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Abstract— Model Predictive Control (MPC) has shown to be
a successful method for many applications that require control.
Especially in the presence of prediction uncertainty, various
types of MPC offer robust or efficient control system behavior.
For modeling, uncertainty is most often approximated in such a
way that established MPC approaches are applicable for specific
uncertainty types. However, for a number of applications,
especially automated vehicles, uncertainty in predicting the
future behavior of other agents is more suitably modeled by
a twofold description: a high-level task uncertainty and a low-
level execution uncertainty of individual tasks. In this work, we
present an MPC framework that is capable of dealing with this
twofold uncertainty. A scenario MPC approach considers the
possibility of other agents performing one of multiple tasks,
with an arbitrary probability distribution, while an analytic
stochastic MPC method handles execution uncertainty within a
specific task, based on a Gaussian distribution. Combining both
approaches allows to efficiently handle the twofold uncertainty
structure of many applications. Application of the proposed
MPC method is demonstrated in an automated vehicle simula-
tion study.

I. INTRODUCTION

This work has been accepted to the IEEE 2021 International Conference on Intelligent Transportation Systems.

Advances in research on automated systems are facilitating
the use of controllers for complex applications, which is
especially evident for automated vehicles. In many of these
applications, there is one controlled agent, e.g., a vehicle or
mobile robot, which is required to act and move among other
agents. In order to move efficiently and avoid collisions, it
is necessary for the controlled agent to anticipate the future
behavior of the surrounding agents.

The challenge here is that future behavior of other agents is
subject to uncertainty. In many applications, this uncertainty
consists of two types, task uncertainty and task execution
uncertainty. Using automated vehicles as an example, the
future motion of other surrounding vehicles is first subject
to specific maneuvers, such as lane keeping or lane changing.
Second, the execution of these maneuvers may vary again.
A lane change may be executed quickly and aggressively, or
slowly over a longer period of time.

Model Predictive Control (MPC) is a suitable method
to plan motion and trajectories for automated systems in
environments with uncertainty. In MPC an optimal control
problem is solved on a finite horizon, utilizing prediction
models to take into account the controlled agent dynamics
and the future behavior of other agents. Constraints subject to
environment uncertainty, e.g., for collision avoidance, may be
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handled robustly by using Robust Model Predictive Control
(RMPC) methods for bounded uncertainties [1], [2]. How-
ever, these robust controllers are often highly conservative.

Stochastic Model Predictive Control (SMPC) approaches
[3], [4] provide more efficient solutions compared to RMPC
by utilizing probabilistic chance constraints instead of hard
constraints. These chance constraints enable increased effi-
ciency by allowing a small probability of constraint violation,
limited by a predefined acceptable risk. Various SMPC
methods exist, approximating the chance constraint to obtain
a tractable representation that may be solved in an optimal
control problem. In general, each SMPC method considers
one type of uncertainty within the prediction model.

Analytic SMPC approaches [5]–[7] yield an analytic ap-
proximation of the chance constraint, but these approaches
are mostly restricted to Gaussian uncertainties. In particle-
based SMPC [8] and Scenario Model Predictive Control
(SCMPC) [9], samples of the uncertainty are drawn that
are then used to approximate the chance constraint. While
arbitrary uncertainty distributions are possible, large numbers
of samples are required to provide sufficient approxima-
tions for some uncertainty distributions, which increases
computational complexity. If mixed uncertainty structures
best describe the system behavior, the chance constraint
approximations of these SMPC approaches are not neces-
sarily suitable. In [10] an SMPC framework, S+SC MPC,
was introduced that utilizes both SCMPC and a Gaussian
uncertainty-based SMPC method, specifically designed for a
simple automated vehicle example.

In this paper, we propose an S+SC MPC framework
that significantly generalizes the work of [10]. In [10] a
simple S+SC MPC framework was specifically designed for
automated vehicles, where only one surrounding vehicle and
two possible maneuvers are considered. Here, we present
a general S+SC MPC framework, applicable to a variety
of automated systems. We specifically focus on collision
avoidance, which requires considering multiple other agents
that may perform multiple different tasks.

The proposed S+SC MPC approach utilizes an SCMPC
approach for task uncertainty and an analytic SMPC ap-
proach for task execution uncertainty. Combining these two
approaches into a single MPC optimal control problem al-
lows to efficiently consider the twofold uncertainty structure
of many practical applications with task and task execution
uncertainty, e.g., automated vehicles [7], [11]–[14]. An au-
tomated vehicle simulation study illustrates the applicability
of the proposed S+SC MPC framework.

The paper is structured as follows. Section II introduces
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the problem statement. The S+SC MPC method is derived
in Section III. A simulation study is presented in Section IV,
followed by conclusive remarks in Section V.

II. PROBLEM STATEMENT

MPC for collision avoidance with multiple agents requires
two prediction models, one for the controlled agent (CA) and
one for the dynamic obstacles (DOs) to be avoided.

We consider the CA dynamics

ξk+1 = f (ξk,uk) (1)

depending on the nonlinear function f with state ξk and
input uk at time step k.

Two types of uncertainties are considered for the DOs: task
uncertainty and task execution uncertainty. This distinction
reflects the situation of many applications, where the motion
of surrounding agents is divided into discrete tasks with
multiple task execution possibilities.

Definition 1 (Tasks): At each time step, a DO decides
to execute exactly one task Ti defined by the task set
T = {Ti | i = 1, ..., nT }. Each task Ti is assigned a prob-
ability pi, subject to the probability distribution PT , where∑nT
i=1 pi = 1 and 0 < p1 ≤ ... ≤ pnT ≤ 1. A DO input

corresponding to task Ti is denoted by uDO(Ti).
Definition 2 (Task Execution): Each task Ti is subject to

a nominal motion governed by the DO dynamics, a reference
state, and an additive Gaussian uncertaintywex

k ∼ N (0,Σex
k )

with covariance matrix Σex
k , representing uncertainty while

executing task Ti.
We consider multiple DOs. The dynamics for a single DO

is then given by

ξDO
k+1 = ADOξDO

k +BDOuDO
k (Ti) +GDOwex

k (2)

with the DO state ξDO
k , the input uDO

k as well as the state and
input matrices ADO, BDO, GDO. A DO stabilizing feedback
controller is assumed of the form

uDO
k (Ti) = KDO (ξDO

k − ξDO
k,ref (Ti)

)
(3)

with feedback matrix KDO and a reference state ξDO
k,ref

depending on task Ti. The nominal state, assuming zero
uncertainty and task Ti, follows

ξDO
k+1 = ADOξDO

k +BDOuDO
k (Ti) . (4)

Collisions with DOs are avoided by determining a set of
safe states for the CA.

Definition 3: The safe set Ξsafe
k for time step k ensures

that all CA states ξk ∈ Ξsafe
k guarantee collision avoidance

at time step k.
We now formulate the optimal control problem (OCP) to

be solved within this work. Without loss of generality, the
SMPC OCP starts at time step 0 where prediction steps are

denoted by k. The SMPC OCP is given by

J∗= min
U

JN (ξ0,U) (5a)

s.t. ξk+1 = f (ξk,uk) (5b)
ξDO
k+1 = ADOξDO

k +BDOuDO
k (Ti) +GDOwex

k (5c)
uk ∈ U , k = 0, ..., N − 1 (5d)
ξk ∈ X , k = 1, ..., N (5e)
Pr
(
ξk ∈ Ξsafe

k

)
≥ β, k = 1, ..., N (5f)

with U = [u0, ...,uN−1], cost function JN , horizon N ,
actuator constraints U , and deterministic state constraints
X . As the DO dynamics (5c) are subject to uncertainty, the
chance constraint (5f) is employed for collision avoidance.
At each time step k, the probability of the CA state ξk
lying within the safe set Ξsafe

k must be larger than the risk
parameter β = h (βta, βex), 0 ≤ β ≤ 1. The function
h (βta, βex) indicates that β depends on a task uncertainty risk
parameter βta and a task execution uncertainty risk parameter
βex.

It is not possible to directly solve the chance-constrained
OCP. In the following, a method is derived that approximates
the chance constraint (5f) to obtain a tractable OCP. We first
focus on task uncertainty in Section III-A, followed by task
execution uncertainty in Section III-B, which then allows to
consider both uncertainties simultaneously as described in
Section III-C.

III. METHOD

In the following, the S+SC MPC framework is derived,
starting with individually focusing on SCMPC and SMPC.

A. SCMPC for Task Uncertainty

We first focus on task uncertainty. At each time step,
one task is performed. The control action, corresponding
to different tasks, may significantly vary between different
tasks. Therefore, describing task uncertainty with Gaussian
noise is impractical, rendering analytic SMPC approaches
inapplicable. Considering every possible task may lead to
highly conservative control behavior. However, applying
SCMPC is a suitable approach to handle task uncertainty.
With SCMPC, task uncertainty may be approximated by a
small number of samples, as the number of possible tasks is
usually small. In this section no task execution uncertainty
is considered, i.e., wex

k = 0.
Here, an SCMPC approach inspired by [9] is used. By

drawing K samples from the probability distribution PT , the
task uncertainty is approximated, yielding the set of samples

S = {si | i = 1, ...,K} , (6)

where a task Ti is assigned to each sample si. An agent may
execute the same task for multiple time steps. However, the
agent task may change at every time step.

Assumption 1: Within each SCMPC OCP, each sampled
task is assumed to be executed for the entire prediction
horizon.

In other words, within the prediction, a sampled task
is assumed to continue. This assumption is reasonable, as



multiple tasks may be sampled and a new OCP with new
samples is initiated at each time step.

If Assumption 1 holds, a DO input sequence is ob-
tained for each sample of S. The resulting input sequence
UDO (si) =

[
uDO
0 (si) , ...,u

DO
N−1 (si)

]
depends on the indi-

vidual inputs uDO
k (Ti), performing task Ti corresponding to

sample si. Based on UDO (si), the predicted DO states for
each sample are obtained according to the DO dynamics (2)
with wex

k = 0, resulting in the predicted states ξDO
k (si) for

k = 1, ..., N .
Depending on the predicted DO states, a safe set Ξsafe

k (si)
may be computed for each drawn sample si. Each safe set
requires an individual constraint in the SCMPC OCP. There-
fore, for the SCMPC approach, the chance constraint (5f) is
adapted to

Pr
(
ξk ∈ Ξsafe

k (s)
)
≥ βta, k = 1, ..., N, s ∈ S. (7)

Multiple methods exist to generate safe sets, e.g., signed
distance [15] or grid-based methods [13].

The sample size K depends on the chosen risk parameter.
We propose a strategy to obtain K that focuses on the least
likely task T1 in T .

Theorem 1: The sample size

K > log1−p1

(
1− βta

p1

)
(8)

ensures that the probability of not having sampled the least
probable task T1, if it later occurs, is lower than the allowed
risk 1− βta, i.e., (7) is satisfied.

Proof: The proof is based on [10]. Given independent
and identically distributed samples, the worst-case probabil-
ity of not sampling task T1, if it later occurs, is given by
p1(1 − p1)K . The sample size K in (8) then follows from
solving for K with 1 − βta > p1(1 − p1)K , i.e., bounding
the worst-case probability given the risk parameter βta.

If the least likely task T1 is actually performed by the DO,
this worst-case probability of not having sampled task T1 is
lower than the acceptable risk, defined by the SCMPC risk
parameter βta.

After having introduced an SCMPC approach to handle
task uncertainty, the following section introduces an analytic
SMPC approximation for task execution uncertainty.

B. SMPC Task Execution Uncertainty

We now focus on task execution uncertainty, assuming
only one task is possible. In the DO dynamics (2), task
execution uncertainty is described by the additive Gaussian
uncertainty, representing uncertainty considering the nominal
trajectory of a task. Approximating a Gaussian distribution
potentially requires a large number of samples, therefore,
an analytic SMPC approach is more suitable than SCMPC.
The cost function (5a) may depend on the DO uncertainty.
Therefore, the cost is adjusted based on the expectation
value, yielding

JN = E

(
N−1∑
k=0

l (ξk,uk,w
ex
k ) + Jf (ξN ,w

ex
N )

)
(9)

with stage cost l and terminal cost Jf.
The constraint ξk ∈ Ξsafe

k may be described by a set of
functions

dk
(
ξk, ξ

DO
k

)
≥ 0 ⇔ ξk ∈ Ξsafe

k (10)

with dk = [dk,1, ..., dk,nd ]
>, where nd denotes the number

of constraint functions.
In order to find an analytic approximation for the chance

constraint (5f) with only one task, a linearized description
of the chance constraint is required. Therefore, the nonlinear
constraint (10) is linearized around the nominal states with
ξDO
k = ξDO

k + eDO
k and the prediction error eDO

k . Based on
wex
k , the prediction error follows eDO

k ∼ N (0,Σe
k) where

Σe
k+1 = ΦΣe

kΦ
> +GDOΣex

k G
DO> (11)

with Φ = ADO +BDOKDO.
The resulting linearized description of (10) is

dk
(
ξk, ξ

DO
k

)
+∇dDO

k e
DO
k ≥ 0 (12)

with

∇dDO
k =

∂dk
∂ξDO

k

∣∣∣∣
ξk,ξ

DO
k

. (13)

The linearized chance constraint is then given by

Pr
(
∇dDO

k e
DO
k ≥ −dk

(
ξk, ξ

DO
k

))
≥ βex, (14)

which is still a probabilistic expression. However, (14) may
be approximated into an analytic expression similar to [10].

Theorem 2: The probabilistic chance constraint (14) may
be approximated by the analytic expression

dk,i
(
ξk, ξ

DO
k

)
≥ γk,i (15a)

γk,i =

√
2∇dDO

k,iΣ
e
k∇dDO

k,i

>
erf−1 (1− 2βex) (15b)

with γk = [γk,1, ..., γk,nd ]
> and 0.5 ≤ βex ≤ 1.

Proof: The proof follows [7], [10]. Due to (11) it holds
that ∇dDO

k e
DO
k ∼ N

(
0,∇dDO

k,iΣ
e
k∇dDO

k,i

>
)

in (14). The
quantile function for univariate normal distributions allows
to reformulate (14) into (15).

Note that ∇dDO
k,i is defined similar to (13). The individual

approaches for handling task uncertainty and task execution
uncertainty are combined in the following section.

C. S+SC MPC Algorithm

The results of Section III-A and Section III-B are now
combined in order to obtain the S+SC MPC framework,
which is able to efficiently handle the mixed uncertainty
structure. In addition, multiple DOs are considered with the
DO dynamics

ξDO,j
k+1 = ADO,jξDO,j

k +BDO,juDO,j
k

(
T ji

)
+GDO,jwex,j

k (16)

with stabilizing feedback matrix KDO,j for the DOs j =
1, ..., nDO.
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Fig. 1: Initial scenario configuration.

The tractable S+SC MPC OCP for multiple DOs is then
given by

J∗= min
U

E

(
N−1∑
k=0

l (ξk,uk,w
ex
k ) + Jf (ξN ,w

ex
N )

)
(17a)

s.t. ξk+1 = f (ξk,uk) (17b)

ξ
DO,j
k+1,i = ADO,jξDO,j

k,i +BDO,juDO,j
k

(
sji

)
(17c)

uk ∈ U , k = 0, ..., N − 1 (17d)
ξk ∈ X , k = 1, ..., N (17e)

djk,i

(
ξk, ξ

DO,j
k,i

)
≥ γjk,i, k = 1, ..., N (17f)

γjk,i =

√
2∇dDO,j

k,i Σe,j
k ∇d

DO,j
k,i

>
erf−1 (1− 2βex) (17g)

with i = 1, ...,Kj where Kj is determined according to (8)
for each DO, given the DOs j = 1, ..., nDO.

In (17f), an individual approximated chance constraint
is generated for each sample si, depending on Kj . While
this approach is reasonable for a small number of samples,
it becomes computationally expensive for a larger Kj . A
possible alternative for application is to combine similar
individual task in order to reduce the number of total
constraints. This approach is illustrated in the simulation
example in Section IV.

If it is required to guarantee safety or recursive feasibility,
the proposed S+SC MPC method may be extended by the
safety framework for SMPC approaches proposed in [16].

IV. SIMULATION STUDY

To evaluate the effectiveness of the S+SC MPC algorithm
presented in Section III-C, a highway scenario involving
five target vehicles (TVs) is simulated, using the Control
Toolbox [17]. Here, the CA and DOs become ego vehicle
(EV) and TVs, respectively. The initial vehicle configuration
is depicted in Figure 1.

We first present the results of the simulation study with
the proposed S+SC MPC algorithm, and then, for compar-
ison, we investigate the stand-alone algorithms SMPC and
SCMPC. Eventually, we investigate applying S+SC MPC to
varying scenario configurations.

A. Simulation Setup

All simulations are run on an Intel i5-2500K CPU @
3.30GHz with 15.6GB RAM. Each simulation consists of
niter = 100 MPC iterations, which is equivalent to a scenario
duration of 20 s with ∆t = 0.2 s. In the following, SI units
are assumed for variables and parameters expressed without
units.

TABLE I: Initial Vehicle Configuration

EV TV1 TV2 TV3 TV4 TV5

x-pos. (m) 0 -25 25 40 -30 -10
x-vel. (m s−1) 27 17 27 27 27 22

As a special case of (1), the EV dynamics are represented
using the linear, discrete-time point mass model

ξEV
k+1 = AξEV

k +BuEV
k (18)

with the EV states ξk = [xk, vx,k, yk, vy,k]
> and inputs

uk = [ux,k, uy,k]
> where

A =


1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1

 ,B =


0.5∆t2 0

∆t 0
0 0.5∆t2

0 ∆t

 . (19)

The TV dynamics are assumed to be subject to un-
certainties. In the case of vehicles, tasks are maneuvers.
Therefore, we consider maneuver uncertainty and maneuver
execution uncertainty. The TV dynamics are in the form
of (2) with ADO, BDO, states, and inputs similar to (19)
as well as GDO = diag (0.05, 0.067, 0.013, 0.03) account-
ing for diverse TV uncertainty in longitudinal and lateral
direction. The covariance matrix of the normally distributed
TV maneuver execution uncertainty wex

k ∼ N (0,Σex
k ) is an

identity matrix Σex
k = diag(1, 1, 1, 1). Furthermore, additive

measurement noise νk ∼ N (0,Σν
k) is considered for xTV

k

and yTV
k with Σν

k = diag (0.16, 0.01). The TVs have multiple
maneuver options with associated maneuver probabilities.
The possible maneuvers consist of lane changes to left (LCL)
and right (LCR), lane keeping (LK), accelerating (AC),
braking (BR), and insignificant acceleration (IA), as well
as a combination of the lateral and longitudinal maneuvers,
resulting in a total of nine possible maneuvers.

The road consists of three lanes with lane width llane =
3.5 m, where the center of the left lane represents y = 0.
All vehicles are aveh = 6 m in length and bveh = 2 m in
width. The initial lateral position of all vehicles coincides
with the lateral center of the vehicles’ respective lanes with
zero lateral velocity. The initial longitudinal positions and
velocities of all vehicles are summarized in Table I. The TV
reference state is chosen as ξTV

ref,k = [0, vTV
x,ref,k, y

TV
ref,k, 0]>,

where vTV
x,ref,k and yTV

ref,k may vary over time depending on
the scenario. The feedback controller for the TVs is

KDO =

[
0 −1.0 0 0
0 0 −0.8 −2.2

]
. (20)

To prevent collisions, a region around the TV is inadmis-
sible for the EV. This is referred to as the safety constraint,
where the admissible area is the safe set Ξsafe

k . In line with
[10], we impose a safety constraint modeled as an ellipse.
Its definition adheres to

dk =
(∆xk)

2

a2
+

(∆yk)
2

b2
− 1 ≥ 0, (21)



MPC time step
k k + 1 k + 2

TVIA,LK
k

TVBR,LCR
k+2 TVIA,LCR

k+2 TVAC,LCR
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k+2 TVIA,LK
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k+2
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k+2 TVIA,LCL

k+2 TVAC,LCL
k+2

Fig. 2: Qualitative depiction of the combined safety con-
straint ellipse. Safety ellipses for step k + 1 omitted.

where we decompose the distance between the EV and TV
into a longitudinal and a lateral component ∆xk = xEV

k −xTV
k

and ∆yk = yEV
k − yTV

k .
The ellipse center coincides with the TV center. Therefore,

(21) is fulfilled if the EV center lies outside the inner space
or on the edge of the ellipse, i.e., dk ≥ 0. The parameters
a = 30 and b = 2 represent the semi-major and semi-minor
axis of the ellipse, respectively. The values of a and b are
chosen conservatively, i.e., the area covered by the safety
ellipse is larger than the vehicle shape.

To reduce the number of constraints for sampled TV
maneuvers, we first introduce a method to adapt the safety
constraint ellipse (21). As an example, we assume that all
possible maneuvers are sampled. Then, as mentioned as
a possibility in Section III-C, we combine the individual
constraint ellipses of all sampled maneuvers at each time
step, as shown in Figure 2. If less maneuvers are sampled,
the aggregated ellipse only covers the sampled maneuvers.

The result is the aggregated ellipse

d̃k =
(∆x̃k)

2

ã2k
+

(∆ỹk)
2

b̃2k
− 1 ≥ 0, (22a)

∆x̃k = xk − x̃TV
k , (22b)

∆ỹk = yk − ỹTV
k , (22c)

x̃TV
k =

xTV,IA
k + xTV,BR

k + xTV,AC
k

3
, (22d)

ỹTV
k =

yTV,LK
k + yTV,LCL

k + yTV,LCR
k

3
(22e)

with center
(
x̃TV
k , ỹTV

k

)
. The longitudinal and lateral posi-

tion of the TV corresponding to the respective maneuvers
are indicated by the variables xTV,M

k and yTV,M
k , M ∈

{IA,BR,AC,LK,LCL,LCR}, respectively. The combined
ellipse exhibits the adjusted semi-major and semi-minor axes

ãk = a+ 0.5
∣∣∣xTV, AC
k − xTV, BR

k

∣∣∣+
2

llane

(
b̃k − b

)
, (23a)

b̃k = b+ 0.5
∣∣∣yTV, LCL
k − yTV, LCR

k

∣∣∣ . (23b)

By generating the aggregated safety ellipse, the number of
necessary constraints is reduced. As seen in Figure 2, the
aggregated ellipse does not necessarily cover all individual
safety ellipses perfectly, which is still reasonable as the
individual safety ellipses are designed larger than necessary.

For the MPC OCP (17), a prediction horizon N = 12 is
selected. The cost function terms are set to l = ‖∆ξk‖2Q +

‖uk‖2R, Jf = ‖∆ξN‖2S , with the cost function weights
Q,S ∈ R4×4, and R ∈ R2×2, as well as ‖z‖2Z = z>Zz
and ∆ξk = ξk − ξref,k with reference ξref,k. For positional
reference tracking in y-direction, the EV reference is set to
its current lane center, while vy,ref,k = 0 and vx,ref,k =
27 m s−1. For the cost function, the first element of ∆ξk
is neglected, since no reference for xk is imposed. Here,
Q = S = diag(0, 3, 0.5, 0.1), R = diag(1, 0.1) are selected.

While the maneuver probabilities are scenario specific and
different task uncertainty risk parameters βta are evaluated,
the task execution risk parameter is chosen to be βex = 0.8.
In case the original MPC problem is infeasible, a recovery
MPC OCP is solved with slack variables to soften the
constraints, as described in [10]. For the recovery OCP,
the slack variable weight in the cost function is λ = 50
and the task execution risk parameter is changed to a more
conservative value βex

λ = 0.995, to prioritize safety. In case
the recovery problem fails, the solver selects the last feasible
point as the solution to the OCP.

Apart from the safety constraint, the EV plans its motion
subject to the constraints −1.75 ≤ yk ≤ 8.75, −5 ≤ ux,k ≤
5, −0.5 ≤ uy,k ≤ 0.5, −1 ≤ ∆ux,k ≤ 1, −0.2 ≤ ∆uy,k ≤
0.2 with ∆ux,k = ux,k − ux,k−1, ∆uy,k = uy,k − uy,k−1.

B. Simulation Results

In the following, the S+SC MPC algorithm is evaluated
in the presented scenario. As mentioned, the maneuver risk
parameter βta is varied, resulting in a varying sample size K.
Monte Carlo simulations are conducted 150 times for each
risk parameter value.

Each simulation consists of two parts. For the first 20
steps, the EV follows a conservative behavior with βta =
0.999, representing a behavior prediction initialization phase.
The EV assumes that the TV probabilities for lane changes
or changes in acceleration are pLC = 0.80 and pAC = pBR =
0.40. In case a lane changes is possible to the left or right,
pLC is assigned equally. In the second part from step 21 to
step 100, it is assumed that the EV has adapted its behavior
prediction. Therefore, the probabilities of TV maneuvers
change to pLC = 0.20 and pAC = pBR = 0.10. For the
second part of the simulation, different risk parameters βta ∈
{0.99, 0.95, 0.89, 0.83} are evaluated. Within the actual sim-
ulation, all TVs maintain their respective lanes, except TV4,
which moves to the center lane. The reference velocities
in x-direction are vTV1

x,ref = 22 m s−1, vTV2
x,ref = 22 m s−1,

vTV3
x,ref = 17 m s−1, vTV4

x,ref = 17 m s−1, vTV5
x,ref = 27 m s−1.

The result of an individual example with βta = 0.95 is
illustrated in Figure 3. While there initially is a gap between
TV3 and TV5, the EV does not plan to overtake, as a
potential lane change of either TV3 or TV5 would result in an
inevitable collision. Therefore, the EV slows down such that
TV5 passes TV3 first. Subsequently, the EV safely moves to
the left lane to overtake TV3.

Even though SMPC, in general, allows a small probability
of constraint violation, in regular scenarios collisions are
avoided as the repetitively updated SMPC inputs allow to



Fig. 3: Vehicle motion for simulation steps 21 (top) and 45
(bottom). The EV is shown in red, TVs in blue. Fading boxes
represent past states.

TABLE II: S+SC MPC Simulation Results

risk parameter βta 0.99 0.95 0.89 0.83

collisions 0 0 0 0

cost J100 3.64e4 3.40e4 3.59e4 3.76e4

infeasible OCP
steps 26.3 25.2 24.2 26.6

infeasible rec.
OCP steps 2.2 3.2 5.2 7.4

constantly adjust. For example, it may not be possible to sat-
isfy the chance constraint for a late prediction step within the
SMPC horizon, due to an unexpected uncertainty realization.
The OCP is therefore infeasible. However, a collision may
still be prevented in the next steps, depending on the future
uncertainty realizations. Here, we designed a challenging
situation for the EV, as lane changes are considered to be
probable for all TVs and must be accounted for. The results
of the Monte Carlo simulations are shown in Table II.

Summarizing the simulation results, the first important
observation is that no collisions occurred. While the safety
ellipse is slightly violated in some simulation runs, the safety
ellipse is chosen large enough that no collisions followed.

The performance is evaluated by computing the cost at
each time step, based on the actual states and inputs, with

J100 =

99∑
k=0

‖∆ξk+1‖2Q + ‖uk‖2R . (24)

The cost remains on a similar level for all risk parameters,
where the best choice in this scenario is βta = 0.95. Lower
risk increases conservatism, while high risk results in less
smooth control inputs, again increasing the cost.

As mentioned before, the potential lane changes of all TVs
pose a challenging situation for the EV, resulting in steps
where the OCP becomes infeasible. However, the steps with
successfully solved recovery OCPs are significantly more
likely, especially for a low accepted level of risk. The average
computation time is 214 ms.

C. Comparison to SMPC and SCMPC

We now compare the results of S+SC MPC to only
applying SMPC or SCMPC. the results are shown in Ta-
ble III. First, an analytic SMPC algorithm, inspired by

TABLE III: SMPC and SCMPC Simulation Results

SMPC SCMPC
risk parameter 0.8 0.99 0.95 0.89 0.83

collisions 79 49 43 45 41

cost J100 3.22e4 6.77e4 6.27e4 6.88e4 7.08e4

infeasible OCP
steps 31.2 54.1 53.6 55.7 54.7

infeasible rec.
OCP steps 21.8 33.8 33.6 34.1 34.3

[7], is analyzed with βex = 0.8. The advantage of S+SC
MPC is that the mixed uncertainty structure is exploited.
Applying only SMPC, in order to account for maneuver and
execution uncertainty, multiple possible maneuvers would
need to be approximated by a Gaussian uncertainty. However,
this would result in a major increase of the safety ellipse,
covering the entire road width, rendering overtaking other
TVs impossible. Therefore, in the SMPC simulation, the
SMPC algorithm only accounts for maneuver execution
uncertainty.

A total of 79 collisions occurred. While the cost is slightly
lower compared to S+SC MPC, significantly more steps with
infeasible OCPs occur, especially for the recovery problem.

In the SCMPC simulation, inspired by [11], the maneuver
execution uncertainty is approximated by samples. To com-
pare a similar situation as in the SMPC simulation, no task
uncertainty is considered here. Again, a significant number
of simulation runs result in collisions, while the cost also
increases compared to S+SC MPC. The steps with infeasible
OCPs appear more often than in the S+SC MPC simulation
runs. The computation times for SMPC and SCMPC are
similar to S+SC MPC.

D. Varying Vehicle Settings

So far, only one vehicle setting is considered. Therefore,
we additionally ran 150 simulations with randomly chosen
TV settings for each simulation run (similar initial EV state
as before). The TVs get assigned random initial positions
xTV
0 ∈ [−150, 150] and are placed on one of the three lanes,

i.e., y0 ∈ {0, 3.5, 7}. The constant longitudinal velocity for
each TV is randomly chosen according to vTV

x ∈ [17, 27] with
vTV
y = 0. It is ensured that all vehicles positioned on similar

lanes have enough longitudinal distance ∆x ≥ 50, and
velocities are selected such that TV collisions are avoided.
The proposed S+SC MPC method successfully handled all
150 simulation runs and no collisions occurred.

Overall, S+SC MPC allows exploiting the uncertainty
structure of the simulation setting, achieving adequate perfor-
mance and avoiding collisions. While the results presented
here are promising, it is to note that the benefits of the
proposed method depend on the application setting and to
which degree the uncertainty structure may be exploited.

V. CONCLUSION

The proposed S+SC MPC method allows considering the
specific uncertainty structure found in many applications,



where both task uncertainty and task execution uncertainty
are present. As SCMPC is suitable for non-Gaussian task
uncertainty and SMPC copes well with Gaussian execution
uncertainty, the combination shows promising results.

While in this work the S+SC MPC method is applied to
a vehicle scenario, the framework is designed in a general
way, such that it is applicable also to other applications,
e.g., human-robot collaboration. In this robotics setting, a
robotic arm may have the option of moving to one of several
items, while the exact motion towards the specific item may
vary. Without specifically focusing on agents, the proposed
framework may also be applicable to process control or
finance.
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[13] T. Brüdigam, F. di Luzio, L. Pallottino, D. Wollherr, and M. Leibold.
Grid-based stochastic model predictive control for trajectory planning
in uncertain environments. In 23rd IEEE International Conference on
Intelligent Transportation Systems (ITSC), 2020.

[14] A. Muraleedharan, A. Tran, H. Okuda, and T. Suzuki. Grid-based
stochastic model predictive control for trajectory planning in uncertain
environments. In IFAC World Congress 2020, Berlin, Germany, 2020.

[15] J. Schulman, J. Ho, A. Lee, I. Awwal, H. Bradlow, and P. Abbeel.
Finding locally optimal, collision-free trajectories with sequential
convex optimization. In Robotics: Science and Systems 2013, 2013.
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