
1

Detecting Braess Routes: an Algorithm Accounting
for Queuing Delays With an Extended Graph

Mikhail Burov
UC Berkeley

mikaburov@berkeley.edu

Can Kizilkale
UC Berkeley and LBNL

cankizilkale@berkeley.edu

Alexander Kurzhanskiy
UC Berkeley

akurzhan@berkeley.edu

Murat Arcak
UC Berkeley

arcak@berkeley.edu

Abstract—The Braess paradox is a counter-intuitive phe-
nomenon whereby adding roads to a network results in higher
travel time at equilibrium. In this paper we present an algorithm
to detect the occurrence of this paradox in real-world networks
with the help of an improved graph representation accounting
for queues. The addition of queues to the network representation
enables a closer match with real data. Moreover, we search
for routes causing this phenomenon (‘Braess routes’) rather
than links, and advocate removing such routes virtually from
navigation systems so that the associated links can continue
to serve other routes. Our algorithm relies on a convex opti-
mization problem utilizing Beckmann potentials for road links
as well as queues, and results in a route reconfiguration with
reduced delay. We assume the availability of historical data to
build the optimization model. We also assume the existence
of a centralized navigation system to manage the routing
options and remove the Braess routes. The theoretical solution
demonstrates up to 12% delay reduction in a network from
Montgomery County, Maryland. We validate the improvement
with simulations.

Index Terms—Braess paradox, Optimization, Beckmann po-
tential, BPR functions

I. INTRODUCTION

Road networks suffer from various types of equilibrium
inefficiency due to selfish routing. Of particular interest is the
Braess paradox, a counter-intuitive phenomenon describing
scenarios in which building new road links results in higher
traffic delays at equilibrium. Since its introduction in 1968 in
[1], the Braess paradox has been studied extensively to find
efficient ways to predict, detect and prevent its existence.

Early results, such as [2], [3], [4], [5], [6], focus on the
classic diamond-shaped, four-node network with a single OD-
pair. A later study [7] extends the analysis to general traffic
networks to predict the occurrence of the paradox; however,
the applicability of the results is limited by a restrictive
assumption that all routes with non-zero flows in the original
network are also utilized after the addition of a road link.
Moreover, [7] as well as related theoretical papers [8] and
[9] consider the special case when exactly one road link or
route is built or removed from the network.

Another approach to anticipating the Braess paradox is a
network topology analysis. The study [10] shows that a two-
terminal network is immune to Braess paradox if and only if
it is series-parallel. In addition, the paper extends the result to

This project was sponsored in part by the joint NSF-DOT CPS grant
CNS-1545116 - Traffic Operating System for Smart Cities.

account for any Pareto inefficiency in a two-terminal network.
References [11] and [12] extend the characterization from
undirected graphs to directed graphs and allow for multiple
commodities. Another theoretical study, [13], explores the
concept of matroids to identify networks that are immune
to the Braess paradox. Unfortunately, few transportation net-
works exhibit a matroid structure; therefore, the applicability
is limited in practice. A further shortcoming of the theoretical
studies mentioned above is that they present structures that
are immune to the Braess paradox, but do not provide tools
to modify existing networks to eliminate this paradox and
improve the efficiency of the equilibrium.

The computational study [14] proposes a mathematical
programming method to detect the Braess paradox in a given
network. The problem is formulated as a bi-level structure
and then transformed into a single-level mixed integer pro-
gram. By setting tolls to links and analysing the resulting
network latency, the algorithm detects links that cause the
Braess paradox and penalizes them to imitate road closure.

Instead of links, in our paper we search for ‘Braess
routes’ (routes that cause the Braess paradox) with a greedy
optimization algorithm and remove them sequentially from
the navigation system. This leaves the drivers with a subset
of routes that are immune to the paradox, which they are free
to choose from. We believe that removing routes is advan-
tageous over removing links, as removing a link adversely
affects all other routes going through this link. Among other
scenarios, our approach enables removing through-traffic
from residential roads, while allowing them to continue to
serve the residents. One shortcoming of the route removal
approach, however, is that customers might simply switch
to another navigation system if their freedom of choice is
limited. Further research is needed to address this issue,
such as splitting populations into “selfish” and “altruistic”
to model different levels of cooperation or creating a system
of benefits to encourage drivers’ participation.

Unlike other methods for detecting and eliminating the
Braess paradox, our model accounts for intersection struc-
tures and queues. A more accurate graph representation
achieved by fitting functions for link delays and queue delays
from data allows us to make theoretical methods applicable

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.

ar
X

iv
:2

10
7.

08
37

4v
2 

 [
cs

.G
T

] 
 3

 F
eb

 2
02

2



Figure 1: Montgomery County network, slightly modified
with additional links to test a bigger number of OD-pairs
and routes. The red box shows how one edge is represented
with a series of links, as discussed in Appendix A.

to real-world networks. We validate our approach on an ex-
tended graph model of a road network from North Bethesda,
Montgomery County, Maryland. We slightly modified the
geometry of this network with additional links to be able to
test a bigger number of OD-pairs and routes. We were able
to demonstrate up to 12% delay reduction on this extended
network. Despite this improvement, we do not claim the
proposed route removal strategy is optimal. Indeed, as shown
in [15], the problem of finding the optimal subnetwork is
NP-hard. Instead we trade optimality with computational
tractability and applicability to real-world networks.

II. NETWORK SPECIFICATION

We consider a network with several routes available to each
OD-pair. Every route is represented by a set of consecutive
links connecting the origin to the destination.

A. Link delay function

We estimate the time delay that a vehicle experiences on
each link with a Bureau of Public Roads (BPR) function [16]:

Φ(z) = t0

(
1 + a

(
z

cap

)b
)
, (1)

where
t0 is the free-flow time (t0 = link−length

free−flow−speed ),
a and b are parameters that depend on the link’s properties,
cap is the link throughput capacity (in veh

hour ).
To compute the values of parameters a and b for a

particular link, we followed the method described in [17],
which requires speed-density data points for a curve-fitting
algorithm that outputs appropriate parameters. We used Sim-
ulation of Urban Mobility (SUMO) open-source software to
build a test case based on the modified North Bethesda,
Montgomery County, Maryland network around the intersec-
tions of Montrose Rd and Montrose Pkwy (Fig. 1). In the
absence of historical data, we generated traffic data from the
simulation environment and estimated the delay functions.
The derivation is detailed in Appendix A.

B. Queue delay estimation

Link delay functions do not account for the queues, which
accumulate when the link throughput capacity is insufficient
for the incoming flow. To address this issue and model queue
delay we introduce “phantom” links, i.e. links that have
no physical analogue in the real-world or simulation, but

exist solely to account for additional delay related to queues.
We insert “phantom” links into routes between consecutive
edges incoming to intersections and edges leaving the same
intersections (Fig. 2).

Figure 2: “Phantom” link insertion.

The analysis in Appendix B yields queue delay function:

Φq(z) =

{
d0 if z < s

αz + β otherwise,
(2)

where
d0 is expected constant delay due to intersection structure,
α and β are parameters that depend on the link’s properties,
s is the link’s saturation rate.
The proposed function is a continuous non-decreasing

non-negative piece-wise linear function. Therefore, it can be
readily used in our route detection algorithm.

III. ALGORITHM

A. Wardrop Equilibrium computation

To compute the Wardrop Equilibrium state we use a convex
optimization problem that utilizes Beckmann potentials [18]
for delay functions. The objective function of the optimiza-
tion problem to minimize is the sum of Beckmann potentials,
i.e. integrals of delay functions, across all links:∑

i∈L
φi(zi) (3)

where
L is the set of links in the network,
φi is the Beckmann potential of the link i (φ

′

i = Φi),
Φi is the delay function of the link i,
zi is the flow on the link i (zi = (RTx)i),
x is the vector of route flows,
R is the routing matrix defined as

Rij =

{
1, if the route i goes through the link j
0, otherwise.

(4)

The first constraint ensures non-negative flows on routes:

xkj ≥ 0, ∀j ∈ P k;∀k ∈ O, (5)

where
P k is the set of routes corresponding to the OD-pair k,
O is the set of OD-pairs.



The second constraint guarantees that flows on routes
corresponding to the same OD-pair sum up to the demand
for that pair: ∑

j∈Pk

xkj = dk, ∀k ∈ O, (6)

where dk is the demand on the OD-pair k.
Therefore, the problem is:

min
x

(3) subject to (5)− (6). (7)

The solution of the problem (7) is the vector x∗ of route
flows at equilibrium, which results in the total network delay:

Y = x∗TR

 Φ1(z∗1)
...

Φm(z∗m)


|z∗i =(RT x∗)i

. (8)

B. Elimination procedure

The objective of our algorithm is to find subsets of
links/routes such that the remaining network has reduced
latency. To achieve this we remove links and routes that
cause the Braess paradox, which we refer to as ‘Braess’
links/routes, from the original system. Removing a route
implies removing it from the set of options suggested by
the navigation system (e.g., Google Maps); removing a link
implies either physically closing down the road segment or
reducing its capacity with tolls or signaling. As explained
in the Introduction, route removal is preferable in practice;
however, for the completeness of the study we discuss several
approaches for route and link elimination, as they are easily
obtained from the equilibrium computation method of the
previous section. An important constraint in these approaches
is to keep the connectivity of the network unchanged, i.e.
every OD-pair from the original network must retain at least
one route in the reduced network.

In each approach we attribute values to the links/routes
with the help of the optimization problem (7). First we obtain
the equilibrium network delay, Y , for the original system.
Then, we tentatively remove a link/route from the network
(remove corresponding rows and columns from the routing
matrix (4)) and solve (7) again, deriving the new equilibrium
network delay, Ynew. Having both the original and the new
network delays, the value V of the removed link/route is:

V = Ynew − Y. (9)

Links/routes with negative values are associated with the
Braess paradox, because removing them reduces latency.

Greedy Single Link Removal
1) Find the link with the smallest value Vmin.
2) If Vmin < 0, remove the link and revert to step (1).
3) Otherwise, terminate.

As stated earlier, removing a link affects the entire set
of routes going through this link, which compromises the
effectiveness of the algorithm. Moreover, this approach is
slower than some algorithms discussed further.

Link Combination Removal
1) Compute the values of all possible combinations of links

and find the one with the smallest value Vmin.
2) If Vmin < 0, remove the corresponding combination.
3) Otherwise, the network is Braess paradox-free.

Since the number of link combinations grows exponentially
with the number of links, this method is computationally
expensive and does not scale well to large networks.

Link-Route Combination Removal This approach modifies
the first method and tries to address the issue with subset of
routes elimination. Instead of removing links completely,

1) For each link find the subset of routes utilizing this link
that results in the minimal network delay.

2) Remove the routes that were not present in at least one
optimal configuration.

Unlike previous algorithms, this method removes routes, but
does it indirectly by working with link-route combinations.

Greedy Single Route Removal
1) Find the route with the smallest value Vmin.
2) If Vmin < 0, remove the route and revert to step (1).
3) Otherwise, terminate.

This approach, unlike the first method, deals with routes
directly, which is faster since in practice the number of
commonly used routes is smaller than the number of links.
An OD-pair can potentially have a large number of possible
routes; however the dominant part of the drivers uses the a
very limited subset of those routes. It also allows to identify
the occurrence of the Braess paradox after the first iteration:
if the route with the minimal value has zero initial flow at
equilibrium, then the network is Braess paradox-free.

Route Combination Removal
1) Compute the values of all possible combinations of

routes and find the one with the smallest value Vmin.
2) If Vmin < 0, remove the corresponding combination.
3) Otherwise, the network is paradox-free.

This approach is similar to the second approach and has the
same limitation due to computational complexity.

All five approaches were tested to identify the fastest and
most accurate method for further implementation and verifi-
cation. The improvements achieved on the sample network
were comparable. Therefore, we report below the results for
the fourth method (Greedy Single Route Removal) due to its
computational speed and advantages in implementation.

IV. SIMULATION

Series of simulations were conducted to demonstrate the
improvement, evaluate the prediction accuracy and estimate
the computational precision of our algorithm when applied
to physical networks. The testing was designed to model the
behavior of a real-world traffic system, therefore a complex
structure of OD-pairs and corresponding routes was built
upon (Fig. 1). The parameters of the simulation model are
presented in Table I.

A side benefit of the route removal approach is that it
may help small side-roads in residential areas that usually



Table I: Simulation parameters.

Parameters Values
Number of OD-pairs 12
Number of routes per OD-pair 1-5
Total number of routes 38
Number of simulated vehicles 500 - 3200

suffer from congestion due to drivers attempting to avoid
busy freeways. In the era of Google maps, Waze and other
navigation systems, which try to discover short-cuts and
guide vehicles through neighborhoods to free up main roads,
residents of these regions face busy traffic consequences and
spend significantly more time than usual on short trips [19].

The testing procedure consists of the following steps:
1) Solve the problem (7) for the original network to obtain

the equilibrium flow distribution, x∗, and equilibrium
network delay, Y .

2) Derive the route configuration resulting in minimal delay
via route elimination algorithm and reduce the network.

3) Solve the problem (7) for the reduced network to obtain
the new equilibrium flow, x∗new, and network delay,
Ynew. The theoretical delay reduction is: Ith = Y−Ynew

Y .
4) Feed x∗ into the SUMO to obtain the simulation network

delay, Y sim, as a sum of travel times of all vehicles.
5) Feed x∗new into the SUMO to obtain the new simulated

network delay, Y sim
new . The simulation delay reduction is

Isim =
Y sim−Y sim

new

Y sim .
6) Compare the theoretical and simulated delay reductions

Ith and Isim, and estimated total delays Y and Y sim.
Every simulation set was run with different initial demands

corresponding to OD-pairs (last row of Table I). Congestion
scenarios were of particular interest, because they allowed us
to test the developed queue delay estimation model.

It is important to mention that our model does not account
for spillbacks (full occupation of a link that causes the queue
propagation to the upstream edge). Therefore, upper bounds
on demands were applied to avoid spillbacks. Further re-
search is required for an appropriate spillback representation.

V. RESULTS

In this section we present the results of our algorithm for
several scenarios. The first two rows in Table II show the size
of the simulated traffic. We addressed conditions associated
with different times of day.

Table II: Simulation results.

Set-up 1 Set-up 2 Set-up 3 Set-up 4
Demand Low Medium High High
Number of vehicles 500 1600 2600 3300
Improvement (Ith) 0% 3.2% 11.8% 8.1%
Improvement Diff. 0% 5.3% 15.3% 10.7%
Network Delay Diff. 1.7% 8.1% 9.5% 9.2%

We are interested in three main metrics when analyzing
the efficiency of our approach, which are presented in Table
II. The first metric (Row 3) is the theoretical improvement

in the network delay, i.e. total travel time saved by all
vehicles after implementing our algorithm. In the low demand
scenario, the network was Braess paradox-free, and no travel
time reduction was achieved. For moderate and congested
traffic the improvement ranges from 3.2% to 11.8%, which
is reasonable considering the insignificant effort required to
modify the network configuration.

The second metric (Row 4) shows the difference between
the theoretically predicted delay improvement and the cor-
responding simulation result. For the free-flow set-up there
was no Braess paradox and no comparison was needed. For
medium and high demands, the difference varies between
5.3% and 15.3%. Taking into account the improvement
value itself, we can conclude that the algorithm makes a
relatively accurate prediction. Additionally, the theoretical
solution always resulted in actual simulation improvement,
i.e., Ith > 0⇒ Isim > 0.

The third metric (Row 5) is the difference between the
predicted network delay and the simulated one. According to
the results, we managed to keep the deviation under 10% for
all scenarios. Furthermore, some cases demonstrated almost
identical values for the network delays. The accuracy of the
prediction suggests that the proposed graph representation
accounting for queue delays yields a reasonable model to
reflect real traffic conditions.

VI. CONCLUSION

We presented a greedy optimization algorithm to detect and
sequentially remove the routes that contribute to the Braess
paradox. The algorithm assigns values to existing routes in
terms of how much the network delay would increase if they
were removed, so that routes with negative values indicate
a Braess paradox. The algorithm removes the route with the
most negative value at each iteration. The resulting reduced
network configuration demonstrates up to 12% travel time
reduction. The proposed extended graph representation to
account for queue delays provides a major improvement in
how well the theoretical predictions match the simulated
ones. We are interested in further studying the possible
methods of modeling spillbacks and other congestion-related
phenomena.

APPENDIX A
LINK DELAY FUNCTION DERIVATION

In this section we present a detailed link delay function
derivation from empirical data points. We treated flow data
for each link individually, simulating traffic on one edge at a
time. To capture a wide range of flow values, we generated
a new random flow from the interval [0,3000] veh

h every 200
seconds. The provided data were sufficient to construct BPR-
functions for 90% of links (Fig. 3). Tuning simulation pa-
rameters covered additional 70% of the remaining links (Fig.
4). For the rest of the failed edges, we used parameter values
corresponding to delay functions of upstream successful links
with minor modifications. We assumed these parameters are
likely to have close values and, therefore, can be almost
interchangeable. However, if this assumption is false the



discrepancy between ground truth delay and estimated delay
produced by inaccurate parameter substitution of one link is
insignificant in a network scale.

(a) BPR-function fitting. (b) Capacity estimation.

Figure 3: Sufficient data examples.

Figure 4: Insufficient data examples.

The negligibility of this difference follows from the fact
that road links constituting a network are relatively short
in general. One edge in the graph network representation
is usually displayed by a series of short connected links
in the SUMO simulation network (Fig. 1). The travel time
contribution of one link is in the order of few seconds, which
is insignificantly small to deviate from the ground truth.
Moreover, since the number of poorly-fitted links makes up
less than 2% of the number of all links, we can conclude that
the proposed design is sufficiently accurate.

Additionally, the link capacities can be extracted from
fundamental diagrams built upon the collected data (in veh

h )
(Fig. 3b). The first method is to set the capacity estimate to
the maximal recorded flow value. Another approach is to use
a piece-wise-linear approximation to derive the capacity as a
y-coordinate of the intersection of two approximation lines.

APPENDIX B
QUEUE DELAY FUNCTION DERIVATION

In this section we present a detailed queue delay function
derivation based on the queue formation analysis. Queues
occur when the flow (z) on the link exceeds the saturation
rate (s) of this link. The saturation rate is the upper bound on
the number of vehicles able to leave the link within a period
of time. Therefore, the queue formation depends on the
difference between the inflow and the outflow on a particular
link. Depending on the link type and its relative position with
a specific intersection, we can distinguish several possible
options for saturation rate estimation:

• If the link incomes to a signalized intersection, its
corresponding saturation rate equals to the maximum
number of vehicles (n) able to pass the intersection on
green light within one cycle normalized to one hour:

s =
3600n

D
(10)

where, D is the cycle duration (in seconds).
• If there is a STOP sign at the end of the link, its

corresponding saturation rate is:

s =
3600

w
(11)

where, w is the delay (in seconds) a vehicle experiences
when forced to stop at the STOP sign on an empty road.
This value depends primarily on the speed limit on the
link and has a small fluctuation from edge to edge.

• If the link is free from any traffic regulation causing
vehicles to stop or slow down, the saturation rate equals
to the link physical throughput capacity.

• The link is the secondary link, having no priority
on an unsignalized intersection. Up to this point,
the queue delay is given as Φq(z) which is a func-
tion of the flow on the corresponding link. In this
case, however, the delay incurred by the intersection
structure on the secondary link is also a function of
the flow of the primary link. Although this violates
the fundamental assumption of delay being a function
of the corresponding link flow only, if the delay was
symmetric for both the primary and secondary links,
we could have still implemented this in our optimization
problem and computed the equilibrium points. However,
primary link sees no delay from the intersection hence
the delay function is asymmetric which makes it hard if
not impossible to compute equilibrium points the same
way. Therefore, this scenario is not represented in our
model and is subject to further research.

Similar to the link delay function derivation, we need to
use real-world or simulated empirical data to estimate the
parameters for queue delay function. We present the detailed
function computation procedure for only the first scenario,
which features a link incoming to a signalized intersection.
Other scenarios utilize a slightly modified approach, which
we will mention at the end of this section.

Knowing the traffic light cycle length (D) and keeping
in mind the queue size dependency on the inflow-outflow
difference, we estimate the one cycle queue growth rate as:

dq =
(z −N)D

3600
, (12)

where N is the throughput of the link.
Based on the flow value, we can distinguish two scenarios:
• The flow is smaller than the saturation rate (z < s).

In this case, dq = 0, all vehicles are able to pass the
intersection and no queue is forming. To account for a
potential red phase arrival, instead of setting the queue
delay to zero, we choose a specific constant d0, which
is the expected value of a delay due to phase change:



d0 = E(y) =
1

D

Lred∑
i=1

i =
Lred(1 + Lred)

2D
, (13)

where Lred is the duration of the red phase.
• The flow is greater than the saturation rate (z > s).

In this case, dq > 0 and the queue is growing. To find the
growth rate, the flow-throughput dependency and, thus,
the saturation rate for a particular link are required.

Based on the queue formation model presented earlier,
queue delay function depends on the saturation rate of the
link. To find the one-cycle throughput capacity of the link we
simulate flows of various values in ascending order for a short
period of time (200 seconds) each and record the number of
vehicles leaving the link (entering the intersection) within one
cycle. The flow point at which the throughput linear growth
stops (Fig. 5a) corresponds to the one-cycle saturation rate
of the link. To obtain the value for one-hour period, scale
the result by 3600

D . The throughput of the link (in veh
h ) is a

piece-wise function of the flow which has the form:

N =

{
z if z < s
2(z−s)

z + s otherwise.
(14)

For the flows smaller than the saturation rate, the through-
put is a simple linear function, because all vehicles are able to
leave the link. Otherwise, the throughput equals to the sum
of the saturation rate and an additional term, which never
exceeds 2. This term accounts for rare scenarios with one
or multiple abnormally fast-moving vehicles that manage to
exceed the usual saturation rate.

(a) Saturation rate. (b) Throughput function.

Figure 5: Link throughput at a signalized intersection.

Feeding the derived throughput function back into equation
(12), we obtain a one-cycle gain in numbers of vehicles
to the queue due to excessive flow. It is important to note
that the imposed queue delay varies among vehicles within
the same flow, and drivers in the head of a heavy traffic
would spend significantly less time in the queue, than the
ones in the tail. To avoid complications in the optimization
problem formulation, an average delay can be assigned to
every vehicle on the link. Plotting the computed delay results
in a piece-wise linear function (Fig. 6a).

The last step is to fit a linear function αz + β to the non-
constant area of the graph (Fig. 6b) and learn the parameters
α and β resulting in equation (2).

(a) Queue delay data. (b) Fitting delay function.

Figure 6: Signalised intersection flow-delay dependency.

The presented approach can also be used to determine
queue delay functions for links ending up with the STOP
sign. Both the expected delay d0 and the cycle length D
would be artificially set to w from equation (11), since every
vehicle without exception is required to stop at the STOP
sign, which takes it exactly w seconds to do.

REFERENCES

[1] Dietrich Braess. Über ein paradoxon aus der verkehrsplanung. Un-
ternehmensforschung, 12(1):258–268, 1968.

[2] John D Murchland. Braess’s paradox of traffic flow. Transportation
Research, 4(4):391–394, 1970.

[3] Larry J Leblanc. An algorithm for the discrete network design problem.
Transportation Science, 9(3):183–199, 1975.

[4] Caroline Fisk. More paradoxes in the equilibrium assignment prob-
lem. Transportation Research Part B: Methodological, 13(4):305–309,
1979.

[5] NF Stewart. Equilibrium vs system-optimal flow: some examples.
Transportation Research Part A: General, 14(2):81–84, 1980.

[6] Marguerite Frank. The braess paradox. Mathematical Programming,
20(1):283–302, 1981.

[7] Richard Steinberg and Willard I Zangwill. The prevalence of Braess’
paradox. Transportation Science, 17(3):301–318, 1983.

[8] Stella Dafermos and Anna Nagurney. On some traffic equilibrium
theory paradoxes. Transportation Research Part B: Methodological,
18(2):101–110, 1984.

[9] Azuma Taguchi. Braess’paradox in a two-terminal transportation
network. Journal of the Operations Research Society of Japan,
25(4):376–389, 1982.

[10] Igal Milchtaich. Network topology and the efficiency of equilibrium.
Games and Economic Behavior, 57(2):321–346, 2006.

[11] Pietro Cenciarelli, Daniele Gorla, and Ivano Salvo. Graph theoretic
investigations on inefficiencies in network models. arXiv preprint
arXiv:1603.01983, 2016.

[12] Xujin Chen, Zhuo Diao, and Xiaodong Hu. Excluding braess’s
paradox in nonatomic selfish routing. In International Symposium on
Algorithmic Game Theory, pages 219–230. Springer, 2015.

[13] Satoru Fujishige, Michel X Goemans, Tobias Harks, Britta Peis, and
Rico Zenklusen. Matroids are immune to Braess’ paradox. Mathemat-
ics of Operations Research, 42(3):745–761, 2017.

[14] Yangbeibei Ji, Wei Mao, and Xiaoning Zhang. Detecting braess
paradox links with a mixed integer linear programme. International
Journal of Industrial and Systems Engineering, 17(3):275–284, 2014.

[15] Tim Roughgarden. On the severity of Braess’s paradox: designing
networks for selfish users is hard. Journal of Computer and System
Sciences, 72(5):922–953, 2006.

[16] United States. Bureau of Public Roads. Traffic assignment manual
for application with a large, high speed computer, volume 2. US
Department of Commerce, Bureau of Public Roads, Office of Planning,
Urban . . . , 1964.

[17] Rafał Kucharski and Arkadiusz Drabicki. Estimating macroscopic
volume delay functions with the traffic density derived from measured
speeds and flows. Journal of Advanced Transportation, 2017, 2017.

[18] Martin Beckmann, Charles B McGuire, and Christopher B Winsten.
Studies in the economics of transportation. Technical report, 1956.

[19] Jane Macfarlane. When apps rule the road: The proliferation of
navigation apps is causing traffic chaos. it’s time to restore order. IEEE
Spectrum, 56(10):22–27, 2019.


	I Introduction
	II Network Specification
	II-A Link delay function
	II-B Queue delay estimation

	III Algorithm
	III-A Wardrop Equilibrium computation
	III-B Elimination procedure

	IV Simulation
	V Results
	VI Conclusion
	Appendix A: Link Delay Function Derivation
	Appendix B: Queue Delay Function Derivation
	References

