [15], e.g. in tunnels
or areas of higher population density. ACC and ROT are
lacking context for window-based approaches because linear
movement with a static device would not be detected, i.e.
starting a track inside a train would recognize the smartphone
holder as standing still. We examined that each of the sensor
provides important information about the TM. Each TM
differs in its magnetic footprint, i.e. trains, streetcars and
buses have high magnetic anomalies which can be distinctive.
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TABLE I
OVERVIEW OF RESEARCH WORKS RELATED TO TRANSPORT MODE RECOGNITION USING MACHINE LEARNING ALGORITHMS.
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Window Size
[2] 3 3 Fe, Bu, Ca 91 tripwise
[3] 3 3 Fe, Bi, Bu, Tn 84 86 82 83 200 GPS pts.
[4] 3 3 Fe, Bi, Ca 91 90 91 91 tripwise
[5] 3 3 3 3 Ca, Bu, Sc, Su 93 17,06 s
[6] 3 3 Fe, Bu, Ca, Sc 74 n.a.
[7] 3 3 3 3 3 Fe, Bi, Ca, Su 93 30 s
[8] 3 3 3 3 St, Fe, Ru, Bi, Ca 94 94 12 s
[9] 3 3 3 3 3 Bu, Ca, Su, Tn 96 96 97 96 1.28 s

[10] 3 3 3 3 St, Fe, Ru, Bi, Ca, Bu, Tn, Su 96 97 96 96 12 s
[11] 3 3 3 3 3 St, Fe, Ca, Bu, Sc, Tn, Su, Fe 95 60 s
[12] 3 3 3 3 3 3 St, Fe, Ru, Bi, Ca, Bu, Tn, Su 98 min/hrs (unclear)
[13] 3 3 3 3 3 St, Fe, Ru, Bi, Ca, Bu, Tn, Su 88 5 s
[14] 3 3 3 3 3 St, Fe, Ru, Bi, Ca, Bu, Tn, Su 79 5 s (divided in 20 * 1 s overlapping windows)

Global Positioning System (GPS), accelerometer (ACC), gyroscope (ROT), magnetometer (DIR), Barometer (BAR), Traditional Machine Learning Model (TML),
Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Post Processing (PP), Transport Modes (TMs), Stationary (St),

Feet (Fe), Run (Ru), Bicycle (Bi), Car (Ca), Bus (Bu), Train (Tn), Streetcar (Sc), Subway (Su), Accuracy (AC), Precision (PR), Recall (RC), F1-Score (F1)

The addition of GPS provides an independent interpretation
of the actions taking place and is crucial for our use-case
of providing reliable data for traffic engineering in order
to create maps for TP. These four sensors are the most
common across devices and – when combined – provide
detailed information about the tracking users.

Compared to Traditional Machine Learning Models
(TMLs) (e.g. Random Forests, Support Vector Machines) and
Multilayer Perceptrons (MLPs), Convolutional Neural Net-
works (CNNs) and RNNs can combine significant amounts
of data and take a more informed decision by including
context based data into the equation. The latter are able
to make use of a temporal dependency between the time
windows, which is crucial for a window-based TMR where
multi-modal transportation is common, i.e. changes in TM
can occur any time. To detect those possibly frequent TM
switches, the window size must be as small as possible but
sufficiently sized for a reliable classification. If possible,
RNNs achieve this by combining weighted data from the
past, present and future, when predicting a given slice of
measurements.

As shown by [11], the prediction results can be signifi-
cantly improved by a PP algorithm, which corrects erroneous
predictions. Their approach relies on the fact, that switching
vehicular TM presupposes a feet intersection and improved
their results significantly. Nevertheless, their approach works
on 60 s time windows and thus does not address other
prediction errors on shorter time windows.

Because of different available data and requirements, the
set of classified TMs vary between most papers. Most of
them only include a small set or have been specified on
specific types, i.e. public transport [9]. While their methods
might work in these specific cases, adding new TMs changes
the requirements because of the similarities and the peculiar-
ities the classification algorithm needs to learn.

[9], [11], [10] and [12] are the works with the most promis-
ing results (scores >95 %). Although [9]’s model can only
predict four TMs, it is included because of its architecture
and high accuracy. They all achieve these results even with-

out using GPS, which retains the possibility to still add GPS
to their approaches to meet the requirements of TP. However,
as our own research of feature sets shows, the GPS still
provides the most significant information for an AI-model.
Moreover, all approaches work with time windows >1 s. [9]
is close enough but can only predict four TM. CS data likely
contains unknown patterns which appear as outliers for the
trained AI-model. All four works use Z-score normalization,
which doesn’t account for context drift. A robust scaling
approach could be Yeo-Johnson transformation [16] which
is capable of dealing with outliers. Notably, almost all
investigated approaches split their training, validation and
test data sets randomly. As we will show in this paper,
this does not provide any good estimation about the RWP.
Only [9] considered this and conducted first experiments by
testing their model with unseen data. After applying their
validation approach, the accuracy dropped from 96.9 % to
92.3 %, but provide a more realistic RWP. Unfortunately,
they do not provide a detailed description of how their VM
is conducted. We conclude, all of those approaches should
also prove their reliability with respect to a RWP by testing
them against unknown data. This can be conducted with our
publicly provided data set. As our own research will show the
information in the GPS, the choosing of the right scaler and
independent validation data is crucial for achieving reliable
RWP with CS data. Hence, we tested our RNN model against
a publicly available subset of the SHL data set and not only
our own data set, to get a reliable estimation of the RWP.

To emphasize the unfullfilled requirements for TP of the
related work, we assess two promising projects in the field
of TMR which participated in the SHL 2020 challenge [17].
Firstly, [13] is the best performing approach regarding the
F1-score. In [13] the authors rely on a CNN approach in
which they automatically extract features for an afterwards
classification of the transportation mode. Secondly, [14]
is best performing with a RNN. [14] are using a similar
approach to ours besides a missing PP. They pre-process data
to calculate direction-independent vectors of the acceleration
and the compass data and manually calculate hand-crafted
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features for their RNN. Both approaches use training, valida-
tion and test data which were collected by only three persons
in only the same area, which introduces bias when it comes to
predicting unseen data. As already noticed in our experiments
and by [9], introducing completely unseen data from new
users, new locations and other devices drastically decreases
the accuracy and prediction results. Although the approaches
by [13] and [14] show great results on the SHL data set,
we cannot make assumptions about their performance when
predicting this completely unknown data. Additionally, in
order to provide reliable data for TP with a CS data source,
a F1-score of 79 % and 88 % respectively still remains space
for improvement. Another reason why their concepts do not
suit our use case is the usage of the barometer instead of the
Global Positioning System (GPS) signal. Our as well as other
CS campaigns do not provide data about the air pressure,
thus we cannot use the models trained by [13] and [14].
Nevertheless, this promising approach could be considered
in the future with an extension on the CS data provider’s
side.

Concluding, none of the examined works fully meet our
requirements for a window-based approach on short time
windows with context- and time-dependent predictions using
all available sensor data. They are either missing a suitable
postprocessing of the predicted data, or can only predict a
small set of TMs and do not provide a realistic estimation
of the RWP, which is crucial for the application on CS data.
Our work aims at filling this gap.

III. CONCEPT

In this section, we present our overall concept. At first,
we explain the preprocessing, that extracts features from the
raw sensor data. Then, we introduce our RNN architecture
and describe important hyper parameters. Subsequently, our
improved postprocessing is explained. Finally, we propose a
new VM for better RWP estimations.

A. Preprocessing

We utilize the raw data from GPS, ACC, DIR and ROT
over time t. For GPS, we obtain ~r(tk) = (rlat, rlon)

> with
latitude rlat as well as longitude rlon, and the speed v(tk) at
a sampling rate of 1 Hz. The ACC offers ~a(tl) for three axes
at an average sampling rate of 100 Hz. The same applies to
ROT ~ω(tm) and the DIR ~m(tn).

The related work confirmed that feature extraction is the
best approach to provide information to an AI-model for
TMR and to achieve the best overall performance. Hence,
we extract features from the raw sensor data. In total, we in-
vestigated over 3000 heuristics in the time and the frequency
domain of 152 preprocessed values for their significance to
distinguish between the TMs. Due to space limitation we
explain only the most expressive, finally used ones.

In addition to the speed v(tk), the acceleration
is calculated between two sampling points:
ar(tk) = v(tk)/ (tk − tk−1). Furthermore, we consider
the changes in the direction of the movement. We include
∆ϕ(tk) = ]

(
~r(tk−1),~r(tk)

)
in the interval [−π,π]

which distinguishes between left/right as well as its absolute∣∣∆ϕ(tk)
∣∣. For the ACC, we consider the norm a(tl) =

∣∣~a(tl)
∣∣

as well as the norm of increment ∆a(tl) =
∣∣~a(tl)− ~a(tl−1)

∣∣.
The same is being conducted for ROT (ω(tm), ∆ω(tm))
and DIR (m(tn), ∆m(tn)).

The vertical and horizontal portions of the sensors ~a, ~ω
and ~m contain important information. Indeed, the direction’s
frame of reference is the device’s orientation, which may
change during acquirement due to movements of the mobile
device. Instead, it is appropriate to define these sensors’
frame of reference as the fixed outer world, namely north,
east and altitude. Thus, we do a transformation of coordinates
to a altitude heading reference system (AHRS). Inspired by
[18], we calculate the adjusted stationary sensors ~aAHRS(tl),
~ωAHRS(tm) and ~mAHRS(tn).

Next, the different sampling points t{k,l,m,n} are synchro-
nized. Therefore, a down-sampling to 1 Hz is applied in order
to achieve common timestamps ti. All preliminary values in
the interval [ti, ti+1) are cumulated by the mean(·, ti). At the
same time, we obtain the Boolean “stop” as characteristic
between different TMs. We use a basic definition based
on the standard deviation (std) of the ACC yet: stop at
ti :⇔ mean(v, ti) ≤ 0.5 m/s ∧ std(a, ti) ≤ 0.5 m/s2.

Finally, missing values of the three sensors are filled by
cubic interpolation I(·). Since GPS is missed for longer
periods of time while being in buildings or underground,
these missing values are discarded instead. In summary, our
preprocessing approach uses 20 features in a single feature
window fi with the timestamp ti and a length of one second:

• 5 GPS features: mean(v, ti), mean(ar, ti), stop,
mean(∆ϕ, ti) and mean(|∆ϕ| , ti)

• 3 sensors as ~s ∈ {~a, ~ω, ~m} with features
– 2 scalar: I(mean(s, ti)) & I(mean(∆s, ti))
– 1 vectorial (3 components): I(mean(~sAHRS, ti))

Scaling input data is a proven and widely used technique
to improve the prediction quality of an AI-model. Therefore,
we scale the features with Yeo-Johnson transformation [16]
into a smaller range of values before passing them to the
model. The advantage of this scaling technique is its outlier-
robustness in contrast to other scaling approaches, such as
Min-Max or Z-Score scaling.

B. RNN Architecture

Our TMR approach bases on Recurrent Neural Network
(RNN) to consider time-variant data over a larger time span
but still preserve the ability to predict TM on short time
windows. Short time windows ensure the precise recognition
of changes in case of multi-modal transportation on single
tracks and thus improve the prediction quality of the model.
The network architecture and explored hyper-parameters are
depicted in Fig 1. Each window of the windowed feature
sets has a size of one second and consist of the 20 features
as described in subsection III-A. To predict an TM for
the present window pi, the approach submits the related
windowed feature set (FS) fi to a feed forward sub net.
Moreover, it utilizes multiple FS for n windows in the past
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and m windows in the future by submitting them to distinct
recurrent sub nets, extracting the right information from
the right time. All the information from past, present and
future is concatenated and provided to a subsequent feed
forward sub net that makes the final decision of the present
TM. Short time windows contain very limited information
to classify the TM. To overcome this, a network should be
trained which considers information from past and future.
This design enables the approach to detect patterns over
multiple time windows by incorporating information from
them. For instance, the regular stop of a public transport can
be detected and used as an indicator for Bus, Streetcar or
Train.

Based on our 20 features, the given width, depth and acti-
vation where examined and yield an optimum for the outlined
parameters. Regarding the considered time spans of past and
future, n = m = 90 seconds revealed a prediction sweet spot
by preliminary examinations. Furthermore, this limited time
span has lower computational cost, which supports our goal
to process a huge real world CS data set. Note that the length
of n and m depends also on the TM and context to interact
with and can vary in different use cases. For instance, a
bicycle can be distinguished from a train in a much shorter
time window, whereas the distinction of a train and a car
needs longer term information. If there is no information
available for the past or the future (beginning/end of a
track), the approach handles it by padding this information.
Moreover, up to real time predictions are enabled by the
independence of n and m. This is achieved by considering
shorter future time spans or only utilizing data from the past.

C. Post processing

The predicted windows pi with 1 s length as output of
our RNN, are prone to an unsteady prediction labeling.
Thus, we introduce a PP to correct implausible labels,
which is inspired by the healing in [11]. They exploit the
logical presence of feet segments between different TM,
e.g. Bus→Feet→Streetcar. It relabels window sequences of
vehicular predictions, that have missing feet intersections,
e.g. Bus→Streetcar. Such sequences are then relabeled as
one TM by majority vote. Nevertheless, their approach relies

windowed
feature sets f

predicted
labels p

neural
network

timen past windows m future windows

fi−n . . . fi−1 fi+1 . . . fi+mfi

LSTM/64

LSTM/64

LSTM/48

Dense/48/lrelu

Dense/32/lrelu

Dense/32/lrelu

LSTM/64

LSTM/64

LSTM/48

Dense/48/lrelu

Dense/32/lrelu

Dense/32/lrelu

Dense/64/lrelu
Dense/48/lrelu
Dense/32/lrelu

Concatenation

Dense/128/lrelu
Dense/80/lrelu
Dense/48/lrelu
Dense/24/lrelu

Dense/7/softmax

pi−n . . . pi

Fig. 1. TMR using a series of windowed FS by applying an RNN
architecture

on a precise recognition of Feet and only works reliable on
time windows ≥60 s. Thus, we extend their concept by two
additional steps. Fig 2 gives an example for an unsteady
prediction labeling pi and how the labels are relabeled by
our extended PP to get the corrected labels p′i. An introduced
first step mainly addresses unsteady predictions on stop
window sequences between all TM. It relabels windows as
the previous TM, if the preprocessing calculated them as a
stop, e.g. recognition of Car during a bus stop. The second
step represents the original approach by [11]. Unsteady
sequences calculated as non-stop windows are a similar open
issue, e.g. a walking person in a bus at a bus stop. Hence,
window-based smoothing as a third step is introduced. It
checks the label of the present window and considers the
predicted labels 30 s from the past and 30 s to the future.
Within their time span, the major labels for the past and
the future are independently determined by majority vote.
The presence label is then checked and not relabeled if it
matches either the past or the future major label. Otherwise
the presence label is relabeled with the past major label.

D. Validation Methodology to estimate RWP

As already stated, almost all related work randomly split
one data set for training and validation (e.g. 80/20). When
examining our concept, we worked with a continuously
growing hand-labeled data set, gathered by several persons.
We trained our model with the random split at specific
state/size of this data set and could achieve very good
prediction results (F1-Score >95 %). After other persons
provided more tracks, we used these tracks to validate the
latest model again and noticed heavy drops of up to 10 %
F1-Score. We assumed, that our model applied on our CS
data set, would not perform as well as our initial validation
would suggest. That means, the estimated RWP is much
worse than expected. [9] firstly discussed the questionable
representativeness when doing a random split, but unfortu-
nately provided no detailed description for an improved VM.

Before presenting our approach, we give the detailed
reason for the drop in F1-Score as follows. The underlying
data is not only characterized by TM specific patterns, but
also by user, device and location specific ones. During the
training, the model might have adapted to all these additional
patterns of the training data, as well. An randomized 80/20
split implies for a RWP, that these additional patterns would
also occur in the same manner. But this never happens

predicted
labels p

relabeling
steps

corrected
labels p′

time p0 p1 p2 p3 p4 p5 p6 p7 p8

Bus Bus* Car* Bus* Train Bus Feet Bus Bus

p2 → Bus

p4 → Bus

p6 → Bus

1) stop windows

2) missing feet intersections

3) window smoothing

Bus Bus Bus Bus Bus Bus Bus Bus Bus

Fig. 2. Brief overview of PP. Note: ∗ is a calculated stop
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TABLE II
DURATION IN HOURS AND TRAINING/VALIDATION SPLIT OF DIFFERENT

TMS OF MOVDATA.

TM Streetcar Feet Bus Bicycle Train Plane Car Total
Training 10.13 27.87 7.47 17.41 10.38 1.63 17.19 92.09
Validation 0.72 4.80 1.58 4.67 3.52 0.00 2.43 17.05
Combined 10.84 32.00 9.05 22.08 13.91 1.63 19.62 109.14

completely. Hence, we assume, any model will perform
better on such validation data, than it would be in the real
world. An appropriate VM to estimate the RWP for TMR
should reveal this weaknesses of an AI model, because the
model should mainly learn the TM pattern, and ideally ignore
all other patterns.

We overcome this issue by presenting a new VM, where
training and validation data should be split on indepen-
dent persons, devices and locations. Then, the validation
data, will contain new individual patterns like movement
behavior, locations with related anomalies (esp. no GPS
signal, magnetic field), values/ranges from other integrated
mobile device sensors and even different carrying locations
(hand, backpack, pants, bicycle handlebars etc.). Moreover,
we recommend to build a validation data set that is as much
heterogeneous as possible regarding these points. If this is
not considered and the validation data set consists only of
one person, device or location, there are only two extrema: 1)
The trained AI model matches the validation data well, while
this person, device or location might not be representative for
all people. Then the obtained RWP estimation would be too
good. 2) The AI model matches validation data bad. Then
the obtained RWP estimation could also be too bad. In the
evaluation part, we verify the advantage of our proposed VM
to compare AI models for TMR in general.

IV. EVALUATION

Before we verify our concept, we introduce the evaluation
environment and data sets. The first experiment shows the
advantage of our VM to estimate the RWP. Afterwards,
we estimate the RWP of our RNN model and the positive
impact of the proposed scaler and the introduced PP. In
the last experiment we apply our model to a 540 k tracks
sized CS data set from a cycling campaign and compare the
result to a state-of-the-art approach, in practice applied by
transportation engineers. We verify that a high reliability of
TMR is crucial for utilizing CS data in the TP domain.

A. Evaluation Environment and data sets

Our evaluation utilizes three data sets. Our own training
and validation data set was gathered and labeled manually
by six users carrying different smartphones, for six TM.
No explicit instructions how to carry devices or to behave
while tracking have been declared. Table II summarizes the
collected data. Following, we name this data set MovData.

Additionally, we use the public available SHL1 data set
as completely unseen data set. To match our TMs, we map
SHL’s Walk & Run to Feet, Train & Subway to Train and

1http://www.shl-dataset.org/dataset/, [19] and [20]

don’t consider SHL’s TM Null & Still. Note: there is no
Streetcar class anymore, because this class does not exist in
SHL. At last, we work with a CS data set provided from
three-year cycling campaign, where more than 160 k people
recorded over 3.5 M tracks, containing 70 TB raw sensor
data of various TM. All data sets contain the required sensor
data (GPS,ACC,DIR,ROT) and the six supported TMs.

We implemented the concept in python3, using Keras
2.3.0 with Tensorflow 2.1.0, sklearn 0.22.0, pandas 1.0.3 and
numpy 1.18.1. The RNN is trained with early stopping, L2
regularization (factor 0.0001) and Dropout (rate 0.2).

B. Investigating the VM

We conducted a validation of our model in three ways to
show the advantage of our proposed VM over a randomzied
80/20 split when estimating RWP. Note that we do not use
our PP here, since we want to evaluate what the AI has
learned instead of focusing on the potential of the PP. First,
a randomized 80/20 split on MovData yields a F1-Score
of 94.23 %. Second, our proposed VM from subsection III-
D estimates a F1-Score of 89.95 % on the same data set,
which shows a first RWP drop for unseen data. Third, we
conducted our VM on the completely unseen SHL data set,
which results in a F1-Score drop to 77.99 %. This strengthens
the assumptions about the importance of the disjointness of
training and validation data sets as outlined in subsection III-
D. Moreover, it highlights the need of heterogeneity not only
in the training data, but also in the validation data for a
representative RWP estimation. Related TMR approaches,
trained and evaluated their models on data sets with limited
users only (e.g. SHL).

C. Verifying the Need for Various Sensors

To show the information provided by each sensor, we ap-
plied our approach for GPS, ACC, ROT and DIR separately.
Fig 3 shows the recall and precision of each sensor. We
interpret the achieved results as follows:

a) GPS: is a very good basis to recognize Feet and
Bicycle as well as Car and Train. On the other hand Streetcar
and Bus are hard to distinguish with GPS only. The main
patterns in the GPS signal are the speed, the acceleration
and the 2-dimensional movement. That makes it difficult to
distinguish inner city streetcar from bus and bus even from
bike as these patterns can be very similar.

b) ACC: is probably the most widely available sensor
in addition to GPS. The best results can be achieved for
Feet and Bike. Bus and Train can be reasonably good
distinguished. Notably the ACC can heavily improve the
recognition of the Bus compared to GPS only. Streetcar and
Train are often mixed up, whereas the Car class is heavily
mixed with Bus. The main pattern in the ACC signal is
shaking, which is the reason for the confusion between Bus
and Car. Streetcars have different shaking pattern compared
to a Bus, because it goes on rails, which improves their
distinctness. On the other hand, a Streetcar has a very similar
shaking pattern to Train, which causes their confusion.

Final edited form was published in "International Conference on Intelligent Transportation. Indianapolis 2021", S. 1306–1313, ISBN 978-1-7281-9142-3 
https://doi.org/10.1109/ITSC48978.2021.9564502 

5 
 
 

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden

http://www.shl-dataset.org/dataset/


GPS
Sc 51 29 0 0 38 27 3 0 0 0 7 2
Fe 0 1 99 99 0 0 0 0 0 0 0 0
Bu 46 57 0 0 34 52 18 6 0 0 3 2
Bi 1 3 1 1 0 0 98 90 0 0 0 0

Tn 1 4 0 0 1 5 3 2 75 95 19 25

Ca 3 6
Sc

0 0
Fe

7 16
Bu

3 2
Bi

6 5
Tn

81 72
Ca

Tr
ue

La
be

l

ACC
54 27 3 0 0 0 0 0 41 8 1 0
2 4 91 73 1 2 5 5 2 3 0 0
5 6 0 0 73 66 0 0 5 2 0 25
0 0 28 25 0 0 72 91 0 0 0 0
21 52 2 1 3 5 0 0 67 64 4 11
6 11
Sc

2 1
Fe

20 27
Bu

6 4
Bi

36 23
Tn

4 64
Ca 0 %

20 %

40 %

60 %

80 %

100 %

DIR
Sc 94 63 1 0 2 0 1 0 1 0 0 0
Fe 1 5 74 85 6 4 17 15 2 5 0 3
Bu 0 0 0 0 98 26 0 0 1 1 0 2
Bi 3 14 12 15 4 3 69 69 12 33 0 0

Tn 2 7 0 0 55 33 18 14 25 51 0 0

Ca 5 11
Sc

0 0
Fe

82 33
Bu

4 2
Bi

7 10
Tn

3 95
Ca

Tr
ue

La
be

l

Predicted Label

ROT
51 29 3 1 7 3 0 0 33 8 6 2
1 3 83 80 0 0 12 10 4 5 0 0
3 4 0 0 43 42 0 0 4 2 51 38
0 0 11 12 0 1 89 88 0 0 0 0

21 58 7 6 5 12 0 0 58 68 7 12
3 6
Sc

3 2
Fe

27 42
Bu

4 2
Bi

22 17
Tn

41 48
Ca

Predicted Label

0 %

20 %

40 %

60 %

80 %

100 %

Fig. 3. Prediction of the MovData validation data set after training on
the MovData training data set with restriction to specific sensors. Each
cell contains the Recall on the left as well as the Precision on the right
(in percent). Labels: Streetcar (Sc), Feet (Fe), Bus (Bu), Bicycle (Bi),
Train (Tn), Car (Ca)

c) DIR: measures the orientation with respect to the
earth’s magnetic field. It explicitly acquires the direction of
movement and implicitly observes turn patterns. However,
on a short time scale they are both superimposed by the
magnetic fields of electric motors or massive iron chassis.
Actually these magnetic anomalies provide significant in-
formation to distinguish Streetcar (overhead wiring and/or
electric motor) and Bus (chassis and/or electric motor). With
mostly no magnetic field involved also Feet is very good
predicted, as pedestrians can be distinguished from other TM
by their specific turn patterns.

d) ROT: introduces the benefit of recognizing turn
patterns explicitly. For the angular velocity we assume:
Train < Car < Bicycle < Feet. While trains have a
rather huge turning circle, pedestrians can turn on the spot.
Hence, ROT is crucial to distinguish Train vs. Car and works
good for Bicycle vs. Feet. In contrast to DIR, it is only
superimposed by a small drift over longer time by warming.
Hence, it measures turns on a short time scale accurately.

e) Discussion of Sensor fusion advantage: As dis-
cussed above, no single sensor alone yields a sufficient result
for all TM. Every sensor is predestined for one or more
important but not unique aspects of the TMs. But, providing
a combination of sensor information to the AI model can
improve the distinction of problematic classes. For example,
with GPS only, Bus is mainly confused with Streetcar, Bike
and Car. The ACC and ROT support filtering Streetcar and
Bike and finally DIR filters Car. Thus, the combination of
all sensors helps to get a much better distinction than only
one sensor could.

D. Choosing the Right Scaler

Next, we show the importance of choosing the right scaler
regarding the occurrence of outliers. We implemented both
the Min-Max scaling and the Yeo-Johnson transformation.
While validating with our data set only, we obtain similar
F1-scores of 89.46 and 89.95 %, respectively. On SHL we
obtain 71.24 and 76.66 %. Hence, Yeo-Johnson outperforms
Min-Max scaling in case of context drift. The need for a
reliable scaler becomes important when working with CS
data, where context drift is to be expected. Nevertheless, the

classes Car and Bus are confused. This can be improved,
by adding more samples to the training data set and thus
increasing its heterogeneity.

E. Positive Impact of Post Processing regarding RWP

After taking into account the previously discussed steps,
our model already achieves 89.95 % F1-score on our valida-
tion data set. Applying PP as described by [11], the model
prediction is improved to 97.02 %. Adding our two novel
steps (see subsection III-C), further improves F1-score to
99.30 %. As outlined in Fig 4, this is a nearly perfect result.
Misclassifications only appear within the Feet class, what
can be explained by an imprecise manual labeling, caused by
the 1 Hz data rate. This affects public transport classes, since
waiting before departure tends to be inaccurately labeled.

Fig 5 shows the results with PP on SHL. We achieve
an overall F1-Score of 85.22 %. In consideration that the
predicted data underlies unseen devices, users and even
locations, this result is representative for the RWP of our
model can be assessed as very good. This is in sharp contrast
to related work, that trained their approach already on the
SHL data set. Thus, their models had already seen the
underlying patterns and were adapted to them. As explained
in subsection III-D, this makes it easy to achieve a good
prediction result but does not represent the RWP. The drop
of our prediction quality from the MovData validation data
set to the SHL data set, can be explained as a result of our
training on a data set, that is not heterogeneous enough.
Especially, the bus class has a low F1-Score of 65.75 %,
meaning that it is not represented adequately in the training
data set. Again, adding data of the same TM but with
different user, device and location specific patterns would
improve that behavior by adding more heterogeneity to the
training data.

F. Verifying Reliability of TMR on CS data sets

1) Towards a Baseline of a TP State of the Art Approach:
As mentioned in Sec II, no existing approach based on neural
networks fulfills the requirements nor evaluates with disjoint
data. Hence, we compare MovDeep with the deterministic
solution presented in [1], called MovOrig in the following.
This is currently state-of-the-art in the domain of bicycle
TP. Note that for the comparison, the prediction labels
are limited to the intersection of both approaches, namely
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Fig. 4. Prediction of “MovDeep” on the MovData validation data set

Final edited form was published in "International Conference on Intelligent Transportation. Indianapolis 2021", S. 1306–1313, ISBN 978-1-7281-9142-3 
https://doi.org/10.1109/ITSC48978.2021.9564502 

6 
 
 

Provided by Sächsische Landesbibliothek, Staats- und Universitätsbibliothek Dresden



F e
et 0.06 %

85
92.71 %
127 790

0.12 %
170

3.93 %
5416

1.94 %
2678

1.24 %
1704

B
us 2.50 %

1721
5.26 %
3621

56.28 %
38 742

7.89 %
5431

0.00 %
0

28.07 %
19 323

B
ic

yc
le

0.00 %
0

1.72 %
1090

0.00 %
0

98.28 %
62 261

0.00 %
0

0.00 %
0

Tr
ai

n 0.13 %
122

1.55 %
1405

0.48 %
438

1.23 %
1116

92.67 %
83 876

3.93 %
3556

C
ar 0.57 %

613

Streetcar

1.10 %
1183

Feet

8.98 %
9659

Bus

1.24 %
1334

Bicycle

1.07 %
1151

Train

87.04 %
93 610

Car

Tr
ue

La
be

l

Predicted Label
0 %

20 %

40 %

60 %

80 %

100 %

Fig. 5. Prediction of “MovDeep” with PP on the SHL data set

the classes Feet, Bicycle and Other. Moreover MovOrig
introduces an Activity filtering, which is supposed to prefilter
non-modal track segments, to recognize multi-modal changes
in a track. First, we compare MovDeep and MovOrig on
our own data set. As summarized in Table III and Fig 6,
MovDeep classifies the crucial Bicycle class nearly perfect.
In contrast, MovOrig labels feet samples as Bicycle what
lowers the precision and does not recognize all bicycle
samples correctly what causes a lower recall. The Feet class
is also only poorly recognized, due to the activity filtering,
that is not able to differentiate between a walk with and
without a transport purpose. This leads to an overall F1-score
of 62.20 % and 83.69 % for the bicycle class. When predict-
ing on SHL, interestingly the overall F1-score of MovOrig
increases to 69.01 %, mainly because of an improved F1-
score of 56.53 % for the Feet class. Contrary, the F1-score for
Bicycle decreases to 66.22 %. Therefore, the requirements
of bicycle TP are not fulfilled by this TMR due to the
under-representation. We conclude, MovDeep significantly
outperforms MovOrig with a F1-score of 93.79 % (90.63 %
for Bicycle) regarding an estimated RWP.
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Fig. 6. Comparison of the “MovDeep” and “MovOrig” on the MovData
validation data set with class restriction

2) MovDeep vs. MovOrig on 540 k CS data set:
To demonstrate the discrepancy between MovDeep and
MovOrig, we predicted 2.2 M tracks from the mentioned

TABLE III
PRECISION (PR), RECALL (RC) AND F1-SCORE (F1) FOR THE CLASSES

FEET, BICYCLE AND OTHER BY MOVDEEP AND MOVORIG

Mov MovDeep MovOrig
PR(%) RC(%) F1(%) PR(%) RC(%) F1

Feet 98.65 99.68 99.16 100 5.95 11.23
Bicycle 99.76 99.88 99.82 84.91 82.50 83.69
Other 99.94 99.28 99.61 86.41 99.95 92.69
SHL MovDeep MovOrig

PR(%) RC(%) F1(%) PR(%) RC(%) F1
Feet 95.80 92.71 94.17 87.86 56.53 68.79

Bicycle 84.09 98.28 90.63 52.88 88.57 66.22
Other 97.78 95.35 96.55 95.81 57.66 71.99

cycling campaign in 2020. It contains various TM tracks but
also gaps in GPS or sensor data. Since handling missing
sensor data relies on the pre-processing only, we filtered
tracks that contain gaps, to achieve as trustworthy results
as possible. Thus, we finally used 540 k tracks to compare
MovDeep and MovOrig.

MovDeep identifies 2.79 M km as Bicycle. Even when
assuming the most unlikely worst-case from SHL with the
Precision of 84.09 % and the Recall of 98.28 % (see Ta-
ble III), the relative uncertainty is in the order of magnitude
of 10 %. Nevertheless, this can be considered as “true” with
respect to Fig 6 and, hence, is our reference.

In contrast, MovOrig labeled only 2.59 M km as Bicycle.
Hence, we next compared the amount of distance identified
as Bicycle for each of the 540 k tracks. If MovOrig identified
less distance, we assume that the precision of the Bicycle
class was 1 and the missing distance was falsely identified
as Feet, Other or Activity. Contrary, if MovOrig identified
more distance as Bicycle, we assume that the recall of the
Bicycle class was 1 and the over-estimated distance is within
Feet, Other and Activity. Both assumptions are in favor
of MovOrig and so represent its best-case. Nevertheless,
261 993 km were not identified as Bicycle (false negatives)
while 62 412 km were incorrectly identified as Bicycle (false
positives). This yields a relative uncertainty of 12.5 %. Up
to this point, we conclude that even MovDeep’s worst-case
outperforms MovOrig’s best-case.

MovOrig is completely dependent on GPS data and
thus has to discard sections without GPS data. However,
MovDeep can handle these sections, since it considers ACC,
ROT, DIR and does not rely on GPS only. As shown in
subsection IV-C, a TMR is possible even with single sensors.
Thus, MovDeep would still be applicable if some sensor
data is temporary or always not present, whereas MovOrig
is not. Additionally, the filtering of the 540 k tracks for the
trustworthy comparison biases TM in favor of cyclists with
positive effects for the given results of MovOrig. Especially
the Train class was filtered due to a bad GPS signal. We
assume, that a more heterogeneous, general data set would
lead to a significant decreased performance of MovOrig.

In contrast to [1] who stated, MovOrig provides a suffi-
cient performance, we must conclude this is at least ques-
tionable. As we have shown, applying MovOrig on the CS
data set introduces a significant bias of recognized TM and
therefore resulting in wrong information for TP applications.
For example, expecting mainly bicycle tracks, but including
tracks from pedestrians and falsely excluding true bicycle
tracks results in too low speed information on specific road
segments for a speed map.

V. CONCLUSIONS

The overall motivation of our work was to process CS
data from a cycling campaign to offer detailed and reliable
information for bicycle TP. We summarize our contribution
as follows. We discussed, why previous work does not
address the related requirements to handle the particularities
of non laboratory CS data while still achieve reliable good
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prediction results. Even more we argue, that the overwhelm-
ing majority of approaches is not validated in terms of a
realistic RWP estimation on CS data. We state here, that
an appropriate VM should be chosen not to highlight the
strengths of AI models, but to highlight their weaknesses.
Only such an VM can provide a good estimation about the
RWP. Thus, we proposed a novel VM, where the split for
training and validation data is conducted on independent
persons, devices and locations. To process our CS data set,
we proposed MovDeep, a novel TMR approach in detail,
that classifies six TMs, demanded by TP. Our evaluation
confirmed that our proposed VM can improve the reliability
of the RWP estimation. We evaluated MovDeep with our VM
and achieved 99.3 % on our own and 85.2 % on the SHL data
set. In this context, we verified positive impact of all chosen
sensors, of the proposed scaler and the extended PP. Finally,
we have shown that an average performing approach in terms
of RWP should not be utilized to process CS data, as it would
massively biases the TP applications. We also provide the
MovData validation data set2 to the public. Thereby, other
authors can use SHL and MovData to estimate the achieved
RWP of their model and compare it with our and other works.

Our future work aims for optimising various points of
our developed approach. First, we consider the integration
of height information from both barometer and GPS data.
We expect even more accurate and reliable prediction results
with the new gathered information. We want to implement
an anomaly detection and handling for erroneous and in-
complete input data. Moreover, we want to optimize our PP
approach for different TM. At this point, every TM is post-
processed using the same smoothing window, which is sub-
optimal. Furthermore, we aim for improving our evaluation.
On the one hand, we are planning to perform a detailed k-
fold cross-validation on the SHL data set and on MovData.
Additionally, a random sample analysis will be carried out
on the CS data set checking the plausibility of the recognised
TM to potentially identify remaining problems. Finally, we
plan to publish an extended data set containing more tracks,
users and unique devices recorded at different locations.
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