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Stochastic and dynamic routing with flexible deliveries for an e-grocer

Pieter S. Bouwstra a, Gonçalo Correiab, Peter Bijlc, Rudy R. Negenborna and Bilge Atasoya

Abstract— The quality of the delivery service is a crucial asset
for an e-grocer to create and maintain a loyal customer-base.
With the rapid market growth of e-grocers over the last decade,
there is an urgent need for e-grocer specific routing systems.
Although stochastic and dynamic routing models are studied
for a wide range of applications, e-grocer specific models are
missing in the literature. This paper investigates the concept of
flexible deliveries, which introduces differentiated time window
sizes. This creates the possibility for real-time re-optimization of
the sequence of customers in a trip in order to improve the on-
time delivery performance. The potential of flexible deliveries is
investigated by means of computational experiments in which
historic trip instances from the Dutch e-grocer Picnic are used.
It is shown that, when re-optimization is activated, on-time
delivery performance is improved and this benefit is significant
when flexible deliveries represent at least 10% of the deliveries.
When 10% of the deliveries are flexible, the number of late
deliveries can be reduced by up to 18% and the number
of extreme late deliveries (≥ 15 min late) up to 27%. This
improved on-time delivery performance comes at the cost of a
maximum of 2% increase in the average time spent per delivery.

I. INTRODUCTION

E-grocers offer their customers an online grocery shopping
experience by allowing them to order from virtually any
location within moments. The groceries are delivered at
the customer’s front door or even into the kitchen. When
compared to other last-mile distribution systems, e-grocers
experience large service times relative to their travel times.
Moreover, an important requirement for a good customer
experience is the interaction between the customer and the
driver. The e-grocers’ efforts to perform well on this aspect
lead to a large uncertainty in these service times.

The first e-grocer businesses emerged in the late 1990s [1]
and since the 2010s [2] e-grocers have started to seriously
compete with traditional grocery stores. Because of the suc-
cess of e-grocer start-ups, many traditional food retail market
players have started to invest in an online grocery delivery
service as well [3]. Since e-grocers have only recently started
to gain a significant market share in the total grocery market
[4], not much research has been dedicated to the development
of routing models for e-grocers specifically. Moreover, using
an of-the-shelve routing model does not accurately take into
account the specifics of e-groceries, such as the perishable
nature and the importance of the customer’s trust in the
quality of an e-grocer’s delivery service [5], [6], [7].

The research community has made rapid developments in
the fields of stochastic and dynamic routing models during
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the past decade [8], [9]. Results suggest that the use of
such models improves the routing performance for a large
variety of applications, e.g. [10], [11], [12]. However, such
models are not yet investigated and used to improve the last-
mile delivery service for e-grocers specifically. This paper
addresses this gap with the development of stochastic and
dynamic routing models to improve the performance of an
e-grocer’s routing. For this purpose, the concept of “flexible
deliveries” is employed where flexible deliveries have larger
time windows than regular ones. This flexibility allows for
dynamic re-optimization of the sequence of customers during
the trip and therefore creates a potential to mitigate the
effects of running early or late (due to various conditions
such as weather, road or service specific requirements). The
effectiveness of the proposed models is assessed by means
of a set of computational experiments that use real data
instances from the Dutch e-grocer Picnic1.

The remainder of this paper is structured as follows. First,
related literature on dynamic and stochastic routing models
is covered in Section II. Different variants of routing models
with flexible deliveries are presented in Section III. Section
IV evaluates the performance of these routing model variants
with experimental results. The paper is concluded with future
research directions in Section V.

II. RELATED LITERATURE

In this section, we review the stochastic and dynamic
routing model elements used in the literature that led us to the
development of the concept of flexible deliveries. Therefore,
it is limited to the most relevant studies.

When it comes to differentiating customer service, [13]
study a capacitated vehicle routing problem with stochastic
demands (VRPSD) and introduce the concept of premium
customers for whom, the probability that their demand is met
is larger than other customers. Nevertheless, the concept of
flexible deliveries we study in our paper makes a distinction
with regards to the delivery time window size rather than the
probability of the demand being met.

Re-routing strategies with the reordering of customers in
the remaining sequence of a trip are investigated by [14]
with a dynamic vehicle routing problem (DVRP). They use
real-time traffic data to make these adjustments to the trip
planning. However, they do not consider the time window
constraints in this adjustment step which is addressed by
our study. Furthermore, in the context of an urban freight
transport problem, [16] look into the potential of using real-
time traffic times for re-optimization of the allocation of
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TABLE I
RELATED LITERATURE

Study Problem Stochastic Dynamically re-optimized Time windows
type element(s) element(s) constraints

Chen et al. (2018) [13] VRPSD Demand None None
Ng et al. (2017) [14] DVRP Travel times Customer sequence in a trip None
Errico et al. (2016) [15] DVRPTW Service times Skipping service at a customer Yes
Taniguchi et al. (2004) [16] DVRPTW Travel times 1. Number of trips

2. Trip departure times
3. Customer sequence in each trip

Yes

This study DTSPTW 1. Service times
2. Travel times

Customer sequence in a trip Yes

customers to trucks and the sequence of customers in a trip.
Their problem includes multiple degrees of freedom which
can be re-optimized: the number of trucks, trip departure
times and sequence of customers in each trip. In our paper,
only the sequence of customers in each trip can be re-
optimized which makes the problem more constrained to
make a significant impact by means of re-optimization.

[15] investigate dynamic VRP with hard time windows
(DVRPTW) and stochastic service times. They investigate
two simple recourse actions: skip the service at the current
customer or skip the service at the next customer. In the
context of e-grocers such recourse actions are not viable.
Therefore, in this paper a more sophisticated re-optimization
of the sequence of residual customers is investigated.

From Table I it can be concluded that the combination
of using a re-optimization model to reconsider the optimal
sequence of remaining customers in a trip and the presence
of time window constraints is precedented by [16]. However,
[16] only considers stochastic travel times while this paper
also considers stochastic service times. Moreover, this paper
focuses on trip instances specifically encountered by e-
grocers. The other studies listed in Table I address a general
application of their problem type.

III. PROPOSED MODELS

The VRPs solved by e-grocers are large in size and
computational time budget is limited to meet the operations.
One solution is to split the traditional VRP into two separate
problems: customer-trip assignment and sequencing problem.
The customer-trip assignment model needs to be solved the
evening before delivery after the orders are collected and
therefore has usually very limited computational time. In the
sequencing problem, it is feasible to use stochastic travel
and service times to optimize the sequence of customers
because the size of this problem is small once the customers
in a trip are assigned. When the trip begins, re-optimization
takes place shortly before the driver departs from a customer.
The a-priori sequence of customers should create room for
an effective online re-optimization of the customer sequence
for improving the performance of the delivery service. The
objective for the routing model is therefore to maximize the
on-time delivery performance and minimize the operational
costs. In this research, the operational costs are represented
by the average time spent per delivery.

The considered components of the routing model in the
case of an e-grocer are illustrated in Figure 1. The scope

of this study is limited to the a-priori sequencing model
and the real-time re-optimization model that adjusts the
sequence of the remaining customers. The customer-trip
assignment relies on a simple deterministic model to initiate
the framework. In order to investigate the performance of
different approaches to the concept of flexible deliveries,
three different sequencing models and one re-optimization
model are designed which are presented in Sections III-A,
III-B, III-C and III-D, respectively.

Fig. 1. Models for an e-grocer’s routing

A. Benchmark sequencing model

This model is used as the benchmark model due to its
simplicity and deterministic nature. The set of all nodes is
represented by N where V ⊂ N represents the customers
nodes. All trips depart from and end at the hub which is
represented by starthub and the endhub nodes. The routing
is given by the binary decision variable Xi,j which is 1 if arc
(i, j) is included in the trip and 0 otherwise. Additionally,
the arrival time at node i is represented by variable Ti.

The optimal sequence of customers is determined based
on the minimization of the total trip duration which is the
dominant objective function as given in (21) with a large
multiplier M . However, a trip can depart from the hub at
several moments resulting in the same total trip duration.
In this case, the departure time is determined based on
the optimization of time-window overlap; the model prefers
solutions where the planned moments of delivery lie in the
middle of the delivery time windows. The delivery time
window (RDW is the size of a regular delivery window) is
constrained by the order window (for customer j is given by
(OTWSj-OTWEj)) with SEAi and SLAi variables which
represent the early and late arrival, respectively as given by
Constraints (12) and (13). These are penalized in a quadratic
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fashion to penalize larger deviations more.

minM(Tendhub − Tstarthub) +
∑
j∈V

(SEA2
j + SLA2

j ) (1)

s.t.∑
j∈N

Xi,j = 1 ∀i ∈ V (2)∑
i∈N

Xi,j = 1 ∀j ∈ V (3)∑
i∈N

Xi,starthub = 0 (4)∑
j∈N

Xstarthub,j = 1 (5)∑
i∈N

Xi,endhub = 1 (6)∑
j∈N

Xendhub,j = 0 (7)

Tj ≥
∑
i∈N

Xi,j(Ti + STi + TTi,j) ∀j ∈ V. (8)

Tstarthub ≤
∑
∀j∈V

Xstarthub,j(Tj − TTstarthub,j) (9)

Tendhub ≥
∑
∀j∈V

Xi,endhub(Ti + STi + TTi,endhub) (10)

PTWSj ≤ Tj ≤ PTWEj ∀j ∈ V (11)
Tj + SEAj ≥ OTWSj + 0.5RDW ∀j ∈ V (12)
Tj − SLAj ≤ OTWEj − 0.5RDW ∀j ∈ V (13)
Xi,j ∈ {0, 1} ∀i, j ∈ N (14)

Constraints (2)-(7) ensure spatial continuity for the routing
decisions. Time consistency is guaranteed by Constraints (8)-
(10) and Big-M constraints are used to linearize them. STi

is the planned service time at customer i and TTi,j is the
travel time on arc (i, j). Constraints (11) ensure a planned
arrival within the customer’s planning window (PTWSj-
PTWEj) which is smaller than the customer’s order window
(OTWSj-OTWEj) and used to prevent a planned arrival
time in the closing minutes of this order window.

B. Simulation-based sequencing model

The simulation-based sequencing model is developed
based on the benchmark sequencing model and it is a
stochastic sequencing model since the optimal sequence of
customers is selected based on a comparison of performance
predictions of multiple solutions. A similar approach in the
context of a VRPSD is taken by [17] where they search for
the optimal number of trips to deliver uncertain amounts of
goods to a set of customers.

This sequencing model completes n runs of the benchmark
sequencing model. In each next run, the solution(s) found in
the previous run(s) (s ∈ S) are eliminated. This results in a
different solution for each run. The mathematical model is
similar to that of the benchmark sequencing model (Section
III-A). In order to arrive at different solutions, Constraints
(15) are added to the model where ASs represents the

set of arcs used in solution s. The n best solutions are
looked for whenever feasible and the best solution among
this set is picked based on the a-priori simulated average
on-time delivery rate over 25 iterations of the solution. This
simulation is performed as explained in Section IV.∑

(i,j)∈ASs

X(i,j) ≤ len(N)− 1 ∀s ∈ S (15)

C. Heuristics-based sequencing model

In order to maximize the potential of real-time re-
optimization, it is interesting to investigate how the a-priori
sequencing model can contribute to creating possibilities for
effective re-optimization. For this purpose, an exploratory
research is conducted where flexible deliveries are assigned
to specific indices in a trip representing the order of visit.
Historical trips from Picnic for one day of operation are used.
Next, simulations of those trips are performed, including
the re-optimization model (Section III-D). The exploratory
research makes use of trip instances which span two one-
hour order windows in order to see the impact. By means
of this approach insights are gained in effective positions of
flexible deliveries within a trip as follows:

• For the first order window (first hour), the possibility
for re-optimization is most effective when the flexible
delivery is positioned at the middle of that window.

• For the second order window however, the possibility
for re-optimization is most effective when the flexible
delivery is positioned at the start of that window.

The results from the exploratory research point out that
the positions of flexible deliveries within the trip sequence
significantly affect the performance of the sequencing model.
Therefore, these findings are translated into the formula-
tion of the heuristics-based sequencing model in order to
maximize the re-optimization possibilities offered by flex-
ible deliveries. This mathematical model is similar to the
benchmark sequencing model (Section III-A). The adapted
objective function is given by:

(16)

min M
∑
j ∈V

OIDj +M/1000(Tendhub − Tstarthub)

+
∑
j∈V

(SEA2
j + SLA2

j )

where the first term is the deviation from the optimal delivery
index facilitated by variable OIDj . Note that, the last term is
related to the deviation from the communicated delivery time
windows (which was the order window in the benchmark
sequencing model in Section III-A).

New constraints are given in (17)-(20). Constraints (17)
calculate the index of each customer in the trip which is
represented by variable Ij . Note that the hub is placed at
the initial index (18). Constraints (19) and 20 determine the
absolute value of the difference (OIDj) between the optimal
index of node j (OIj) and the index of node j in the solution
(Ij). The index of each node in set OD is optimized based
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on the heuristics inspired by the exploratory research.∑
j∈N

Xi,j ∗ (Ij − Ii) = 1 ∀i ∈ N (17)

Istart hub = 0 (18)
OIDj ≤ OIj − Ij ∀j ∈ OD (19)
OIDj ≤ −OIj + Ij ∀j ∈ OD (20)

D. Re-optimization model
The re-optimization model is executed when departing

from each customer, except the last two customers in the
trip (as they do not improve the objective). Inputs are
the currently followed trip planning (planned hub departure
times, travel times and service times), delivery time windows
and the trip progress. The output is the re-optimized customer
sequence. Similar to [9], a route-oriented approach is used
instead of a customer-by-customer approach such that the
remaining part of trip is re-optimized fully instead of merely
the next customer in the trip. This remaining part of the trip
consists of the current node, all remaining customer nodes,
V R, and the endhub node.

The re-optimization model makes use of a smaller de-
livery time window given by (TWSj-TWEj) for regular
customers as during the operations it is reduced when com-
municating to them (see Section IV). When the progress of a
trip falls behind the trip planning calculated a-priori, the use
of hard time windows constraints might result in an infeasible
problem and therefore soft time windows constraints are
used. Opposed to other researchers who penalize lateness
or earliness in a linear fashion [18], [19], [20], this model
includes a quadratic penalty in order to penalize larger
deviations more. The adapted objective function is given by:

min dev opt
∑
j∈V

D2
j + Tendhub − Tcurrentnode, (21)

where Dj is the total deviation from the optimal arrival
window of customer j and dev opt is the corresponding
penalty of this deviation. The value of dev opt depends on
the trade-off between the two elements in the objective.

The routing constraints are similar to the benchmark
sequencing model constraints (2)-(10) in Section III-A with
a difference that now the decisions can only be changed for
the remainder of the trip. In order to optimize the chance
that a driver arrives on time, additional constraints (22)-(24)
are considered. The optimal arrival window is (TWSj+SM -
TWEj-SM ) where SM is the safety margin. Ej and Lj

represent the earliness and lateness with respect to the
optimal arrival window, respectively, which then determine
the total deviation Dj used in the objective function.

Ej ≥ (TWSj + SM)− Tj ∀j ∈ V (22)
Lj ≥ Tj − (TWEj − SM) ∀j ∈ V (23)
Dj ≥ Ej + Lj ∀j ∈ V (24)

IV. CASE STUDY: DUTCH E-GROCER PICNIC

The performances of the proposed models are evaluated
through a case-study based on Dutch e-grocer Picnic’s oper-
ations. In Picnic’s operations, the groceries are brought to the

city hubs by trucks and from those hubs they are distributed
to the customers by EVs [21]. In this paper, we focus on this
distribution from the hub to the customers as the last-mile
delivery. The requirements are listed as follows:
• A free one-hour delivery time window needs to be

offered to the customers when they place an order (i.e.
order time window (OTWSj-OTWEj)).

• A 20-min delivery time windows (TWSj-TWEj)
needs to be communicated at the morning of the deliv-
ery. If the customer is flexible, this stays as one-hour.

• Maximum computation time for customer-trip assign-
ment is one hour for fleet management the evening
before the delivery.

• Maximum computation time for trip planning is six
hours to make sure the plan is ready before the morning.

An overview of the experimental method is provided
in Figure 2. Benchmark (B), simulation-based (S) and
heuristics-based (H) sequencing models are comparatively
analyzed with and without re-optimization. Historical data
from the e-grocer Picnic is used to sample realizations of
travel and service times. For this purpose, trips from a
hub in the south of Netherlands are used. 10 repetitions
of the simulation experiments are considered in order to
generate confidence intervals. The penalty of deviation from
the optimal arrival times (dev opt) is set as 100 and the
safety margin (SM ) is set as 10 min.

Fig. 2. Overview of the experimental method

The completed simulated trips are analyzed on their on-
time delivery rate, rate of extreme late deliveries (≥ 15
min) and average time spent per delivery. Experiments are
executed on a personal computer with 16 GB of RAM and
a 1.90 GHz processor. Models are programmed in Python
3.7. The a-priori sequencing model and the real-time re-
optimization model call the Gurobi MILP solver to find the
optimal sequence of customers.

Two types of customer-trip assignments are investigated;
for a small and a large vehicle. The large vehicle can
carry 33% more groceries than the small vehicle. Figure
3 illustrates the vehicle sizes in comparison to a standard
Toyota Prius. Moreover, two different sizes of the flexible
delivery time windows are used: 60 min and 75 min.

The results for the different combinations of vehicle sizes
and flexible delivery window sizes are presented in Table II
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Fig. 3. Scale of the vehicle sizes: small vehicle type (top), large vehicle
type (bottom) and a reference car (middle)

with 10% flexible deliveries. Note that the results are pro-
vided with the 95% confidence interval. It can be concluded
that when re-optimization is activated, on-time delivery per-
formance is improved. However, re-optimization comes at
the cost of an increased average time spent per delivery. The
simulation-based sequencing model proves to be effective
without re-optimization for the large vehicle. For the small
vehicle, the simulation-based sequencing model needs the
re-optimization model to significantly outperform the bench-
mark. The simulation-based and heuristics-based sequencing
models show similar performance in terms of late deliv-
eries when combined with re-optimization. The heuristics-
based approach appears to outperform the simulation-based
approach in terms of the rate of extreme late deliveries,
especially for the large vehicle. However, the configuration
including the simulation-based sequencing model results in
a 1% lower average time spent per delivery, irrespective of
the vehicle size or the size of the flexible delivery windows.

Extension of the flexible delivery windows to 75 min
results in a significant improvement of the on-time perfor-
mance and is largest for the small vehicle. It is evident that
the choice for the routing model has a larger effect for the
large vehicle case. The results obtained using small vehicle
customer-trip assignments and 75 min windows are presented
in Figure 4 in more detail with different fraction of flexible
deliveries. The significance of the reduction in the number of
late deliveries can be clearly observed when re-optimization
is activated especially after 10% of flexibility.

V. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this paper, the potential of stochastic and dynamic
routing models is shown to improve the on-time delivery
performance of an e-grocer’s last-mile distribution system.
The concept of flexible deliveries was demonstrated to suc-
cessfully add a degree of freedom to the routing system,
which is required to make effective use of real-time re-
optimization. The experimental results demonstrate that the
use of a stochastic a-priori sequencing model improves the
performance as defined by an e-grocer. The effectiveness
of the concept of flexible deliveries depends on the type
of vehicles used, the fraction of flexible deliveries and the

size of the flexible delivery windows. When compared to
the static and deterministic benchmark configuration, the
potential gain through the use of a stochastic and dynamic
configuration is most profound for the large vehicle. When
the fraction of flexible deliveries increases, the effects of re-
optimization become more evident. When 10% of deliveries
are flexible, real-time re-optimization can significantly im-
prove the performance of the last-mile distribution system.
Extending the flexible delivery window results in further
improvement of the on-time delivery performance of the
routing system, however, it also increases the average time
spent per delivery and thereby increases the operational costs.

In this research, the scope is limited to the sequencing and
the re-optimization models. For the computational experi-
ments a simplistic customer-trip assignment model was used,
which is not optimized for the concept of flexible deliveries.
Therefore, it would be interesting to investigate the effects
of a customer-trip assignment model when integrated in the
framework. A possible research topic would be the design
of a customer-trip assignment model that spreads the flexible
deliveries over different trips more evenly.
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TABLE II
RESULTS WITH 10% FLEXIBLE DELIVERIES

Late Deliveries
Models Small vehicle Large vehicle

Sequencing Re-opt. Default FTW Extended FTW Default FTW Extended
Benchmark No 0.0±10 % -3.1±9.6 % 0.0±9.9 % -2.8±9.3 %

Simulation-based No -1.8±11 % -4.7±11 % -7.8±14 % -11±13 %
Simulation-based Yes -3.9±10 % -12±10 % -13±13 % -19±13 %
Heuristics-based Yes -4.5±11 % -14±11 % -12±10 % -18±9 %
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[19] D. Taş, N. Dellaert, T. Van Woensel, and T. De Kok, “Vehicle routing
problem with stochastic travel times including soft time windows and
service costs,” Computers and Operations Research, vol. 40, no. 1,
pp. 214–224, 2013.
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