

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/154179

How to cite:
Please refer to published version for the most recent bibliographic citation information.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/154179
mailto:wrap@warwick.ac.uk

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Test Framework for Automatic Test Case Generation

and Execution aimed at developing Trustworthy AVs

from both verifiability and certifiability aspects

Xizhe Zhang

WMG, University of Warwick

Coventry, United Kingdom

Jason.Zhang@warwick.ac.uk

Siddartha Khastgir

WMG, University of Warwick

Coventry, United Kingdom

S.Khastgir.1@warwick.ac.uk

Hamid Asgari

Thales UK Research, Technology

& Innovation

Reading, United Kingdom

https://orcid.org/0000-0002-

9317-7045

Paul Jennings

WMG, University of Warwick

Coventry, United Kingdom

Paul.Jennings@warwick.ac.uk

Abstract— Recent developments in the testing and safety

assurances of Automated Driving Systems (ADSs) have shifted

from traditional distance-based approach (i.e. vehicle miles

travelled) to scenario-based approach. Various studies have been

conducted on different aspects of the scenario-based testing

workflow such as scenario generation, scenario description

language, and scenario analysis. This study intends to build on

top of the individual functional modules introduced for scenario-

based testing and contributes towards a common test framework,

based on the experience gained from the Innovate UK’s

OmniCAV project. The Test Framework introduced in this

paper consists of: Description of Test Scenarios, Different Types

of Testing and Allocation of Tests, Generation of Test cases, Data

Collection, & Analysis, Correlation of obtained Results and

Evidence Gathering for functional and behavioral verification.

The framework and processes defined here have relevance to

real-world practice and contribute towards both verifiability and

certifiability of ADSs.

Keywords—Verification & Validation, Autonomous Vehicles,

scenario-based testing, testing framework, scenario and test-case

generation, scenario description language

I. INTRODUCTION

Verification and Validation (V&V) are vital parts of the
development and deployment of any engineering system. The
V&V processes are well established in more mature sectors of
engineering such as aerospace and traditional automotive
systems. However, they are not as well developed in areas such
as autonomy. The V&V ultimately should enable the safe
operation of automated vehicles and safety of people. Systems
are verified with respect to the specified requirements.
Verification methods can be defined to be: ‘methods by which
confidence can be gained in the correctness of a system with
respect to its specification [1]. These methods can be divided
into formal verification, dynamic and virtual testing. Formal
verification attempts to prove at least some degree of
correctness of the system model with respect to requirements;
dynamic testing employs test instances to gain confidence in
the correctness of the actual system. Development of virtual
environment representing the real world (e.g., synthetic
environment and models) is of great importance for conducting
verification, especially for automated vehicles, as limited
physical testing can be performed due to the state space
growth. The future state (xk+1) of Automated Driving Systems
(ADSs) will depend not only on the current state (xk) and

environment (uk), but also on the past states and environment
of the system from which it may have learnt or adapted, this is
expressed as below. faut is the function of autonomy.

Due to the large state space, verifying every possible state

is likely to be very difficult in practical terms.

In general, this system-level behavior must satisfy the
defined functional and operational safety requirements.
Appropriate evidence needs to be collected to make sure an
ADS behavior has been verified with respect to the
requirements. Gathering evidence must show that all the
applicable requirements of the rules and regulations have been
conformed to. This requires the development of valid test
scenarios and scalable techniques for verifying that the
requirements for autonomous functions are consistently met
and are traceable. Virtual testing also allows scenario play
back, proving that there is sufficient confidence that the
defined requirements are satisfied by the implementation of
each element and system’s behavior (i.e., ADS software), and
will sufficiently be safe throughout its life-time. Gathering the
result allows evaluation of the adequacy of current safety
assurance arguments (pass/fail criteria) and is vital for ADS
certification. It should be noted that developed capabilities
potentially have cross-domain usage. For example, the
capabilities developed for ADSs domain can be assessed for
adequacy and used in other domains such as Maritime, Rail,
Civil Aviation, and Military Aviation.

Traditionally, distance-based metric, i.e. vehicle miles
travelled, has been used to demonstrate technology maturity
and provide safety assurance for driving systems. However, for
ADSs, Kalra et. al suggested that they would need to be driven
for 11 billion miles to demonstrate they are 20% better than
human drivers [2]. Therefore, for higher levels of automation a
distance-based verification approach where driving many test
miles on test grounds and public roads is not an economically
viable solution. This led to the shift from distance-based
approach to a scenario-based approach for ADS safety
assurance. Various studies have been published on different
aspects of the scenario-based testing workflow such as scenario
generation [3][4][5], scenario description format [6][7][8], and
scenario analysis [9][10][11]. The auto-generated test cases
from ADS scenarios can also be replicated in other domains
where specific definition languages and ranged values are used.

)...,...(111 uuxxfx kkautk =+

mailto:Jason.Zhang@warwick.ac.uk
mailto:S.Khastgir.1@warwick.ac.uk
https://orcid.org/0000-0002-9317-7045
https://orcid.org/0000-0002-9317-7045
mailto:Paul.Jennings@warwick.ac.uk

Consideration is required to see which applications can be used
directly with little or no change to the system architecture
developed for the ADS use-case, and which applications will
require further development or changes to the architecture.
Other domain use cases including Maritime Autonomous
Systems (MAS) are being developed for use across a range of
sectors. Relevant methodologies enabling their certification
and assurance are also urgently needed. In general, some of the
challenges towards V&V of the ADS and other Autonomous
Systems (AS) are as follows:

• Development of computationally scalable techniques to
formalize and verify the requirements for autonomous
functions (for consistency, traceability, and conducting
V&V).

• Demonstrate (by gathering evidence) that all the applicable
requirements of the rules and regulations have been
conformed to.

• Collect the evidence and demonstrate that system-level
behavior satisfies the defined functional/ operational cyber
security and safety requirements.

• Demonstrate (prove) that there is sufficient confidence that
the defined requirements are satisfied by the
implementation of each element and system’s behavior and
will be sufficiently safe throughout its life.

• Evaluate the adequacy of current safety assurance
arguments (pass/fail criteria) for certification of AS; How
much of a safety case needs updating for a small system
change or adding features?

• Address the need for mapping certification requirements to
test regimes.

• Devise new or improve the existing test methods,
techniques and tools for scalability of testing. Build the
means/tools for test decomposition and systematic
generation of test scenarios (scenario variation),
parameterization of tests, and reproducible concrete test
cases.

• Allocation of the tests and use of dynamic testing, virtual
testing (scenario play back), or formal verification (in itself
or in combination) as the effective means of verifying AS.

• Ascertain in how to secure the synthetic environment itself
in order to collect valid results?

• Establish in how the V&V results obtained e.g. from
certified simulation can aid to what degree and effect to
provide sufficient evidence for assurance and certification
purposes?

• Realize that cyber security feature adds complexity to V&V
tests. AS test ecosystems should include public, virtual,
controlled and cyber-physical testing environments (for
cyber-physical tests)

• Determine some metrics to see “verification is actually
done”.

The work discussed in this paper addresses some of the
above challenges. It elaborates on a Test Framework that
includes test scenarios, test allocation, test result collection,
analysis, and correlation of simulation and physical testing
results, and evidence gathering. The structure of this paper is
given in a spiral fashion. It starts at high level with all the
elements in a scenario-based V&V process, and subsequently
the workflows for both ADS V&V and simulation against real
world comparison are illustrated. The paper then focusses on
the simulation-based V&V process and demonstrates a detailed
modularized framework. In the final part, the paper discusses
how such framework is developed and implemented within the
OmniCAV project. While the framework discussed in this
paper is demonstrated from an ADS’ perspective, the
framework is relevant for other domains also.

II. ELEMENTS OF THE EVALUATION CONTINUUM

It is important to first differentiate and better understand the
terms used in this paper, i.e., use case, test scenario and test
case. A use case describes the system behavior as a sequence
of actions linking the result to a particular actor. A test scenario
is a specific path through a use case, i.e., a specific sequence of
actions. A test case is a set of test case preconditions, inputs,
and expected results, developed to drive the execution of a test
item to meet test objectives, including correct implementation,
error identification, checking quality, and other valued
information [12]. A use case can correlate to multiple test
scenarios, and a test scenario can result into multiple test cases.
Similar concept is also proposed in a later study in which three
levels of scenarios were proposed: functional scenario, abstract
scenarios, logical scenario, and concrete scenario. Functional
scenario sits at the most abstract level and can result into
multiple logical scenarios, and one logical scenario can result
into multiple concrete scenarios. Logical scenario describes
parameter using ranges, and concrete scenario uses concrete
values [13][14].

Figure 1 illustrates the key elements of a scenario-based
evaluation continuum. The workflow is independent from the
test execution environment, and is be applicable for simulation
run, real-world execution as well as X-in-the-loop (XiL)
testing. The core aspect of this workflow is the scenario;
information required within a scenario is created, processed
and assessed throughout the whole process. This forms the
overall scenario-based V&V framework. At the high level,
every scenario-based V&V framework will consist of three
main elements: scenario, the (test) environment and
certification/safety evidence & argument that are described
below.

Scenario element sits at the upstream of the workflow, and
from it the structured scenario artefacts together with pass/fail
criteria are created. Scenario element includes three sub-
processes: “create”, “format” and “store”. Create sub-process
represents the creation of scenario content; scenarios can be
created using two different approaches – knowledge-driven and
data-driven. The OmniCAV project has explored various
scenario generation methods belong to both approaches, this
will be described in the following section in more details.
Furthermore, the scenario creation can be tailored towards
different focuses areas, for example system engineering, safety,

cyber security or in-service testing. After scenario generation,
the scenario content needs to be represented in a human and
machine-readable format. A two-abstraction approach for
scenario description [6] was used in the OmniCAV project
which meet both regulatory and development needs of ADS
testing. The structured scenarios will then be stored in a
scenario database for storage, sharing, analysis and query
purposes.

Environment element contains different choices of
execution environment, such as real-world, simulation or a
hybrid (XiL). Test allocation is a key step within the
Environment element. This steps entails the allocation of test
scenarios to be executed in different environments. Once the
allocation or the test plan has been created, the next step is to
execute and run the scenario.

Certification/safety evidence & argument element
contains Analyze and Decide. Analyze can be further divided
into various stages: 1) execution - whether the intended test
case has been executed? 2) pass/fail assessment – monitoring
the execution of the scenario and assessing the runtime output
against a set of pre-defined pass/fail criteria/metrics, 3)
scenario parameter space exploration – based on the current
and past concrete parameters (e.g., speed, acceleration) and the
pass/fail criteria, and a test case generator such as optimization
algorithms that can be applied to introduce a new set of test
case parameters with the aim of violating the scenario pass

criteria. The output from the test case generator will result in
the creation of new test cases and can then be fed back into
execution module. This allows the increase of scenario
coverage, the decrease of the ‘unknow unsafe’ region and the
addition of new test cases into the database. The final stage is
the Decide stage, based on whether the intended test cases have
occurred, the assessment on the pass/fail criteria and the
scenario coverage. were achieved. This stage will determine
the output of the whole V&V process.

III. VALIDATING TEST ENVIRONMENT AND TESTING ADS

Although the main focus of this paper is to illustrate the
testing workflow of the ADSs, the comparison of simulation
against real world has also been explored. The purpose of the
ADS testing is to test the ADS irrespective to its test
environment. Given that simulation will play a key role in ADS
testing, it is essential to also validate simulation as a test
environment, in order to have confidence from the results of
the ADS testing using simulation. The purpose of the
simulation test against real world test comparison is to
investigate the representativeness of the simulation
environment. Therefore, the V&V process needs to consider
both ADS testing and validation of the simulation (i.e.
simulation and real-world comparison). Both these aspects can
further be divided into activities based in physical environment
and activities based in virtual environment.

Figure 2 illustrates the high-level workflow for both ADS
testing and validation of simulation (i.e. simulation against real
world comparison). Within the ADS testing, several scenario
generation methods may be used for generating test scenarios
that can result in a large number of scenarios for the tests. To
effectively carry out large scale testing, first the simulation-
based testing must be conducted, then a smaller set of selected
scenarios for real world testing may be selected. One of the
assumptions made within the ADS testing workflow is that
‘simulation and real-world environments are comparable’, and
hence simulation can be utilized to act as a filter and explorer
for the scenario parameter space in order to provide the inputs
to more economically expensive and risk-bearing real-world
testing.

In the OmniCAV project, for simulation against real world
comparison, a number of scenarios are generated using CCTV
footage and accident data analysis. These scenarios represent
the most common hazardous situations a vehicle could

Figure 2: ADS testing flow, and simulation against real world comparison

workflow

Figure 1: Elements of scenario-based workflow

encounter. This set of scenarios are then concretized to
generate test cases and executed in both simulation and real-
world environments. It should be noted that for ADS testing
different execution environments are used in a sequential order,
whereas for the validation of the simulation, they are executed
in parallel. To replicate the real world environment,
environmental data were collected within a combined
rural/urban road loop in Oxfordshire in the UK [15], and a
digital twin was created for simulation execution. During the
execution, the same format of scenario data was received from
both environments and were then compared. For rest of this
paper, the simulation-based V&V workflow depicted in Figure
2 will be illustrated in further detail. This functional block will
be expanded into a complete workflow at both functional and
implementation levels.

IV. SIMULATION-BASED V&V WORKFLOW

Figure 3 illustrates the logic flow of the simulation-based
V&V process in terms of functionalities that have been
developed in the OmniCAV project. Scenarios are generated
and described using a human and machine-readable format at
the logical scenario level. They are stored in the Safety PoolTM
scenario database [16] and ready for query for testing via API.
A scenario selector is implemented for performing such API
calls. It iterates within a specific scenario library and retrieves
individual logical scenarios. The test case generator is then
used to generate test case parameters and optionally convert the
test case into other desired executable formats. Upon
execution, the test case data is processed and checked against
three decision modules. The first one is whether the intended
test case situation occurred. If yes, then the test case pass/fail
criteria is checked. If no, then the test case run is checked
against a pre-defined maximum iteration number of test cases.
The test case pass/fail criteria module consists multiple types
of criteria sources. If a test case fails the criteria then its
parameters combination is recorded and the current logical
scenario testing is terminated. If a test case passes, then it will
be checked against the maximum iteration limit. In the last
step, if the maximum iteration is not reached, the current test
case parameters together with the pass criteria will be fed into
test case generator where algorithms such as Bayesian
optimization [9] (used in OmniCAV project) can be applied as
“concretizer” to introduce new parameters with the goal of
violating the pass criteria. The closed-loop formed by test case
generator, the test execution and the three test case checks
enable the exploration the parameter space set out within the
logical scenarios, while increasing the test coverage and reduce
the ‘unknown unsafe’ case.

A. Scenario generation

Currently, there are two different approaches for scenario
generation: knowledge-driven and data-driven [5]. A
knowledge-driven scenario generation approach utilizes
domain specific knowledge to identify hazardous events
systematically and create scenarios. A data driven approach
utilizes the available data to identify and classify occurring
scenarios. Eight different scenario generation approaches have
additionally been investigated, as shown in Figure 4. Three of
them are currently implemented in the OmniCAV project
(options 1, 2, and 3 illustrated in Figure 3), and the other five

methods have further been developed as part of a safety
assurance framework for ADS. Since the focus of this paper is
on the framework and its architectural implementation, all the
individual elements such as scenario generation have been
introduced at a high level, For further details can be found in
the references provided.

For option 1, the publicly available STAT19 [17] UK
accident dataset was analyzed to identify accident hotspots and
scenario parameters which contribute to causation of accidents
with carrying high levels of severity [15]. For option 2,
anonymized insurance claim records provided by one of the
OmniCAV project partners (Admiral) were also analyzed to
identify the trends in near-miss events that lead to insurance
claims [18]. For option 3, an extension to the Systems
Theoretic Process Analysis (STPA) method was used to
analyze the characteristics of the ADS architecture and identify
system failures and hazardous situations [19]. The analysis was
then converted into a set of logical scenarios together with their
corresponding pass/fail criteria.

In addition to the options 1, 2 and 3, options 4 to 8 were
have been explored and included in the framework. Option 4
uses the formal analysis approach with the highway code rules
for scenario generation. Each of the highway code rules
describes a hypothetical driving scenario with the
corresponding behavior and ODD (Operational Design
Domain) elements. The ODD is a specification set out by the
manufacture of an ADS and it defines the operating conditions
within which the ADS can operate safely [20]. Formal models
are generated via a model template to create the mathematical
representations of those scenarios, collecting the combinations
of ODD and behavior parameters. The analysis reports the
maneuver parameters that are near the boundary of violation,
and produce scenarios that represent these set of violations.
Option 5 uses similar formal representation as of option 4, but
applied to the ODD of the ADS.

To effectively test the system against its defined ODD, only
the boundary cases will be selected as compared to the whole
ODD. In order to achieve this, the ODD specification is

Figure 3: Logical flow of the simulation-based V&V process

parameterized and represented by a formal model. Then the
parameter combinations that form the ODD boundary that
trigger a Minimal Risk Manoeuvre (MRM) or a transition
demand can be extracted and result in a set of scenarios.

Inspired by the works in [4][5], option 6 uses an ontology-
based scenario generation approach. Within this paper,
ontology-based approach is proposed to be used to generate
multiple similar scenarios from one set of input. An ontology
defines all the classes within the domain. It also includes all the
relationships between classes and all the pre-defined rules. An
example rule can be ‘if road A is connected to road B, then the
width of road A must equal to the width of road B’, such rules
will ensure the correct instantiation of a scenario. By using: 1)
a well-developed ontology (with the associated rules and
properties); and 2) highly abstract scenario description of
interest at the function level or a set of conditions, the abstract
information can be detailed and used to generate large number
of logical scenarios that can satisfy the initial conditions.

In addition to the above scenario generation methods, the
existing scenarios already defined in the standards, regulations
or guidelines (option 7) can also be utilized for the testing of
ADSs, for example the scenarios set out in ISO22737 [21] and
EuroNCAP [22]. ISO22737 has been developed for low-speed
automated driving systems (LSAD) and the EuroNCAP
provides a set of testing scenarios for the safety assurance of
vehicles. An example of EuroNCAP scenario converted into
logical scenario was previously illustrated in this paper section
IV-B [6]. Option 8 includes the scenarios that occur during real
world trials and deployments. Such scenarios might have not
been considered pre-deployment, but are key learnings.

B. Scenario description language and sceanrio database

After generating the scenario content, an adequate scenario
description language (SDL) is used to represent the content and
enable its sharing and execution. A two-level abstraction
approach of SDL, as depicted in Figure 5, has been previously
developed and published as part of the OmniCAV project [6].
It was developed after analyzing the inputs received from
various stakeholders such as AV developers, test engineers,
regulators. SDL level 1 sits at the functional scenario level and
is more abstract and its syntax resembles a structured natural
language format. SDL level 2 sits at the logical and concrete
scenario levels. It uses a formal machine-readable format, as

shown in Figure 5. By additional detailing, one can convert
SDL level 1 into level 2, and by abstracting the opposite can be
achieved. In addition SDL level 2 can be converted to other
ASAM OpenX formats for wider tool support.

The basic content of the SDL covers the scenery aspect, the
environmental conditions, and the behavior aspect of the non-
Ego agents; here the Ego refers to the vehicle under test. The
concepts that cover the scenery and environmental conditions
are referenced to the BSI PAS 1883 (Operational Design
Domain (ODD) taxonomy) [20]. For the behavior aspect of the
SDL, it is divided into maneuvers and agent type. Maneuvers
include relative maneuvers and absolute maneuvers. Relative
maneuvers indicate relations between multiple dynamic actors
such as pedestrians, vehicles; such maneuvers include cutting
in, moving towards which required two actors. Absolute
maneuvers can be applied to a single actor, such as drive, turn
right, etc. Agent type includes road users, pedestrians, and
animals. For the scenery aspects, SDL considers any scenery
settings as a roads-and-junctions network. Each road or
junction is described individually using the types and the
associated ODD attributes. In addition, for each junction, the
connecting roads and lanes as well as connecting angles are
also required, this can be referenced to the individual road
description and allow the composition of the entire scenery.
For the behavior description, the overall structure contains two
parts: initialization phase and maneuvers phases. Initialization
phase sets out the initial road and lane for each actor, the
relative heading angles and relative positions between actors
can also be defined. For the maneuver phases, a behavior tree

Figure 4: Various scenario generation methods explored

Real

world data

Telematics,

Insurance

claims

Analytical

Hazard Based

Approach

(STPA analysis)

Scenario library: Safety PoolTM Scenario Database

Scenario description language

Parameter identification & randomisation

What are the

causes of

known

accidents?

What are the

near-miss

events?

What are the

potential causes

of failures?

Accident

databases

Formal

Verification

(Highway

Code)

What are the

known unsafe

situations by

regulations?

1

Operational

Design

Domain

(ODD)

What are the

known safe

boundary for

the ADSs?

Ontology

Standards,

regulations,

guidelines

Real-world

deployment

and trials

2 3 4 5 876

What are the

scenarios

within a set

constraints?

What are the

existing

scenarios set

out?

What unsafe

situations do

we know

during trials?

Figure 5: Two-level scenario description language mapped to the

scenario abstraction levels

style description format is utilized. Each actor contains
multiple activity phases in a sequential relation; when two
actors are performing activities at the same time the activity
phases between the two actors are in a parallel relation. Each
activity phase consists of the actual maneuver activity and a
trigger condition. Figure 6 illustrates the logic of an SDL
behavior description consists of three actors, the first two
actors each has two activity phases and these two actors are
performing actions at the same time. The third actor starts to
perform activities after the first two actors have stopped for the
remaining of the scenario. The environment part of the SDL is
treated as global ambient conditions that apply throughout the
scenario. The list of all the values for the environment related
ODD attributes within the SDL are also defined.

After creating the scenarios with SDL format, the next
stage is to store them in a scenario database, which can be used
by individuals and organizations to exchange, host, query and
analyze them. In OmniCAV project, all the generated scenarios
(~100,000) have been hosted in the Safety PoolTM Database.
Scenario labels are used for query and analysis providing roles
of tagging the real-world route with individual ODD labels and
API connection and scenario visualization.

C. Test case generator and execution

Once the scenarios have been populated into the database, a
scenario selector retrieves the relevant scenarios iteratively via
API calls from the database, each individual logical scenario is
then passed into the test case generator and starts the testing
cycle. The test case generator can be divided into two different
settings: the initial iteration, and subsequent iterations. During
the initial iteration, the concrete test case parameters are
instantiated using the average values of each value range
defined in the OmniCAV project case. For the subsequent
iterations, optimization algorithms can be implemented to
intelligently select the parameter combinations for the next test
case based on the test case assessment. A Bayesian
optimization algorithm is implemented in the OmniCAV
project, it is developed further based on the study given in [9],
in which it investigated using Bayesian optimization and STPA
scenarios to explore the unknown unknowns. From the test
case analysis, both the scenario variables and the pass/fail
assessment are provided to the test case generator where the
optimization algorithm is embedded. The newly identified
values create the next test case with the optimization goal of
driving the system to violate its safe boundaries. It should be
noted that the Bayesian optimization is only one example of

the test case generator, one could fit other algorithms to
generate new test cases, such as constraint randomization.
Upon generating the test case, the next step is to run it in the
simulation environment. In the OmniCAV project, Unity-based
simulator developed by Thales UK-XPI is used for the
environment simulation. The real-world generated map
containing parts of Oxfordshire was developed for the XPI
simulator. The simulator was then integrated with the ADS, the
traffic simulator, and the test case analysis engine.

D. Test case analysis

1) Is the intended test case occurred?
The first step of the test case analysis is assessing whether

the intended test case has taken place. The SDL behavior
element is constructed and implemented using a behavior tree
style. This provides the means for monitoring and assessment
of the test case progress. Figure 7 illustrates an example
behavior tree that consists of both parallel and sequential
activities.

On the main branch, it has Initialization, Manoeuvre1 and
Maneuver_set in a sequence. Within Manoeuvre1, it has
action1 and exit_cond1 in parallel relation with a success on
one criteria. This means whichever node within the parallel
relation finishes this tree branch, will succeed. Within
Maneuver_set branch, it contains the maneuvers for both actor
1 and actor 2, along with their exit conditions. By using such
behavior tree implementation, it provides the ability to assess
which node has been completed, terminated, failed or in-
progress. In the example, Initialization is completed and
Maneuver1 is completed as well by the exit_cond1 being
satisfied. However, within Maneuver_set the
actor2_manoeuvre is failed due to its exit condition failed.
Such information generated by the behavior tree
implementation is used to assess whether the intended scenario
has occurred.

2) Is test case passed/failed?
If the previous assessment result is yes, the test case data

will then be passed to the “pass/fail assessment function”.
However, if the assessment result is no, the test case will be
checked against a pre-defined iteration limit. For the pass/fail
assessment, several different types of criteria can be used
including: STPA related, Highway Code derived, ODD related

Figure 6: Example logics of an SDL behavior description

Figure 7: Example behavior tree status of a test case

or a set of generic criteria. Each of the STPA scenarios has its
own specifically tailored pass criteria, however such criteria
need to be converted into a machine-readable format and made
accessible to the ADS. In [19], authors illustrate detailed
insight into STPA-based scenario generation and evaluation.

The ODD based evaluation method uses the ODD
specification of the ADS to form a safe operating boundary and
evaluates the simulation ground truth data against the boundary
during runtime. At any given point, the ADS could be inside or
outside of its ODD, this can then be used to assess its ability to
maintain within its ODD. In order to represent such boundary,
a human readable and machine readable language was
developed [23], the domain attributes used within the language
were referenced to the BSI PAS 1883 ODD taxonomy [20].
The ground truth data is retrieved from the simulator during
runtime, such ground truth is then filtered to only contain the
attributes listed in the ODD taxonomy, and subsequently
converted into a common intermediate format. On the other
hand, the ODD specification is parsed and converted into the
same intermediate format. An ODD assessment module is then
implemented to compare the two intermediate formats derived
from the ground truth data and ODD specification. In the
OmniCAV project, an ontology-based assessment method is
implemented, it utilizes open-source ontology reasoner to infer
inside/outside of ODD. The UK highway code converted
Digital Highway Code (DHC) is developed to serve as an
oracle and evaluate the ADS’ ability to obey the regulations.
The DHC model contains ODD elements as well as the
behavior elements, with each individual Highway Code rule
being analyzed and converted into a quantifiable format.
Ontology framework is used to represent the domain model
and the rules, and ontology reasoner is used to perform runtime
assessment of the ADS. In addition to the STPA-based, ODD-
based and DHC-based test case pass/fail assessment, a set of
generic assessment criteria are also used in the OminCAV
project. For example, a fixed timeout is used to terminate test
cases if needed. Collision criteria are also implemented to fail
test cases whenever a collision of the vehicle is detected. Other
criteria such as lane keeping, average speed limit, and
maximum speed limit are also included.

3) Is maximum iteration of the test case reached?
Based on the pass/fail assessment, if the result is yes, the

workflow is then sent to check whether the maximum iteration
for the test case has reached. If the result is no, then the current
test case parameter combination will be logged and the testing
of the current scenario will be terminated. The maximum
iteration is set to stop large number of loops for the test case
generation within the same logical scenario. In our case, a hard
limit is implemented across all the logical scenarios.

V. IMPLEMENTATION ARCHITECTURE OF THE V&V

WORKFLOW

So far the functionality of the V&V workflow has been
introduced. This section illustrates the implementation of the
workflow. As shown in Figure 8, the necessary functions are
modularized into four parts: Test manager, Simulation, Test
Case Generator, and Test Case Analyzer. The Test Manager is
in charge of orchestrating the whole workflow, all the
communications are established between other modules and

Test Manager. Simulation contains the environment simulator,
the traffic simulator and the ADS under test. The Test Case
Generator is for generating concrete test case parameters and
optionally converts into other scenario format prior to
execution. The Test Case Analyzer contains test case indexing
– in order to obtain the scenario parameter variables and test
case evaluation – for checking 1) whether intended test case
occurred, 2) pass/fail assessment, and 3) whether maximum
test case iteration is reached. The whole workflow is initiated
by the Test Manager which is integrated with the scenario
database for selecting the logical scenario and pass the scenario
information to the Test case generator via scripts. Concrete test
case is then generated by using the average values of the
parameter value ranges, and optionally converted into other
desired scenario formats before being sent back to the Test
Manager. Meanwhile Test Manager also sends the scenario
information to the Test Case Analyzer for indexing via
protobuf (Protocol Buffers as a method of serializing structured
data). Upon receiving the generated test case, Test manager
sends the converted test case to Simulation using protobuf, it
then sends a run signal to start the simulation. During runtime,
live data is communicated between the Simulation and Test
case evaluation module via protobuf. The Test case evaluation
will then produce the evaluation results and send back to Test
Manager. Test Manager then stops the simulation run, and
checks the evaluation results against the three decision boxes.
Based on the outcome, the Test Manager: 1) select a new
logical scenario to test, 2) command to generate new test cases
under the same logical scenario. Finally, Figure 9 shows a tool

Figure 8: Implementation architecture of the workflow

chain developed executing scenarios and test cases in the
OmniCAV project.

VI. CONCLUSION

In this paper, a number of challenges are presented for
V&V of Autonomous Systems. To address some of the main
challenges, we introduced a scalable and domain agnostic
V&V framework, demonstrated in an ADS context. This
framework covered a number of key elements for conducting
V&V tests in both simulation and physical environments. The
paper mainly illustrated the details of the simulation-based
V&V process and covered scenario generation, scenario
description format, test case generation, test case evaluation
methods and parameter space exploration methods, all with the
aim of gathering evidence for both functional and behavioral
verification. Using the framework, we developed and
implemented the framework into a toolchain for practically
conducting the V&V tests.

ACKNOWLEDGMENT

The work presented in this paper has been carried under the
Innovate UK and Centre for Connected and Autonomous
Vehicles (CCAV) funded OmniCAV project (Grant No.
104529). This work is also supported by UKRI Future Leaders
Fellowship (Grant MR/S035176/1). The authors would like to
thank their colleagues at Thales UK RTI, XPI, WMG, Aimsun
and other OmniCAV project partners for their contributions in
the development of this work.

REFERENCES

[1] D. Hond, A. White, and H. Asgari, “Quantifying Dataset for Systematic

Artificial Neural Network Classifier Verification,” Proceeding Safety-

Critical Syst. Symp., 2011.

[2] N. Kalra and S. M. Paddock, “Driving to safety: How many miles of
driving would it take to demonstrate autonomous vehicle reliability?,”

Transp. Res. Part A Policy Pr., vol. 94, pp. 182–193, 2016.

[3] S. Khastgir, S. Brewerton, J. Thomas, and P. Jennings, “Systems
Approach to Creating Test Scenarios for Automated Driving Systems,”

Reliab. Eng. Syst. Saf., 2021.

[4] G. Bagschik, T. Menzel, and M. Maurer, “Ontology based Scene Creation
for the Development of Automated Vehicles,” 2018 IEEE Intell. Veh.

Symp., no. Iv, pp. 1813–1820, 2018.

[5] T. Menzel, G. Bagschik, L. Isensee, A. Schomburg, and M. Maurer,
“From functional to logical scenarios: Detailing a keyword-based

scenario description for execution in a simulation environment,” IEEE

Intell. Veh. Symp. Proc., vol. 2019-June, pp. 2383–2390, 2019.
[6] X. Zhang, S. Khastgir, and P. Jennings, “Scenario Description Language

for Automated Driving Systems: A Two Level Abstraction Approach,” in

Proc. of the 2020 IEEE International Conference on Systems, Man and

Cybernetics (SMC), 2020.

[7] D. Fremont et al., “Scenic: Language-Based Scene Generation,” UC

Berkeley EECS Tech. Rep., 2018.
[8] ASAM e.V., “ASAM OpenSCENARIO,” 2020. [Online]. Available:

https://www.asam.net/standards/detail/openscenario/. [Accessed: 30-Apr-

2020].
[9] B. Gangopadhyay, S. Khastgir, S. Dey, P. Dasgupta, G. Montana, and P.

Jennings, “Identification of Test Cases for Automated Driving Systems

Using Bayesian Optimization,” pp. 1961–1967, 2019.
[10] S. Ulbrich, T. Nothdurft, M. Maurer, and P. Hecker, “Graph-based

context representation, environment modeling and information

aggregation for automated driving,” IEEE Intell. Veh. Symp. Proc., no. Iv,
pp. 541–547, 2014.

[11] E. de Gelder et al., “Ontology for Scenarios for the Assessment of

Automated Vehicles,” 2020.
[12] S. Khastgir, G. Dhadyalla, S. Birrell, S. Redmond, R. Addinall, and P.

Jennings, “Test Scenario Generation for Driving Simulators Using

Constrained Randomization Technique,” in SAE Technical Paper# 2017-
01-1672, 2017.

[13] T. Menzel, G. Bagschik, and A. M. Maurer, “Scenarios for Development,

Test and Validation of Automated Vehicles,” IEEE Intell. Veh. Symp.
Proc., vol. 2018-June, no. Iv, pp. 1821–1827, 2018.

[14] C. Neurohr, L. Westhofen, M. Butz, M. Bollmann, U. Eberle, and R.

Galbas, “Criticality Analysis for the Verification and Validation of
Automated Vehicles,” IEEE Access, vol. 9, no. i, 2021.

[15] M. Brackstone et al., “OmniCAV: A Simulation and Modelling System

that enables CAVs for Al,” IEEE Intell. Transp. Syst. Conf., vol. 2020,
pp. 2190–2195, 2019.

[16] “Safety Pool Scenario Database.” .

[17] “Road Safety Data - STATS19,” UK Department for Transport, 2020.
[Online]. Available: https://data.gov.uk/dataset/cb7ae6f0-4be6-4935-

9277-47e5ce24a11f/road-safety-data. [Accessed: 02-Apr-2020].
[18] E. Esenturk, S. Khastgir, A. Wallace, and P. Jennings, “Analyzing Real-

world Accidents for Test Scenario Generation for Automated Vehicles

*,” in IEEE Intelligent Vehicles Symposium 2021 (submitted for review).
[19] S. Chen, S. Khastgir, I. Babaev, and P. Jennings, “Identifying Accident

Causes of Driver-Vehicle Interactions Using System Theoretic Process

Analysis (STPA),” in Proc. of the 2020 IEEE International Conference
on Systems, Man and Cybernetics (SMC), 2020, pp. 3247–3253.

[20] “Operational Design Domain (ODD) taxonomy for an automated

driving system (ADS) – Specification,” The British Standards
Institution, BSI PAS 1883. 2020.

[21] ISO, “Intelligent transport systems — Low-Speed Automated Driving

(LSAD) Systems for Predefined routes — Performance requirements,
system requirements and performance test procedures - ISO 22737,”

2021. [Online]. Available: https://www.iso.org/standard/73767.html.

[22] Euro NCAP, “Euro NCAP 2025 Roadmap: In pursuit of Vision Zero,”
2017.

[23] P. Irvine, X. Zhang, S. Khastgir, and P. Jennings, “A Textual Description

Language for the Operational Design Domain of Automated Driving
Systems,” IEEE ITSC, 2021.

Figure 9: OmniCAV test case execution example

