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Abstract— A cooperative intelligent transport system (C-
ITS) uses vehicle-to-everything (V2X) technology to make self-
driving vehicles safer and more efficient. Current C-ITS appli-
cations have mainly focused on real-time information sharing,
such as for cooperative perception. In addition to better real-
time perception, self-driving vehicles need to achieve higher
safety and efficiency by coordinating action plans. This study
designs a maneuver coordination (MC) protocol that uses seven
messages to cover various scenarios and an abstracted MC
support service. We implement our proposal as AutoMCM
by extending two open-source software tools: Autoware for
autonomous driving and OpenC2X for C-ITS. The results
show that our system effectively reduces the communication
bandwidth by limiting message exchange in an event-driven
manner. Furthermore, it shows that the vehicles run 15% faster
when the vehicle speed is 30 km/h and 28% faster when the
vehicle speed is 50 km/h using our scheme. Our system shows
robustness against packet loss in experiments when the message
timeout parameters are appropriately set.

I. INTRODUCTION

In recent years, there has been a great deal of research
and development related to automated driving. A key focus
area has been the enhancement of traffic safety and improved
passenger comfort. Autonomous driving is performed using
sensors for object detection, path planning, and actuation.
Research to improve safety and efficiency is being developed
for each process. Various organizations are carrying out au-
tonomous automatic driving development, and several open-
source software packages have been developed, including
Autoware [1] and Apollo [2].

A cooperative intelligent transport system (C-ITS) [3]
uses vehicle-to-everything (V2X) technology to make driv-
ing safer and more efficient. Hence, it has attracted the
attention of researchers’ and engineers’ worldwide. European
Telecommunications Standards Institute (ETSI) and Interna-
tional Organization for Standardization (ISO) have issued
standards to promote technological deployment in this area.
C-ITS defines network architectures and messaging for V2X.
For example, the cooperative awareness message (CAM) [4]
is used by vehicles to provide real-time information about
its status. The collective perception message (CPM) [5]
is used to share real-time information about the vehicle’s
surroundings. Unfortunately, these messages are not designed
for cooperative path planning, which requires the inclusion
of future (planned) information for overall optimal path
planning.
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The future information comprises a list of the vehicle’s
planned positions over time (i.e., the planned trajectory).
ETSI defines a maneuver coordination message (MCM) as
one that exchanges planned trajectories and performs driv-
ing coordination. However, the MCM format is still under
development [6], and no standard has been issued.

The contributions of this study are as follows. We or-
ganize MCM requirements and propose one that meets all
extant requirements. We design a maneuver coordination
service for various scenarios and autonomous driving ap-
plications, including adaptive cruise control (ACC) and fully
autonomous driving. We implement the proposed maneuver
coordination system (i.e., AutoMCM) by extending the open-
source software, Autoware and OpenC2X [7]. To the best of
our knowledge, this is the first work to realize a maneuver
coordination service by integrating Autoware and OpenC2X.

The rest of the paper is organized as follows. Section II
presents research related to maneuver coordination. Sec-
tion III summarizes the issues, the requirements, and our ap-
proaches. In Section IV, we design a maneuver coordination
service with abstracted functions compliant with the intelli-
gent transport system (ITS) station architecture per ISO and
ETSI. Section V describes our AutoMCM implementation in
detail. Section VI shows the results of simulator experiments.
Finally, Section VII presents conclusions and potential future
works.

II. RELATED WORKS

Research on maneuver coordination can be categorized
into two categories: scenario-specific MC and general MC.
Scenario-specific maneuver coordination supports platoon-
ing, lane changing, and merge coordination; several field
experiments are in progress. However, research on general-
purpose maneuver coordination is still in its infancy. For
example, few researchers have yet evaluated the impact of
network delays and packet losses on driving comfort.

In a study on platooning coordination, a V2X protocol to
deal with all possible platooning scenarios is proposed [8].
The protocol coordinates vehicles to merge two platooning
sequences into one. Additionally, in [9] the authors proposed
a redundant message protocol for cooperative driving in-
volving several vehicles, such as platooning. In [10], the
roadside unit at the merging point detects the merging
activity, searches for vehicles on the main road that may
be involved in a collision, and subsequently instructs the
identified vehicles to adjust their speeds. In [11], the coop-
erative maneuver protocol (CMP) as a coordination message
at the merge point is proposed. Moreover, the lane-change
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messaging for coordinated lane changing is proposed in
[12]. Several studies have used the space-time reservation
protocol (STRP), which uses messaging to reserve a specific
location for a certain amount of time. In the work of [13],
STRP was used for lane-change coordination, and field
experiments were conducted to validate the technique. The
extended method to intersections, passing, and roundabouts
is proposed in [14].

The TransAID project [15] performs research and devel-
opment on more generic V2X messages. In this project,
cooperative automated driving and C-ITS standard messages
such as CAM, CPM, and MCM have been studied [16],
[17]. A more generic MCM message format is proposed in
[16], which considered transition of control (switching from
automatic to manual driving) as a type of instruction for
MCM in addition to lane change and speed adjustment. A
V2X framework to exchange each message sets standardized
in C-ITS is implemented in [17].

A full-stack from the access layer to the facility layer
is implemented in [18], [19]. Alongside MCM, a maneuver
recommended message was used for driving coordination. In
[20], the complex vehicular interactions protocol for driving
coordination is proposed. In [21] it is assumed that all
vehicles always deliver a trajectory when performing driving
cooperation. In [22], MCM is used to reduce uncertainty
in automated vehicles and proposed the MCM as a more
general protocol. In our previous works [23], [24], we have
implemented AutoC2X, which enable cooperative perception
on Autoware and OpenC2X.

III. ISSUES AND APPROACHES

In this research, maneuver coordination is achieved by ex-
changing trajectories to support more general scenarios and
applications. Based on this premise, the following subsec-
tions describe design policies to solve maneuver coordination
issues.

A. Bandwidth saving and robustness

Because messages containing trajectories require a large
number of data, their distribution increases network load.
Therefore, we designed an event-driven maneuver coordina-
tion service to conserve bandwidth. When coordination is
needed, an initiator triggers a message to begin coordina-
tion. This avoids unnecessary data exchange. Furthermore,
because the MCM only needs to convey a message once,
the sender continues to send it until the acknowledgment
is received. This scheme allows the message to be sent
correctly even in unreliable communication environments
while conserving bandwidth.

B. Multiple scenario adaptability

Multiple scenarios require maneuver coordination, such
as lane changing and intersection navigation, and the ap-
plications of automated driving vary from ACC to fully
automated driving. Therefore, it is desirable to design a
system architecture to support a variety of scenarios and

applications. We divided the maneuver coordination func-
tions into two parts: common functions and scenario-specific
functions. We placed the common functions on the facility
layer and scenario-specific functions in the application layer
in the ITS station architecture [25], [26] in ETSI and ISO.
This design allows a system implementation that can handle
generic scenarios and applications.

C. Safety

As mentioned in [22], instructions can be duplicated.
A vehicle providing instructions will be unaware that the
receiving vehicle also has received another vehicle’s instruc-
tions in real scenarios. In this case, original instructions may
be overwritten, creating a potentially dangerous situation.
Therefore, we designed a state management scheme concern-
ing maneuver coordination that ensures that if a vehicle is
in the middle of maneuver coordination and a message from
another vehicle comes in, the receiving vehicle can refuse the
instruction to avoid an unexpected overwrite of instructions.

D. Traffic comfort

During maneuver coordination, the traffic scenario may
change according to the surrounding environment, or the
vehicle may malfunction. Without mitigation, a vehicle that
cannot handle the scenario will continue to decelerate un-
necessarily, which can obviously become problematic. Thus,
we designed a scheme to detect abnormal situations during
maneuver coordination and return vehicles to stand-alone
autonomous driving if necessary. This scheme allows, at a
minimum, safe driving during abnormal situations and may
improve traffic comfort by avoiding unnecessary deceleration
when a scenario changes.

IV. PROPOSED MANEUVER COORDINATION SERVICE

A. System architecture

Figure 1 presents an overview of the system architecture.
In this study, we comply with the C-ITS standard architecture
of the ISO and ETSI. As mentioned in the requirements, this
research proposes a system architecture used in generic sce-
narios and applications. We designed the abstracted functions
in the facility layer and the scenario-specific functions in the
application layer. The MC service is commonly required for
all scenarios and applications integrated into the facilities.
This service provides functions of the application interface,
message generation, transmission and reception, and state
management. On the other hand, the MC application is
specific to each scenario located in the application layer. The
MC application calculates each trajectory, triggers scenarios,
and verifies and loads prescribed trajectories.

B. MCM Flow

Figure 2 shows the proposed MCM flow in a lane-change
scenario. The prescriber vehicle changes lanes, and a receiver
vehicle is in the target lane. The planned trajectory is
the vehicles’ future trajectory maintained in the autonomous
driving system. The prescribed trajectory is the trajectory
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Fig. 1: System architecture

transmitted from a prescriber to instruct the receiver’s ma-
neuver. We define the following messages to describe our
proposition:

• Advertisement is the first message sent by a vehicle
that wants to perform maneuver coordination on another
in various scenarios, such as lane changing or merge
coordination. The message contains the scenario.

• Intention is a reply message to Advertisement with the
planned trajectory. It also contains the target station
identifier (ID) to clarify to which vehicle the message
is sent.

• Prescription is a message that gives instructions to
the vehicle that returned the Intention. It contains a
Prescribed Trajectory to provide instructions. It contains
the target station ID to specify the destination.

• Acceptance is a message that indicates whether or not
to allow the Prescription. It contains the target station
ID, acceptance (whether or not to allow), and selected
trajectory.

• Fin is a message to indicate the end of maneuver
coordination.

• Cancel is a message to quit the scenario in the middle
of maneuver coordination.

• Ack is a message to confirm that the message has been
received.

The following subsections describe the flow of messages
and state transitions.

1) Advertising: First, when the prescriber desires a lane
change, it transitions to an advertising state and distributes
an Advertisement to the surrounding area for a certain period.
Then, any receivers reply to the Intention that contains the
receiver’s planned trajectory to the prescriber. When the
prescriber receives the Intention, it replies with an Ack to
inform the receiver that it has received the Intention. The
receiver continues to send the Intention until the Ack is
returned.

2) Prescribing: The prescriber transmits its state of pre-
scription after a certain period, and judges whether there is a
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Fig. 2: Proposed MCM flow

risk of collision between the prescriber’s planned trajectory
and the receivers’ planned trajectories based on the received
Intention. If there is a risk, the prescriber calculates a pre-
scribed trajectory that avoids the collision and sends the new
Prescription containing it to the receiver. The prescription
also confirms the response as an Ack.

3) Negotiating: When the receiver receives the Prescrip-
tion, it checks whether it is safe to drive according to the
prescribed trajectory. If it is safe, the receiver sends the Ac-
ceptance to the prescriber. If it is not accepted, the prescriber
returns to the state of prescribing again and recalculates
the prescribed trajectory. The Acceptance also confirms the
response as an Ack.

4) Actuating: Finally, the receiver executes the prescribed
trajectory. During this time, both vehicles transmit CAMs at
regular intervals. If a CAM cannot be received for a certain
period, both vehicles consider it a communication error, stop
this scenario, and return to stand-alone autonomous driving.
After successfully executing the coordination to the end, the
prescriber sends the Fin and terminates the scenario.

V. AUTOMCM IMPLEMENTATION

A. System design

1) System model: The proposed method was implemented
in this study by extending and integrating two open-source
software packages (i.e., Autoware and OpenC2X). Fig 3
shows the proposed system model with the implementation
details. OpenC2X is in charge of MC services in the facility
layer, and Autoware supports the functions in the application
layer. We enabled the two software packages to communicate
with each other using the JavaScript Object Notation format
[27] using Websocket [28]. This design allows users to have
a flexible system configuration by installing the software
on different computers, such as a host and a router. The
recommended configuration in [25] holds that a router is in
charge of external connectivity to a group of hosts connected
to the in-vehicle wired network. In our design, the hosts can
access the facility layer function via the in-vehicle network.

2) Autoware: Autoware [1] was implemented on a mid-
dleware robot operating system (ROS) [29] for robot control



and provided the necessary functions for automated driv-
ing. To perform distributed processing, each process was
implemented as a node. Each node exchange information
on topics. ROS also includes the 3-dimensional (3D) RViz
visualization tool, which shows the status of tasks. ROS
provides a Websocket server (i.e., ROS Bridge) as a standard
feature, and we used this server to connect with OpenC2X.

Autoware provides a set of applications necessary for au-
tonomous driving, such as localization, perception, planning,
and control from the input of 3D maps using Lanelet2 [30],
LiDAR, a camera, and the Global Navigation Satellite Sys-
tem. The perception module provides the detected obstacle
information to the planning module. Autoware has multiple
planning modules for various scenarios because it is techni-
cally challenging to have a unified planner for all situations.
The lane-driving planner has the functions necessary for a
regular road, including normal driving and lane change. The
behavior planner determines lane changes and turn-signal
activations. The motion planner is responsible for optimizing
the shape of the trajectory with a given lateral acceleration
and jerk limit. Autoware also provides a planning simula-
tor that performs experiments of the planning module by
simulation. The planning module gives the trajectory to the
control module, which manipulates the acceleration, braking,
and steering of the autonomous vehicle via a controller area-
network controller.

3) OpenC2X: In OpenC2X, the ITS station architecture is
implemented except for the security layer. The ITS GeoNet-
working (GN) module [31] is only implemented to add
the GN header to packets, but the GN routing has not yet
been implemented. In OpenC2X, CAMs and decentralized
environmental notification messages are generated based on
the information obtained from onboard diagnostics and the
Global Positioning System, and the information is stored
in a local dynamic map [32] via a single-hop broadcast
with decentralized congestion control. On the other hand,
there is no MCM implementation, which has not yet been
standardized.

B. Implementation overview

An overview of the implementation architecture is pre-
sented in Fig. 3. We used Autoware.IV v0.8.0 and OpenC2X-
standalone v1.5 for the implementation. The white boxes
represent the existing implementations, and the colored boxes
are the new ones. We implemented maneuver coordination
by implementing the MCM on the OpenC2X side and
integrating it with Autoware. On the OpenC2X side, we
implemented the application interface to receive information
from Autoware and the MC service to manage states and
messages. On the Autoware side, we extended Autoware’s
planning function to format the lane-change detection in-
formation and trajectory into a form that OpenC2X can
use. We also implemented functions for collision detection
and calculation, verification, and loading of the prescribed
trajectory necessary for generating the prescribed trajectory.

When the scenario trigger detects the turn signal from
the behavior planner, it switches to the advertising phase.
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Trajectory conversion converts the trajectory from continu-
ous paired sequences of the location and speed to that of the
location and time. Section V-C shows the detailed algorithm
of the transformation. The planned trajectory is transmitted
as an advertisement message via OpenC2X. Upon advertise-
ment reception, the receiver returns the intention message
using the converted trajectory, as in Section V-C. These two
messages require confirmation via Ack.

After a predefined period, the prescriber changes its state
to prescribing. The collision detector calculates collision
risk using the receivers’ and their own planned trajectories.
Collision detection is determined by checking whether the
distance between vehicles at each time is below a threshold.
When there are multiple collisions, the prescriber discovers
the target vehicle using the algorithm detailed in Section V-
D. Then, the prescribed trajectory generator calculates the
prescribed trajectory for the target vehicle using the algo-
rithm shown in Section V-E. The prescriber then sends the
prescribed trajectory to the target vehicle.

The receiver’s prescribed trajectory verifier checks
whether the trajectory is acceptable. The receiver returns the
decision by returning acceptance or cancellation. When it is
accepted, the prescribed trajectory loader loads the trajectory
to the motion planner.

C. Trajectory conversion

The trajectory converter converts the trajectory from con-
tinuous paired sequences of the location and speed used
in Autoware to that of location and time. The converted
trajectory makes it easier for the receiver to detect collisions.
First, we search for the point, x0, v0, t0, in the trajectory that
is closest to the coordinates of the current vehicle. Next,
assuming that the speed from the current position to the
next position is constant, the time, t1, at which the vehicle
arrives at the next position, is obtained from (x1−x0)

v0
+ t0.

The process is repeated to obtain the time until the end of the
trajectory. Generalizing this, the n−th time of the trajectory
starting from the current point, x0, v0, t0, is expressed by
Equation 1.



tn =

n∑
k=0

(xn − xn−1)

vn−1
+ t0 (n ≥ 1). (1)

Because writing the entire trajectory in the message will
not fit into one frame, the trajectory points were thinned out
to one-fifth size in order to avoid fragmentation.

D. Target vehicle discovery

When the collision detector detects multiple collisions, the
prescriber eliminates the vehicles that are not in the target
lane by checking the lane’s rectangular zone provided by
Lanelet2 [30] with the lane ID. In our implementation, the
prescriber instructs the deceleration of the leading vehicle
in the lane-change scenario. The vehicles behind it au-
tonomously decelerate with the leading vehicle. The leading
vehicle can be discovered by repeating the following process.
Autoware maintains the direction of travel, ~n, of the vehicles.
We also calculate the vector, −−−−→xixi+1, which indicates the
relative position of the two vehicles from the positions of
each vehicle (x0 ∼ xn). Then, if the inner product of two
vectors, ~n ·−−−−→xixi+1, is a positive value, we can determine that
xi+1 is in front; otherwise, xi is in front.

E. Prescribed trajectory generation

Figure 4 shows the speed of the planned and actual trajec-
tories. In this study, we generated the prescribed trajectory
by reducing the receiver’s planned trajectory speed. First,
we set a certain amount of time to wait before starting the
action for ∆t1 from the prescription. During this time, the
speed remains constant. The system then decelerates at a
constant speed, ∆V , during the scenario movement (∆t2).
∆V is a constant, and ∆t2 is expressed as ∆t2 = D/V
using the appropriate vehicle distance, D. Furthermore, D is
expressed as D = d+ d0 using the current distance, d, and
the desired distance d0. After period ∆t2, it returns to its
original speed. By deceleration, the prescriber obtains a safe
distance, D, from the receiver. The obtained velocity of the
prescribed trajectory has a discontinuous value, as indicated
by the blue dotted line in Fig. 4. The receiver makes a smooth
value of the actual velocity from the prescribed trajectory by
feedback control from the current speed, as shown by the
solid blue line in the figure.
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VI. EVALUATION

We performed experiments for maneuver coordination
between automated vehicles using MCM in a lane-change
scenario on a two-lane road using Autoware’s planning
simulator. We conducted three experiments: measurement
of the communication bandwidth consumed in maneuver
coordination; arrival time measurement; and the robustness
of the system against packet loss.

The map used was a straight line in Nishi-Shinjuku,
as shown in Fig. 5. Figure 5 shows the view on RViz
of receiver B. Additionally, the green line represents the
planned trajectory of receiver B. There were start and goal
positions. The distance between them was approximately
260 m. We installed our implementation (extended Autoware
and OpenC2X) on four computers and connected them via
Ethernet.

Table I summarizes the values of the important parameters
for the experiment. First, we provided the timeout duration
(ttimeout) for all messages, set to 2s. For the robustness
experiment, we varied this parameter to 0, 1, and 2s to
measure the impact. The time to resend (∆tresend) was set
to 0.1s, and the generation frequency (f ) was set to 10 Hz.
Next, we set the parameters for the presented trajectory.
Prescribed vehicle distance (Dprescribed) was set to 20 m
plus the current vehicle distance. The deceleration width
(∆V ) was 20 km/h, the period from prescription to action,
∆t1, was the same as ttimeout, and the period from the
action to scenario end time ∆t2 was obtained by the formula,
D/∆V = 3.6.

TABLE I: Experimental parameters

Type Valiable name Value

MCM
Time to timeout (ttimeout) 0s, 1.0s, 2.0s
Time to resend (∆tresend) 0.1s
Generation frequency (f ) 10 Hz

Prescribed vehicle distance
(Dprescribed) 20m + d0

Prescribed Deceleration width (∆V ) 20 km/h
trajectory Prescription to action (∆t1) ttimeout

Action to scenario end (∆t2) D/∆V = 3.6s



Fig. 6: Speed and position of the four vehicles

A. Communication bandwidth measurement

First, we tested maneuver coordination using MCM with
four vehicles. Here, a vehicle prescriber changes lanes and
three receivers (i.e., A, B, and C) at the lane-change desti-
nation.

The prescriber selects an appropriate vehicle from among
the receivers and provides instructions to slow down. Fig-
ure 6 shows the speed of the four vehicles at each position.
Figure 6 shows that receiver B decelerates prior to the
prescriber’s lane change. This shows that the following ve-
hicle (receiver C) also decelerates to maintain an appropriate
distance from receiver B.

Figure 7a shows the communication volume with two
vehicles, and Fig. 7b shows that of four vehicles. In this
experiment, both MCM and CAM were transmitted at 10
Hz for comparison. Figure 7 shows that the MCM containing
the trajectory was more than 10-times larger than the CAM.
Thus, the reduction of MCMs is important for bandwidth
savings. Comparing Fig. 7a and Fig. 7b, we can see that
the intention in Fig. 7a was three times higher, whereas the
amounts of prescription, acceptance, and fin were the same.
This is because receivers A, B, and C sent Intentions to
the prescriber, while the prescriber only sent a prescription
to receiver B; it also sent a cancel to receivers A and C.
From the results, we observe that the constant delivery of
intentions by all vehicles led to bandwidth pressure, and our
proposed method of event-driven messaging effectively saved
bandwidth.

B. Arrival-time measurement

We evaluated the arrival time to 260-m away in the
scenario in which one vehicle (prescriber) changed lanes,
and another vehicle (receiver) was in the destination lane.
We measured the arrival times for the speeds of two vehicles
at 30 and 50 km/h. Figure 8 shows the results of 100 trials.
The results show that the arrival times were approximately
5s faster (15% faster) when the vehicle speed was 30 km/h
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Fig. 7: Communication volume at each time

and approximately 7s faster (28% faster) when the vehicle
speed was 50 km/h using MCM.

The behavior difference with and without MCM affected
the result. When the MCM was not used, the vehicle did
not notice the lane change until just before it happened,
detecting a collision only after the lane change started.
Then, the vehicle decelerated rapidly. The vehicle stopped
after the sudden deceleration and started again when it
secured a sufficient distance between vehicles. On the other
hand, when the MCM was used, the vehicle decelerated to
obtain a sufficient distance before changing lanes. Therefore,
when changing lanes, the vehicle traveled with little or no
deceleration.

C. Robustness against packet loss

The probability of successful maneuver coordination in-
creases with the time to timeout (ttimeout) because the
number of message retransmissions increases. On the other
hand, if ttimeout is too long, the time required for maneuver
coordination increases, owing to many message retrans-
missions under a high packet-loss ratio. Additionally, the
probability of the surrounding situation change increases
during the repeated retransmissions. Therefore, the timeout
period should be as short as possible within the range in
which the maneuver coordination can operate smoothly. We
sought the optimal ttimeout experimentally.

We performed the arrival-time measurement by varying
the packet-loss rate from 0 to 100% at a 10% interval. We
conducted the measurement by changing the timeout period
of each message, ttimeout, to 0, 1, and 2s. The experiments
were conducted 60 times. In the experiment, two vehicles ran



(a) Vehicles’ speed was 30 km/h.

(b) Vehicle speed was 50 km/h.

Fig. 8: Time from when the prescriber detects a lane change
to when the receiver arrives at the target point.

at 30 km/h and performed lane-change coordination. Figure
9 shows the arrival time in percentages, classified into 29s
or less, 29–30s, 30–31s, and 31s or more.

From the figure, we can see that the arrival time increased
rapidly from 10% at ttimeout = 0s, from 60% at ttimeout =
1s, and from 70% at ttimeout = 2s. From the result,
ttimeout = 2 had the most robust maneuver coordination
against packet loss. The probability of successful transmis-
sion of a message, p, was given by Equation 2:

p = 1− λttimeout/tresend , (2)

where λ denotes the packet loss rate, ttimeout is the time
to timeout, and tresend(= 0.1s) denotes the time until re-
transmission. For example, when ttimeout is 1s, the value of
λttimeout/tresend is λ10. Therefore, if λ is a small value, λ10

will be negligible, but λ10 will increase exponentially accord-
ing to λ. Because the probability of maneuver coordination is
proportional to the probability of p, the arrival time sharply
increases as the packet-loss ratio increases. Additionally,
according to a previous practical study of vehicle-to-vehicle
communication, [33], [34], the packet loss ratio can be kept
below 20% in the absence of obstacles, such as buildings
and trees. Therefore, we conclude that our system is robust
against packet loss when the timeout is 1 or 2s.

VII. CONCLUSIONS

In this paper, we discussed the issues and requirements for
maneuver coordination in autonomous driving. We proposed
an MCM protocol that satisfies these requirements using
seven types of messages with state management. We also
divided it into two parts, service and application, which are
common and unique to various scenarios and applications to
increase the versatility of the protocol. We implemented Au-
toMCM for realizing the proposed MC protocol by extending
Autoware and OpenC2X. In an experiment with four vehi-
cles, the proposed event-driven message exchange effectively
reduced the communication bandwidth by limiting the MCM
transmission, which was 10-times larger than the message
size of CAM. In the arrival-time measurement, we observed
that our proposed method achieved 15% faster performance
when the vehicle speed was 30 km/h and 28% faster when the
vehicle speed was 50 km/h. Additionally, our system showed
robustness against packet loss when the timeout was set to
1 or 2s.

Future work includes implementing other scenario appli-
cations, such as intersections, ramp merging, and pedes-
trian crossing. Furthermore, it will be necessary to evaluate
whether our scheme can coordinate maneuvers in more than
two lanes. We also plan to evaluate our implementation with
field experiments. In this study, we used a wired network.
However, we plan to use a wireless network or network
simulator to reproduce more realistic network characteristics.
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