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Comparing merging behaviors observed in naturalistic data with

behaviors generated by a machine learned model

Aravinda Ramakrishnan Srinivasan1∗, Mohamed Hasan2, Yi-Shin Lin1, Matteo Leonetti2, Jac Billington3,

Richard Romano1, and Gustav Markkula1∗

Abstract— There is quickly growing literature on machine-
learned models that predict human driving trajectories in road
traffic. These models focus their learning on low-dimensional
error metrics, for example average distance between model-
generated and observed trajectories. Such metrics permit
relative comparison of models, but do not provide clearly
interpretable information on how close to human behavior the
models actually come, for example in terms of higher-level
behavior phenomena that are known to be present in human
driving. We study highway driving as an example scenario, and
introduce metrics to quantitatively demonstrate the presence,
in a naturalistic dataset, of two familiar behavioral phenomena:
(1) The kinematics-dependent contest, between on-highway and
on-ramp vehicles, of who passes the merging point first. (2)
Courtesy lane changes away from the outermost lane, to leave
space for a merging vehicle. Applying the exact same metrics
to the output of a state-of-the-art machine-learned model, we
show that the model is capable of reproducing the former
phenomenon, but not the latter. We argue that this type of
behavioral analysis provides information that is not available
from conventional model-fitting metrics, and that it may be
useful to analyze (and possibly fit) models also based on these
types of behavioral criteria.

I. INTRODUCTION

There is an increasing presence of vehicles with au-

tonomous capabilities on the roadways [1], [2]. As road

users share the road space, interactions occur, in the form of

situations “where the behavior of at least two road users can

be interpreted as being influenced by a space-sharing conflict

between the road users” [3]. For these interactions between

autonomous vehicles and other road users to be natural and

safe, the autonomous vehicles need to understand other road

users and anticipate their behaviors, and for this reason road

user behaviour has been modeled at various levels, ranging

from making a prediction about when a pedestrian will cross

[4], [5] to deriving driving models for different human driven

vehicles [6].

From a machine learned modeling perspective, predicting

other road user behaviors can be formulated as the problem

of predicting their trajectories. In recent years, recurrent

neural networks (RNNs), a class of deep neural networks,

have been used for these prediction tasks due to their ability
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to model time series data, and not least Long Short-Term

Memory (LSTM) based RNN models have been used to

predict human trajectories while taking into account the

neighbor’s trajectories [7]. Deo and Trivedi expanded on

this idea for vehicle trajectory prediction, by utilizing a

convolutional layer to preserve the spatial relationship be-

tween neighboring vehicles and predicted trajectory for the

vehicle of interest [8]. This convolutional social pooling

(CSP) LSTM algorithm has since been used as a benchmark

to measure the accuracy of newer models [9], [10]. Mozaffari

et al. [11] present a comprehensive literature review of deep-

learning-based prediction algorithms.

The most common metric used in the machine learning lit-

erature to support the performance of a trajectory prediction

algorithm is the root mean square error (RMSE) between

the prediction and the actual trajectory; either the average

displacement error over the entire prediction horizon or the

the final displacement error. In models that give probability

over the different maneuvers, negative log likelihood (NLL)

is also reported. The drawback in simplifying the perfor-

mance of the model to a single quantitative value is loss

of higher-level, qualitative context about the different types

of behaviors actually exhibited by the models. Conventional

comparisons between different machine learned models can

indicate which model reproduces the human trajectories more

closely, but how low RMSE or NLL values are low enough?

Do the machine learned models actually reproduce the higher

level behaviors exhibited by humans?

Highway merging of vehicles can be considered as a

microcosm of the complex interactions that happen during

everyday driving and might thus serve as a valid example

scenario to test the ability of the machine learned model

to successfully navigate in traffic. During highway merging,

space-sharing conflicts are common between the on-ramp

vehicles and vehicles on the outermost lane of the highway,

and the interaction between human drivers in this type of

situation has been the topic of substantial white box (non

machine-learned) modeling in the past [12], [13]. Implicitly,

these models suggest that when one vehicle has a kinematic

lead over the other, it will tend to pass the merging point

first, but in situations where it is less clear that one agent is

kinematically leading, who will go first is harder to predict,

and will in practice depend on a competition (or cooperation)

between the drivers. Another behavior that has been studied

and modeled extensively in literature is the lane change

behavior of the highway vehicle and the merging vehicle

[14], [15]. The lane changes were attributed to different goals



Fig. 1. CSP-LSTM network architecture block diagram.

like, highway vehicles preferring to avoid the deceleration

to accommodate the merging vehicles [16], the merging

vehicle forcing the lane change due to end of on-ramp or

driver’s aggressive preference, or the merging vehicle finding

suitable gap in the traffic to merge safely [12]. Here we

specifically study the ”courtesy” lane change behavior of

highway vehicles to accommodate the on-ramp vehicles.

As far as we are aware, neither of these two phenomena

(tendency of kinematically leading agents to pass first in

merging situations, and tendency of on-highway vehicles to

change lane to provide space for on-ramp vehicles) have been

explicitly studied in naturalistic data, let alone in the behavior

of machine-learned driver models.

Thus, the primary aim of this work is to outline an

approach for obtaining richer insights–compared to RMSE

or NLL–about the output of machine-learned models. Specif-

ically, we propose analysis methods designed for identifying

the two above-mentioned behavioral phenomena in natural-

istic data, and then apply the same methods to the behavior

predictions of one of the benchmark RNN models, the CSP-

LSTM of Deo and Trivedi [8]. This model was chosen due

to the availability of the code [17] and the dataset [18] used.

II. METHODS

A. Machine-learned model

Deo and Trivedi [8] introduced a CSP-LSTM architecture

for vehicle trajectory prediction, as shown in Fig. 1. The

model takes as input tCSPip
= 3 seconds of trajectory data for

both the vehicle of interest and the surrounding vehicles.

It encodes each vehicle’s trajectory with a LSTM based

encoder. A convolutional layer is utilized to preserve the spa-

tial relationship between the surrounding vehicles’ encoded

trajectories. The encoded trajectory of the vehicle of interest

along with the convolutional layer output for the surrounding

vehicles are passed through a LSTM-based decoder layer

which produces a 5 seconds trajectory prediction for the

vehicle of interest. This can then be repeated for each vehicle

in a given driving scene.

B. Dataset

Deo and Trivedi [8] utilized the NGSIM dataset [18]

for training their CSP-LSTM network. The NGSIM dataset

consists of human driven vehicle trajectories from two dif-

ferent highways in USA, the US101 and I80 highways.

We reproduced the same model fitting regime as Deo and

Trivedi, with exactly the same 70-10-20 split of the dataset

into training, validation, and test sets, respectively, and we

verified that our trained network achieved the same RMSE

performance as reported in [8]. In this paper, all the presented

and depicted behavioral comparisons were made between

the naturalistic trajectories and the machine learned models

output for only the validation and the test splits of the dataset.

There was a total of 1,667 unique vehicles on the US101 and

1,268 unique vehicles on the I80 in the test and validation

set. Out of these, 111 and 147 vehicles merged onto the

highways from the on-ramp respectively.

C. Behavioral analysis

Humans are known to rely a lot on the first-order motion

information when judging collision conflicts [19]. It is also

known that humans have a fundamental ability to estimate

the time-to-arrival (TTA) of approaching objects [20]. For

these reasons we hypothesized that we would be able to

observe salient behavioral patterns by analysing only the

first-order kinematics. Let, tm be the time the merge actu-

ally happened and τ be the look back window. From the

naturalistic trajectories, the time, tm and position of each

merging scenario can be extracted. Since, we are interested in

understanding what contributed to the merge happening the

way it had happened, the look back window is essentially

the length of history before the merge happened, which we

utilize to help our behavioral understanding/analysis. Since,

CSP-LSTM was capable of predicting up to 5 seconds of

trajectory, the history or look back window, τ was chosen

from 1 second up to 5 seconds at 1 second intervals before

the actual merge (tm) happened.

For both the vehicle on the highway and the on-ramp

vehicle, the interacting pair, it is straightforward to find

their distance to merging point at time, tm − τ , and also

compute the instantaneous velocities of the vehicle from

the naturalistic driving data. Let, vh
t ,d

h
t and vm

t ,d
m
t denote

the instantaneous velocity and distance to the merging point

for the highway vehicle and the on-ramp merging vehicle

respectively at a given time, t. We can then compute the lead

time for the highway vehicle for a given look back window

τ , Tτ with the formula Tτ = dh
tm−τ

/vh
tm−τ

−dm
tm−τ

/vm
tm−τ

.

The behaviors of interest were analyzed for the naturalistic

data and the machine-learned model with the exact same

procedure utilizing the lead time for the highway vehicle. A

schematic of the behavioral comparison is shown in fig. 2.

The trajectories has been represented in one (lower) dimen-

sion. In reality, both the lateral and longitudinal positions of

the vehicles were utilized for training the machine-learned

model and the behavioral analysis. The trained CSP-LSTM

model was given trajectory history of 3 seconds as inputs

from appropriate time stamp for the vehicle of interest (the

highway vehicle in the interacting pair) and neighboring

vehicles. The output of the trained model, the 5 seconds

predicted trajectory of the vehicle of interest was analyzed

for the behavior exhibited (fig. 2).

1) Bias for kinematically leading agent to pass first:

Fig. 3(a) shows a schematic example for the bias for kine-



Fig. 2. Schematics of behavior comparison between naturalistic and CSP-
LSTM generated trajectories.

matically leading agent to pass first behavior. Given a lead

time for the highway vehicle, a positive value indicates that

highway vehicle had an apparent lead over the merging

on-ramp vehicle kinematically at that particular look back

time and negative value indicates that the merging on-

ramp vehicle had a lead. We would expect that when the

absolute apparent lead |Tτ | is large enough, the kinematically

leading agent would always pass the merging point first.

Additionally, we would expect this pattern to break down

as |Tτ | approaches zero.

2) Changing lane to yield: Fig. 3(b) illustrates a hypothet-

ical lane change that happened between the merging time,

tm and the look back window, τ to accommodate the on-

ramp vehicle merging into the highway. For the lane change

behavior statistics, we count all lane changes which happened

between the look-back window tm −τ and the merging time

tm, since these can be considered as a potential courtesy lane

changes. We expect the frequency of lane changes to increase

when there is imminent space-sharing conflict, i.e., for small

|Tτ |.

(a)

(b)

Fig. 3. A pictorial representation of behavioral phenomeana a) Bias for
kinematically leading agent to pass the merging point first b) Lane changing
by highway vehicle to accommodate the on-ramp vehicle

III. RESULTS

A. Bias for kinematically leading agent to pass first

The frequencies of the initially kinematically leading agent

passing the merging point first, as exhibited by the human

driven vehicles for the US101 and I80 highways are shown

in fig. 4(a) and fig. 4(c) respectively, as functions of the

look-back time τ and the apparent kinematic lead Tτ for

the highway vehicle at the look-back time. There are two

obvious patterns: First, in line with our expectations, when

either vehicle had a clear kinematic lead over the other, they

ended up passing the merging point first; as soon as |Tτ | is

above about 1 s for the (higher speed) US101, or above 2 s

for the (lower speed) I80, the frequency of the leading agent

passing first is at or close to 100%. Second, when there is

imminent space-sharing conflict, that is when |Tτ | is closer

to 0 seconds, there is a gradual shift to lower percentages,

indicating a further level of interaction. This is especially

so for larger τ , indicating–quite naturally–that the ultimate

outcome of a close merging cooperation/competition may be

harder to predict from snapshots further into the past.

Comparing the behaviors exhibited by the naturalistic data,

fig. 4(a) and 4(c) with the CSP-LSTM model generated

behaviors, fig. 4(b) and 4(d), it is clear that the CSP-LSTM

model was able to produce trajectories which exhibited very

similar levels of bias for the kinematically leading agent to

pass the merging point first. Thus, at this level of analysis,

the RMSE focused learning algorithm was enough to learn

and reproduce this behavior pattern.

B. Changing lane to yield

Fig. 5 and 6 show the prevalence of lane change behavior

in the naturalistic driving and the CSP-LSTM generated

trajectories in US101 and I80 respectively. These observa-

tions are somewhat noisy due to the limited sample size,

but is nevertheless clear that in the US101 highway data

(fig. 5), when there is a space sharing conflict and there

is sufficient time to successfully change lanes, τ ≥ 3 s

there is a spike in lane change occurrences. However, the

CSP-LSTM generated trajectories does not reproduce this

increase in frequency of lane changes. The same data is

shown in summary form in the bottom right panes of the

fig. 5, indicating that human drivers in space-sharing conflict

situations (lead time for highway vehicle Tτ ∈ [−1,1] s),

show an increased tendency to switch lanes, presumably out

of courtesy to avoid the conflict, whereas the CSP-LSTM

predicted trajectories do not reproduce this pattern. Also

in non-space sharing conflict situations (|Tτ | > 1s), human

and CSP-LSTM lane changing frequencies are not matching.

With the I80 highway (fig. 6), the lane change peaks are not

as clear as with the US101 highway in the naturalistic data

(fig. 6). Nevertheless, in the space-sharing conflict zone, the

bottom right corner in fig. 5 and fig. 6, the lane changing

behaviors are similar to one another. The analyzes when done

at the space-sharing conflict zone and non-space conflict

zone, clearly show that the CSP-LSTM is not faithfully

reproducing the lane changing behavior exhibited by the

humans.



(a) (b)

(c) (d)

Fig. 4. Bias for kinematically leading agent to pass first behavior statistics

Fig. 5. US101 - Lane change analysis for the naturalistic driving and trajectories generated by the CSP-LSTM.



Fig. 6. I80 - Lane change analysis for the naturalistic driving and trajectories generated by the CSP-LSTM.

(a) (b)

(c) (d)

Fig. 7. Naturalistic and CSP-LSTM generated vehicle trajectories in potential lane changing scenarios for the vehicle on the outermost lane of the highway
to accommodate the merging vehicle.



IV. DISCUSSION AND CONCLUSION

This paper presented a new, arguably more human-centric,

way to analyze the capabilities of machine-learned models

which are used in the domain of autonomous driving for

predicting vehicle trajectories. To illustrate the proposed

approach, two example behavioral phenomena in highway

merging were targeted, analysis methods were developed to

demonstrate their presence in naturalistic data, and subse-

quently also applied to the model’s predictions. The results

showed that the machine-learned model was able to repro-

duce well a phenomenon whereby the kinematically leading

agent passes the merging point first when the apparent

kinematic lead is large (> 1−2 s), up to 5 seconds in advance

of the merge, and where this predictability also deteriorates

for less clear kinematic leads. Thus, the simplification of the

road user behavior learning to a pure trajectory learning task

seems to be justified for replicating the kinematically leading

agent bias to pass the merging point first as observed in the

naturalistic driving data.

The other targeted phenomenon was courtesy lane chang-

ing behavior by the highway vehicles, to facilitate the merg-

ing of on-ramp vehicles. In short, the machine learned model

was not able to reproduce this phenomenon well. To further

understand the human and model lane changing behavior,

the trajectories of the vehicles in both highways from the

naturalistic and CSP-LSTM generated data are shown in

fig. 7. It is clear from this figure that the limitation of

the CSP-LSTM model does not lie in a general inability

of predicting lane changing behavior; it clearly does predict

some of the observed naturalistic lane changes. However, it

does in general underpredict their frequency, and, crucially,

it is clear from the bottom right panes of especially fig. 5 and

6, the model does not capture the context-sensitive increased

tendency of human drivers to change lanes when there is an

apparent space-sharing conflict with a merging vehicle.

Overall, the findings presented here demonstrate how

a richer analysis of human and model-predicted behavior

can provide a better understanding of the capabilities of

machine-learned models. It is clear that the CSP-LSTM

model is capable of capturing some advanced behavioral

phenomena in impressive detail, yet is unable to capture

other phenomena. Notably, neither of these insights are

accessible from conventional performance metrics such as

RMSE or NLL. Our results also open for many interesting

future research opportunities: Our overall analysis approach

can be generalized to a wider range of salient behavioral

phenomena, across a wider range of interaction scenarios

[3]. The added insights into the behavioral capabilities of the

machine-learned models may be leveraged both in algorithms

making use of the models, and to develop improved learning

targets for the models, to help ensure that future models can

be more behaviorally competent.
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