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Attention-based Vehicle Self-Localization with HD Feature Maps

Nico Engel, Vasileios Belagiannis and Klaus Dietmayer

Abstract— We present a vehicle self-localization method
using point-based deep neural networks. Our approach pro-
cesses measurements and point features, i.e. landmarks, from a
high-definition digital map to infer the vehicle’s pose. To learn
the best association and incorporate local information between
the point sets, we propose an attention mechanism that matches
the measurements to the corresponding landmarks. Finally, we
use this representation for the point-cloud registration and the
subsequent pose regression task. Furthermore, we introduce
a training simulation framework that artificially generates
measurements and landmarks to facilitate the deployment
process and reduce the cost of creating extensive datasets from
real-world data. We evaluate our method on our dataset, as well
as an adapted version of the Kitti odometry dataset, where we
achieve superior performance compared to related approaches;
and additionally show dominant generalization capabilities.

I. INTRODUCTION

The localization of autonomous agents in an unknown
environment with a high-definition (HD) digital map as
prior is a key component in state-of-the-art robotic sys-
tems, including self-driving cars [1]. It is important for
other automated driving modules such as the human-vehicle
interaction [2], trajectory prediction in perception [3] and
tracking [4]. The goal is to infer the vehicle’s pose, which
is comprised of a position and an orientation [5]. Normally,
the pose is estimated in the global or local coordinate system
relative to the digital map, which can then be used to
extract useful information from the map [6]. Furthermore,
the localization accuracy is expected to be around 50 cm [7]
for real-world applications.

The standard vehicle self-localization approach is to rely
on global navigation satellite systems (GNSS), e.g. GPS,
to obtain the pose estimate. However, they fail to meet
the required localization accuracy, especially in urban en-
vironments, and suffer from multi-path effects, and blocked
line-of-sight to the satellites, which further deteriorates the
localization quality [8]. Also, the GPS signal can be com-
bined with correction data (dGPS) and inertial measurement
units (IMU) to further improve the localization accuracy,
but due to the high acquisition and operation costs, it is
not sustainable for mass deployment. Alternatively, one can
create high-definition digital maps that contain distinct and
easily recognizable high or low-level features, extracted from
the on-board sensor data, such as camera, laser and radar.
The sensor measurements are registered with the features
from the digital map to infer the vehicle’s relative pose
inside the map frame. Several methods have been proposed

Authors are with Institute of Measurement, Control and Microtech-
nology, Ulm University, Albert-Einstein-Allee 41, 89081 Ulm, Germany
{firstname.lastname}@uni-ulm.de. Project Page: https:
//github.com/engelnico/deeplocalization.

in the field of robotics to perform the inference, ranging from
simple point to point registration approaches, e.g. ICP [9], to
more sophisticated methods that utilize filtering approaches,
such as the Extended Kalman-Filter (EKF) or the particle
filter [10]. The association of the measurements to the map
features, often called landmarks, is usually performed by
assigning the most likely measurements to each landmark
using either a heuristic or probabilistic approach. In urban
environments, these algorithms suffer from erroneous asso-
ciations from noise that is caused by the highly dynamic
scenarios with numerous road participants [11].

Currently, the promising way for localization is the data-
driven approach [12], [13]. An appropriate dataset has to
be created that ideally captures most of the desired areas
of operation for obtaining a model that generalizes well
during deployment. However, it is not feasible to create
and label datasets in hundreds of cities around the world
and updating them whenever environmental changes or new
scenarios emerge. We also follow the data-driven approach
but propose a simulation framework to generate synthetic
training data. We can train a deep neural network to perform
localization without the necessity of acquiring a plethora of
real-world data. Although DeepLocalization [12] is related
to our approach, it not able to learn local data relations.

We define the localization process as two tasks, namely
the landmark to measurement association and the point
cloud registration. For the association process, we present
an attention mechanism to score each landmark assignment
for subsequently learning the most probable associations.
Based on the weighted representation of the measurements
and landmarks, we generate local features that are used for
the point cloud registration process. Then, another atten-
tion operation combines all measurements and landmarks
to predict the vehicle’s pose. For the inference process,
we propose a GPS-based and a filter-based approach, that
allows us to estimate a pose offset based on a previous pose
similar to our training pipeline. We show that employing the
attention mechanism for the different tasks greatly improves
the localization accuracy on different datasets compared to
the related work, especially in dynamic and complex envi-
ronments. Additionally, we propose a simulation framework
that enables us to train the network by artificially generating
landmark and measurements. We do this by designing a
probabilistic model that is inspired by the spatial occurrence
of real map landmarks. The evaluation shows, that a network
trained on artificial samples is able to generalize to real-
world data, thus significantly reducing the resources needed
to deploy our approach while still meeting the required
accuracy in urban scenarios of about 50 cm.
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II. RELATED WORK

In the following, we compare and discuss related ap-
proaches for vehicle localization. We distinguish between
traditional model-based approaches, such as localization
methods that use filter-based algorithms, and learning-based
approaches, i.e. deep neural networks.

A. Model-based approaches

In the field of robotics, different model-based methods
have been proposed to solve the task of self-localization
by using a digital map as prior to estimate a pose or by
simultaneously constructing a map while localizing itself in
an unknown environment, i.e. SLAM.

Censi [14] proposes PLICP, an improvement to the iter-
ative closes point algorithm by introducing a point-to-line
metric instead of the originally used point-to-point metric
that can be used to register measurements with a feature-
based map. Moreover, PLICP improves the convergence
properties while also converging in a finite number of steps.
Contrary to this, Fontanelli et al. propose a RANSAC-based
localization approach using lidar measurements that is both
accurate and copes with noisy measurements [15]. Using an
Extended Kalman-Filter, Teslic et al. introduce a localization
framework that combines wheel encoders to predict the
robot’s motion and laser scans to correct the robots pose
by matching the measurements with a digital map [16].

A very well-known approach by Dellaert et al. implements
a probabilistic model by representing the robot’s state space
as a particle-based density [17]. The Monte-Carlo Localiza-
tion (MCL) is able to efficiently represent arbitrary distribu-
tions, in this case the robot’s pose, while being more accurate
and requiring less memory compared to related methods.
Later, Thrun et al. [5] improve the algorithm by introducing
two methods of generating particles in the estimation and
learning a kernel density tree to enable faster sampling.
Based on the Monte-Carlo Localization, Montemerlo and
Thrun develop the FastSLAM algorithm, which combines the
MCL with an EKF to generate a landmark-based map while
enabling a robot localization in unknown environments [18].
Additionally, Stuebler et al. propose the RFS-MCL [19],
that combines the Random-Finite Set theory with a particle
filter-based localization approach. Since then, many SLAM
algorithms have been proposed, e.g. [20], [21], with a heavy
focus on camera-based approaches, e.g. [22], [23]. This trend
of using vision-based systems can also be observed for the
localization task, i.e. visual odometry (VO) [24].

B. Learning-based approaches

Besides model-based approaches, recent work focused on
learning-based methods using deep neural networks. Since
traditional neural networks like convolutional neural net-
works (CNN) or simple multi-layer perceptrons (MLP) re-
quire the input to be structured and ordered, most approaches
use a vision-based system, i.e. camera images, to perform the
localization task.

Yang et al. [25] propose SANet, a scene agnostic frame-
work for camera localization, where they separate the scenes

and model parameters and learn a hierarchical scene repre-
sentation. Thus, SANet is independent of the scenes and can
easily be deployed to online tasks, such as navigation and
SLAM. Radwan and Valada introduce a network architecture
called VLocNet++ [13], where they combine the learning
of semantics, regressing the global pose of a camera and
odometry to exploit the relationships between the tasks
to increase the overall performance. On the other hand,
Kendall et al. propose PoseNet [26] which is a real-time
localization system based on convolutional neural networks,
that is designed to regress the cameras pose from a single
RGB image. Similar to the localization methods using ICP
variants to register two point clouds, DeepICP [27] is an end-
to-end trainable neural network, where a key-point detector
is trained such that it focuses on stationary objects and
avoids dynamic objects. This is achieved by generating
corresponding points by matching possible candidates based
on learned probabilities. Wang et al. introduce an attention-
based camera relocalization system [28] that is robust to
outliers and dynamic illumination conditions. The attention
mechanism is used to learn a geometrical representation
that focuses on robust features. Contrary to our approach,
AtLoc is restricted to camera images only, whereas we focus
on a generic feature representation that can handle multi-
modal sensor measurements. Finally, Lu et al. propose L3-
Net [29], a learning-based lidar localization framework that
incorporates multiple network structures, such as convolu-
tional neural networks (CNN) and recurrent neural networks
(RNN), to learn local descriptors for 3D point cloud data.
However, due to multiple network stages that increase the
overall complexity and model size, the computational time
suffers and in some cases violates our real-time requirement
of about 100 ms.

A comprehensive survey on the topic of deep-learning
based localization methods can be found in [11].

III. METHODOLOGY

In this section, we introduce our methodology, the
attention-based model as well as our training and inference
process. We assume 2D multi-modal sensor measurements as
one input set, denoted by M = {m1,...,m,}, m) € R?.
Furthermore, we consider landmarks from our digital map
L={ly,...,1u}, () € R? as the second input to our net-
work. Landmarks are easily recognizable and static objects,
e.g. trees, traffic lights, poles, that were generated from
sensor measurements during the map building process, that
we describe in Section IV. Here, it is important to note that
both input point sets are unordered and the cardinality of the
sets, i.e. the number of measurements v and landmarks p, is
not known in advance.

A. Problem Formulation

The goal of localizing an agent is to find the relative
pose p = [z,y, | within a given coordinate system, e.g.
the map frame. For this, we consider current multi-modal
sensor measurements with the aim of matching them to the
landmarks from the digital map which are in the vehicle’s
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Fig. 1.  Overview of our network architecture. First we group all landmarks in the vicinity of each measurement using the k-Nearest Neighbour

algorithm. Then, we learn the most probable matching by employing the local attention mechanism, which weights the associations (a). Finally, we use
this representation to register the measurements and the landmarks and infer a pose correction vector (b).

field of view. The matching set function is defined as
following:

f(M, L) = [z,y,¢]. (1)

We split this set matching problem into two subtasks: a) The
landmark to measurement association, where we try to match
both input point sets such that the most probable landmarks
are assigned to the corresponding sensor measurements. For
this, we employ the attention mechanism, which learns to
score each possible landmark to measurement association. b)
A global point cloud registration process in higher dimen-
sional space using the local associations. The result of the
registration process is a spatial transformation that describes
the mapping of the landmarks to the measurement set, i.e. the
pose prediction. In this work, we approximate the matching
function (1) with a deep neural network, given by:

f(M,L) =~ gg(hy(M, L)), )

where we denote the set of learnable parameters by 6, ¢. Fur-
thermore, the landmark to measurement association process
is defined as hy(-) and the point cloud registration together
with the subsequent pose regression is combined as go(-).

B. Attention-based model

The measurements M and the landmarks (features) L
serve as input to our network, which is visualized in
Fig. 1. In the first step of the landmark to measurement
association process, see Fig. la), we employ a k-Nearest
Neighbour (kNN) search to find the %k closest landmarks
to each measurement. We perform the kNN to take into
account the spatial relationship between measurements and
landmarks: Measurements ideally originate from landmarks,
therefore we only consider landmarks in the vicinity of
the measurements for the association process. Then, for
every measurement we calculate the Euclidean distance of
the k associated landmarks and transform the result into
higher dimensional space d,,, = 256 using a row-wise feed
forward (rFF) network. A rFF is a feed-forward network
that receives only one point as input but shares its weight
with all subsequent points [30]. Then we employ a multi-
head attention module [31], as it can capture context and

higher order dependencies of point sets [32]. Furthermore,
we leverage the fact that the attention mechanism scores the
input sets, thus we learn a weighting of the most probable
association. For that reason, we define the attention function
A that describes a mapping of N queries Q € RV*? and
N}, key-value pairs K € RV+*d 1/ ¢ RNeXd to the output
space RV>4 as follows

T
QK> Vi 3)
1/\/3
which is also known as scaled dot product attention
AQ, K, V) : RNxde RNexd RNexd _y RNXd [3]] The
activation function o (-) that also denotes the aforementioned
learned score is usually given by the softmax function

AQuiv) = (

exp(z;)
> exp(a;)’

with o(-) : RVXd RNkxd _y RNXNk Instead of performing
a single attention operation, we follow the ideas of [31] and
employ multi-head attention, where the queries, keys and
values are first linearly projected h times using indepen-
dent feed-forward networks to incorporate spatial relations
in different subspaces. Then, the attention function (3) is
applied in parallel to each of the h projections and the result
is concatenated and linearly projected again. The operation
is described by:

“4)

O softmax (xz ) =

Multihead(Q, K, V) = (head; @ ... ® head,)W?,  (5)

where head; .,él(CQVViQ7 KWE VWY) with learnable
parameter matrices W € R%*4, WK e R WYV e
R4 and WO € R¥¥4 The @ operation denotes matrix
concatenation. Finally, Vaswani et al. define the multi-head
attention block that consists of the attention operation (3) and
residual connections followed by layer normalization [33] as
follows:

AME(XY') = LayerNorm(S + rFF(S)), (6)

where AMH : RNxd RNkxd _y RNXd apd the sublayer S
is defined as S = LayerNorm(X + Multihead(X,Y,Y")).



Furthermore, X and Y denote arbitrary input sets. In the
following we set d = d,,, = 256.

As visualized in Fig. 1, we employ local attention for
subtask (a) and define it as follows:

Aliocal — AMH(m;{lm , L]Z,‘NN% i=1,...,v, (7

where we take each measurement m;, project it to model
dimension d,,, using the rFF depicted in Fig. 1 and apply
the multi-head attention mechanism (6) with the k asso-
ciated landmarks from the kNN algorithm. Thus, we have
mgm c Rlevn’ LllgNN e RExdm and Alioca] —y R1Xdm By
employing the local attention operation (7) we generate latent
features for every measurement that contain a weighted rep-
resentation of all nearby landmarks, see Equation (3). Thus,
our network is able to learn the most probable landmark to
measurement association which is visualized by the weight of
the connection in the attention maps in Fig. 1. After applying
Equation (7) to each measurement and concatenating the
result, we obtain the local feature matrix Mol ¢ Rv>dm
Then, we employ another self-attention operation for subtask
(b) to aggregate global information

Aglobal = J4MH(]\410cal7 ]\4100'&1)7 (8)

with Aglobal . Rvxdm Rvxdm _ R¥Xdm The global atten-
tion mechanism (8) relates the local features of the matched
landmarks and measurements against each other, allowing the
network to learn the point set registration process and cap-
ture higher order dependencies. Afterwards, a maxpooling
operation [34] follows to produce global features of fixed
length that are invariant to input point permutations and
arbitrary input set cardinality. Here, it is important to note
that the attention operation itself is invariant to input point
permutations as well [31]. Finally, we infer the vehicle’s pose
using the learned global features with a simple feed forward
output head as shown in Fig. 1.

C. Model training

For training, we follow the same protocol as in [12] to treat
the problem as a regression task [35] and rely on the ground-
truth pose from our dGPS system as a starting point. Then,
all landmarks in the vehicle’s field of view (FoV) are loaded
from the digital map and are transformed from UTM coordi-
nates into the vehicle’s frame using the dGPS pose. At that
point, both inputs, namely the landmarks and measurements,
are available in the same coordinate system. To imitate real-
world conditions during training, we additionally add a small
translation and rotation to all landmarks by sampling both a
position and a rotation offset from a uniform distribution ¢/
on the interval [—o, o]. Thus, we systematically simulate the
inaccurate GPS measurement pgps. The advantage of this
method is that it is no longer necessary to determine the
global pose, but instead we infer a synthetically the generated
pose offset. Therefore, Equation (1) becomes

f(M,L) — [Az, Ay, Ay, 9

a) GPS-based Inference:

Myeh —— —
Attn-based Ap — -
veh . p —>P—— p
U™ Q Lips Localization
—_— Q|

paps

b) Filter-based Inference:

My —
Attn-based L - N
» Ap; —D—s
Ly Localization P P
U™ _.T)_>

Fig. 2. Overview of the proposed inference methods.

with the pose offset Ap = [Az, Ay, Ap]. The predicted
global pose p can then be easily obtained by

f) = PGps — Aﬁ7 (10)

where the prediction of the network is denoted by Ap. This
method allows us to generate new training samples every
epoch, as the randomly sampled pose offset directly serves
as the training label. Furthermore, it simplifies the training of
the network because we found that inferring a small offset
to be more numerically stable in the optimization process
compared to using the global UTM coordinate system. Since
the rotation and translation offset are given in different units,
i.e. rad and m, we train our network with the same loss
function that learns a weighting factor for each of the loss
parts, as proposed in [36], [12]. In particular, we employ the
L2-Loss for each of the pose component predictions

Luyan = E[(A% — Az)?] + E[(A7 — Ay)?],
Lrot = E[(A@ - A(p)z}’

(11a)
(11b)

where Ly, is the translation loss and L, the rotation loss.
For the total multi-task loss, we combine the loss terms

—S8 —S§
Lt = Lgan€™ ™™ + Stran + Lot ™ "™ + Spor, (12)

where Syan = logo2,,, S = logo2,. Following the
ideas from Kendall et al., oya,00 are the homoscedastic
uncertainties, i.e. learnable parameters for weighting each
loss function [36].

D. Inference

Similar to [12], we present two different inference ap-
proaches, which are also visualized in Fig. 2.

GPS-based inference is the default inference configura-
tion that resembles the training process from Section III-
C. Again, we load all landmarks from the digital map that
are in the vehicle’s field of view LY™ and transform them
into the vehicle’s coordinate system L{h using the noisy
GPS measurement pgps, which is usually supplied in global
coordinates, e.g. UTM. Since the pose that is used for
transforming the landmarks to the vehicle coordinate system
is noisy and inaccurate, it induces a small shift and rotation to
the landmarks, which resembles the synthetic and randomly



Fig. 3. Our test track in Ulm-Lehr. Landmarks are shown as red dots ()

and we visualize the alternative Train / Test split as (1 / , respectively.

sampled pose offset that is applied to the ground-truth pose
in the training process. As mentioned above, the goal is
to infer a pose correction vector Ap that is applied to the
initial pose estimate pgps in order to obtain the global pose
p, see Fig. 2 a). This inference approach can directly be
applied without further adjustments and is our recommended
configuration when a commercially available GPS sensor
with noisy measurements is installed.

Filter-based inference extends our system architecture
with an Extended Kalman-Filter in order to obtain a tem-
poral filtered and smooth pose estimate. To highlight the
incorporation of the time domain, we slightly change our
notation as shown in Fig. 2 b). The algorithm requires an
previous pose estimate p;_; which can either be supplied
by a commercially available and noisy GPS system for
initialization or from the previous time step ¢ — 1. Similar
to the GPS-based inference, we use p;_; to transform the
landmarks from the digital map L™ to the vehicle coordi-
nate system L'*" and use it as input to our network together
with the current measurements. Since landmarks that are
transformed with the previous pose estimate together with
current measurements are used as input to our network, we
again obtain a small shift and rotation due to the vehicle’s
motion. The correction output Ap; is applied to the previous
pose estimate p;_1, which is then used as measurement input
to the Extended Kalman-Filter with a constant turn rate
and velocity motion model (CTRV). The output pEXF is a
smoothed estimate of the global pose. In the next time step,
we use this estimate as the initial pose p;_;. The advantage
of the filter-based inference approach is that it requires only
one GPS measurement for initialization and can then be used
as a stand-alone localization method. Furthermore, in [12]
we show that the computational overhead of the EKF is
negligible.

IV. DATASET

In this section, we introduce our dataset which consists
of a high-definition (HD) digital map with point features,
i.e. landmarks, and multiple recordings with sensor mea-

surements on our test track in Ulm, Lehr, that is shown in
Fig. 3. The test track is about 6 km long with urban and rural
roads, intersections, roundabouts and merging lanes. For the
measurement dataset, we recorded multiple runs in Novem-
ber 2018 using our autonomous vehicle which is equipped
with a camera, radar and laser sensors, as well as a dGPS
system that provides high precision pose information that
we use for the training process and for evaluation purposes.
Additionally, we employ a simple pre-processing pipeline
where we cluster the raw measurements to obtain more stable
and reliable point features. For this, we cluster the laser and
radar measurements using the density-based DBSCAN [37]
and for camera images, we extract features using the max-
imally stable extremal region algorithm (MSER) [38]. For
every measurement time step, we additionally record the
vehicle’s high-precision pose using the dGPS system. Finally,
for training our network we introduce two train / test splits:
1) a uniform distribution, in which we use six complete
runs for the training split and two additional runs for the
test split, and 2) a spatial split visualized as (1) / @) in
Fig. 3, to demonstrate the generalization capabilities of
our approach in unseen environments. Our high-definition
(HD) map was generated one year before the measurement
dataset to incorporate a diverse data distribution that closely
resembles the dynamic environment prevalent in most urban
scenarios. As mentioned above, our map contains generic
landmarks (features) that are created from our pre-processed
sensor measurements. During our map building process, we
classify a single measurement as static and easily recogniz-
able when it is seen multiple times on different runs. For
that, a Bernoulli-filtering approach is employed as proposed
by Stuebler et al. [39], that assigns an existence probability to
every landmark candidate. Finally, we only select landmarks
that have a high existence probability to build our map. In
total, the digital map consists of 3860 landmarks and has a
size of only 600kB. Furthermore, the landmarks are stored
in the Universal Transverse Mercator (UTM) coordinate
system, while the measurements are stored in the vehicle
frame that has its origin at the center of the rear axle. An
in-depth explanation of the map creation process and the pre-
processing pipeline can be found in [39], [12]. Additionally,
we use the Kitti odometry dataset [40] to evaluate our
approach on a public dataset. Since our approach relies on
a single feature for each object, we only use the provided
camera images and extract landmarks for the digital map
and measurements using the MSER algorithm as described
above.

V. TRAINING SIMULATION FRAMEWORK

Besides our approach, we present a training simulation
framework that allows us to synthetically generate training
data without the need of recording real world measurements.
Ideally, our landmark-based localization method can be
deployed in a variety of environments and scenarios. This
requires a diverse and extensive training dataset that enables
the network to generalize to unseen data points. However,
creating and maintaining a large-scale dataset in multiple
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Fig. 4. Measurement distribution from our dataset (left) and two possible approaches for the simulated measurement model using 2D Gaussian distributions
(center and right). Darker patches indicate areas where measurements appear more frequently.

urban and rural areas is both expensive and labor intensive.
Instead, we propose a training simulation framework, which
is based on real-world data. Since static objects are usually
located at the side of the road, e.g. traffic signs, poles
and trees, the landmarks are distributed mostly along the
longitudinal axis, as we show in Fig. 4 a), where darker
areas indicate a more frequent occurrence of landmarks
in the vehicle’s field of view. Based on the measurement
distribution of our dataset, we model the location using a
multivariate normal distribution with mean p € R? and
covariance matrix ¥ € R?*? given by:

3= nTE - ).

1
Ve F <_2
(13)

In Fig. 4 b) and c), we demonstrate two possibilities
of modelling the measurement distribution. In b) we set
p=[20 0] and ¥ = diag(100,15). To better incorporate
the fact that the measurements occur on the side of the
road, we use a Gaussian mixture N (p, X) = M (p1,21) +
)\QNQ(’U27Z2), with M1 = [20 —2], Mo = [20 2], 21 =
¥y = diag(120,1) and A2 = 0.6. The resulting Gaussian is
visualized in Fig. 4 c). Each training step, we randomly draw
v measurements from the Gaussian M ~ N(u,Y), where
again v is a random variable v ~ U (Vmin, Ymax ). Considering
ideal sensors that detect each landmark in the vehicle’s
field of view, the set of measurements and landmarks are
equal M = L, thus we duplicate all our synthetically
sampled measurements. However, we identified three effects
that deteriorate the quality of the input data: 1) Clutter
measurements did not originate from a landmark either due
to dynamic objects or a faulty sensor. 2) Missed detections
are landmarks that were not seen by any sensor because the
landmark was obscured or, again, caused by a faulty sensor.
And finally, 3) measurement noise that causes an inaccurate
landmark localization. We model these effects with a Poisson
distribution P(k; \) = (A\¥exp(—2))/(k!), which simulates
the number of events with the mean occurrence rate A. In our
case, we add clutter measurements with a mean clutter rate
of Acuer and we delete measurements with mean miss rate
Amiss- Finally, we add noise to the remaining measurements
by sampling from a uniform distribution U (—0neise; Tnoise )-
To summarize, we first generate v measurements from the
spatial distribution, visualized in Fig. 4. These measurements
are duplicated and then used as landmarks. To simulate

N(M’ X)) =

real-word scenarios and environments, we deteriorate the
measurements by applying multiple effects, such as clutter,
missed detections and measurement noise. The modified
measurements and landmarks form the input to our network,
following the training process from Section III-C.

VI. EXPERIMENTS AND EVALUATION

Here, we present the experiments and the evaluation
results. In particular, we perform real-world experiments on
our Ulm-Lehr datasets as well as the adapted version of the
Kitti odometry dataset [40]. Then, we evaluate our network
architecture using the simulation framework as introduced in
Section V and compare the localization accuracy by changing
the percentage of simulated and real-world training data. Our
network is implemented using PyTorch [41] and we perform
all experiments on a Nvidia Geforce 2080Ti. Furthermore,
we set £ = 8 as we found it to capture all landmarks that
are in the vicinity of each measurement.

A. Real-World Experiments

The results of our real-world experiments are shown
in Table I, where we report the root mean square error
(RMSE). First, we compare the localization accuracy of the
GPS-based inference with our prior work [12] for differ-
ent GPS noise parameters, which are denoted by o.,0,
and o, in Table I a) - ¢). Our approach shows impressive
improvements in every experiment we conducted both on
our own and the Kitti odometry dataset. In some cases, we
improve the localization accuracy up to 54 %. Furthermore,
DeepLocalization [12] has about 1.8 M learnable parameters
with an inference time of about 2ms. Due to the attention
mechanism, the complexity of our network increases to
8.4 M learnable parameters with an inference time of 26 ms,
which still meets our real-time requirements.

Next, we compare the filter-based inference with two
baseline approaches (ICP [9] and an EKF), as well as
related state-of-the-art model-based localization methods in
Table I d) - e). Here, it is important to note that we modified
the FastSLAM [10] and the PHDSlam [42] to only include
the localization algorithm, as the digital map is already
provided by our dataset. Similar to the GPS-based inference,
we achieve the best localization accuracy by a wide margin
on the Ulm-Lehr dataset as well as the Kitti odometry dataset
compared to the related work with a mean accuracy of about
0.16 m - 0.18 m for the position and 1.4° for the orientation.



TABLE I
RESULTS OF REAL-WORLD EXPERIMENTS.

TABLE I
RESULTS OF SIMULATED EXPERIMENTS.

Ulm-Lehr Kitti Odometry [40]
Method T Y © T Y ©

a) GPS-based Inference: 0,0y =2 m, o, = 10°
DeepLoc [12] 0.77m 0.70m 2.5° 0.84m 0.82m 3.1°
Attn-based (ours) 041m 0.51m 1.7° 0.49m 0.55m 2.1°
b) GPS-based Inference: 0,0y =1 m,0, = 4°
0.44m 0.37m 1.3° 0.48m 0.44m 2.3°
020m 0.23m 0.9° 029m 0.32m 1.7°
¢) GPS-based Inference: 0,0, = 0.5 m,0, = 2°
0.27m 0.23m 0.8° 0.35m 0.33m 1.4°
0.17m 0.18m 0.6° 021m 0.24m 1.1°

DeepLoc
Attn-based (ours)

DeepLoc
Attn-based (ours)

d) Related approaches
ICP [9]
EKF + GPS
FastSlam [10]
PHDSlam [42]
RFS-MCL [19]

e) Filter-based Inference
DeepLoc + EKF
Attn-based + EKF (ours)

1.17m 1.46 m 4.9°
0.59m 0.54m 6.5° 1.07m 1.12m 6.5°
0.34m 0.32m 2.1° 0.73m 0.77m 2.9°
0.30m 0.32m 1.7° —
0.28m 0.26 m 1.9° —

1.91m 1.84m 6.1°

0.27m 0.24m 0.8°
0.18m 0.16m 0.6°

0.45m 0.44m 2.1°
0.31m 0.25m 1.4°

Additionally, we evaluate the GPS-based inference with
noise parameters o.,0, = 1 m,o, = 4° on our alternative
train/test split, visualized as (1) / @ in Fig. 3, to show
the generalization capabilities of our approach. With the
uniform split our network achieves a localization accuracy
of 0.20m to 0.23m and an orientation accuracy of 1.7°.
When we train the network with the spatially divided dataset

1)/ @) , the localization accuracy only drops to 0.29 m and
0.33m for the = and y component, respectively. We achieve
an orientation accuracy of about 1.9°. These results show,
that even though the network has never been trained on the
area marked as (2) , our approach is able to localize in an
unknown environment and achieve an accuracy that meets
the requirement for urban scenarios. Finally, the localization
accuracy of an exemplary 2min drive on our test track is
shown in Fig. 5. We additionally highlight the RMSE as
well as the maximum error for each pose component.

B. Simulated Experiments

The results of our simulated experiments are shown in
Table II. Here, we report the RMSE for the GPS-based
inference with noise parameters o,,0, = 1 m,o, = 4°
in Table II a), as well as the filter-based inference method
in Table II b). For each experiment, we train the network
with the synthetic measurements and landmarks, as explained
in Section V, and perform the inference on our Ulm-Lehr
dataset. For this experiment, we rely on the Gaussian mixture
distribution shown in Fig. 4 ¢). Furthermore, we also add a
small percentage of the real-world samples from our dataset
to the training pipeline, indicated as 0%, 5% and 50%. Thus,

Method T Y »

a) GPS-based Inference: 0;,0y =1 m, o, = 4°

Attn-based 0% 0.40m 0.45m 1.6°

Attn-based 5% 0.37m 041 m 1.5°

Attn-based 50% 0.31m 0.34m 1.1°
b) Filter-based Inference:

Attn-based 0% + EKF 0.29m 0.33m 1.5°

Attn-based 5% + EKF 0.29m 0.31m 1.5°

Attn-based 50% + EKF  0.23m 0.25m 0.9°

we demonstrate that a satisfying localization accuracy can
be achieved with very few or even no real-world data at all,
which still meets our required accuracy in urban scenarios.
Especially when the EKF with the CTRV motion model is
employed, the negative impact of the synthetic measurement
is negligible, thus indicating promising potential for our
method to be deployed in a variety of different environments
and scenarios around the world.

VII. CONCLUSION

We presented a localization approach based on current
measurements and generic landmarks from a HD digital map.
Our attention mechanism learns the landmark to measure-
ment association, which we use to register the input point
clouds (measurements and landmarks) and, subsequently,
infer the vehicle’s pose. Furthermore, we proposed a training
framework to generate synthetic training data. It facilitates
the learning process of our method and improves generaliza-
tion. Finally, we evaluate our approach on two datasets and
show promising results compared to the related work.
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