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Abstract— Integrating trajectory prediction to the decision-
making and planning modules of modular autonomous driving
systems is expected to improve the safety and efficiency of
self-driving vehicles. However, a vehicle’s future trajectory
prediction is a challenging task since it is affected by the social
interactive behaviors of neighboring vehicles, and the number
of neighboring vehicles can vary in different situations. This
work proposes a GNN-RNN based Encoder-Decoder network
for interaction-aware trajectory prediction, where vehicles’
dynamics features are extracted from their historical tracks
using RNN, and the inter-vehicular interaction is represented by
a directed graph and encoded using a GNN. The parallelism of
GNN implies the proposed method’s potential to predict multi-
vehicular trajectories simultaneously. Evaluation on the dataset
extracted from the NGSIM US-101 dataset shows that the
proposed model is able to predict a target vehicle’s trajectory
in situations with a variable number of surrounding vehicles.

I. INTRODUCTION

Autonomous driving is expected to improve the safety
and efficiency of our daily transportation thanks to the tech-
nological advancements in both algorithms and hardwares.
While a typical autonomous driving system consists of four
modules: perception, decision-making, planning, and control,
researchers recently argue that autonomous vehicles will be
safer if they can precisely predict future locations of its
surrounding vehicles [1]. To this purpose, many trajectory
prediction methods have been proposed, which fall in three
categories, physics-based [2], maneuver-based [3], [4], and
interaction-aware methods [1], [5]–[8]. More about this tax-
onomy can be found in [9]. However, trajectory prediction
is challenging in that driving is a complex interactive be-
havior [10], where the motion of a vehicle is affected by
not only its driving style but also its surrounding vehicles,
and the number of surrounding vehicles can be variant in
different traffic situations.

Thanks to the availability of many real-world collected
driving datasets [11], [12] and the success of neural net-
works, data-driven interaction-aware methods dominate the
field of trajectory prediction in the last years. Most of these
methods jointly consider temporal and spatial features [5],
[6], [13]. Convolutional social pooling (CS-LSTM) [5] ap-
plies long short-term memory network (LSTM) [14] to
individual vehicles’ past tracks to extract their dynamics then
aligns these dynamics into a target-centered occupancy grid
to represent the spacial interaction. A CNN is then used to
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extract interaction feature from the grid. The performance
of CS-LSTM can be affected by the size of the occupancy
grid. It ignores the vehicle which is aggressively approaching
the target vehicle but still outside the grid. Authors of [15]
proposed to consider eight closet surrounding vehicles that
have the most impact on the target vehicle’s behavior rather
than many vehicles in an occupancy grid. However, requiring
the exact eight neighboring vehicles limited their model to
be applied to situations where the number of surrounding
vehicles varies.

Representing inter-vehicular interaction as a graph and
applying graph neural network algorithms to model the
interaction attracted great interest in the past two years [1],
[6], [7], [16]. Authors of [16] conceptually proved that
modeling a traffic scene as a graph to utilize the power
of GNN increases prediction quality on a more-interactive
highway dataset. They used only current information in their
model and suggested integrating recurrent neural networks
with GNNs in future works. GRIP [1] designed several graph
convolutional blocks to extract interaction feature, which
is then fed to an LSTM-based Encoder-Decoder to predict
future trajectories. GRIP treats all the nodes equally when
predicting a target vehicle’s trajectory, which fails to empha-
size the effects of the target vehicle’s own dynamics. GRIP
cannot accommodate state-of-the-art GNNs for interaction
modeling to take advantage the advances in GNNs, like
attention mechanisms. ReCoG [6] modeled the relationships
among vehicles and infrastructure as a heterogeneous graph
and adopted state-of-the-art GNNs for the interaction feature.
ReCoG focused on single vehicular trajectory prediction for
urban driving, where the road structure affects vehicles’
trajectories significantly.

Inspired by [16], this work improves the CNN-LSTM-
based trajectory prediction method proposed in [15] by
integrating RNNs and GNNs to handle the situation with
varying number of surrounding vehicles and investigates the
graph modeling’s potential on the multi-vehicular trajectory
prediction. The proposed model uses RNNs to extract dy-
namics features of all vehicles, then applies a GNN on a star-
like directed graph, where a node corresponding to a vehicle
contains its sequential feature and an edge from one node
to another node implies that the latter’s behavior is affected
by the former, to summarize the inter-vehicular interaction.
Finally, an RNN decoder is applied to the combination of the
target vehicle’s dynamics feature and its interaction feature
for single vehicular trajectory prediction.

The main contributions of this work can be summarized
as follows:
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Fig. 1. Illustration of the proposed model in this study. RNNs with shared weights are used to encode the dynamics features of vehicles individually.
A GNN-based interaction encoder is applied to these dynamics features, which are contained in corresponding nodes in a directed interaction graph, to
summarize the inter-vehicular interaction feature. Finally an LSTM decoder predicts the trajectory by jointly consider the target vehicle’s dynamics and
interaction features.

• A Graph-based interaction-aware trajectory prediction
method is proposed.

• Ablative studies are conducted to show the necessity
to jointly consider individual dynamics and interaction
features.

• The potential of the proposed method to be applied to
multi-vehicular trajectory prediction is investigated.

The rest of this paper is organized as below. Sec. II
expatiates the proposed method. Sec. III describes experi-
mental settings. Sec. IV evaluates the proposed model on the
single trajectory prediction task and investigates its potential
for multi-vehicular trajectory prediction. Finally, Sec. V
concludes this paper and points out future directions.

II. METHOD

This section formulates the trajectory prediction prob-
lem and proposes a two-channel Encoder-Decoder structure,
which consists of history encoder, interaction encoder, and
future decoder, for this problem.

A. Problem Formulation

This work aims to predict the future trajectory of a target
vehicle driving on a highway given historical trajectories of
its up-to-eight surrounding vehicles. As shown in Fig. 1, this
task considers two kinds of vehicles: the target vehicle and
its neighboring vehicles.

Neighboring vehicles considered are the target vehicle’s
preceding (#1) and following (#2) vehicles, its nearest neigh-
bors in adjacent lanes (#3 and #4), in terms of longitudinal
distance, and their preceding (#5 and #7) and following (#6
and #8) vehicles.

The input to the model (Ht) is a set of historical trajecto-
ries of all considered vehicles, including the target vehicle.

Ht = {h0
t , h

1
t , · · · , hm

t } (1)

where hi
t = [pit−Th+1, p

i
t−Th+2, · · · , pit] represents the se-

quence of historical trajectory of vehicle i at time t. Th is

the traceback horizon. Without loss of generality, this work
numbers the target vehicle as 0 and the neighboring vehicles
from 1 to m ∈ [1, 8].

The output is the predicted future trajectory of the target
vehicle at time t:

f0
t = [pit+1, p

i
t+2, · · · , pit+Tf

] (2)

where Tf is the prediction horizon.

B. Model Structure

To solve the single trajectory prediction problem, this work
proposes a GNN-RNN based model, which is designed under
the Encoder-Decoder structure and consists of two encoders
(history encoder, interaction encoder) and one decoder (fu-
ture decoder). The history encoder, implemented with an
RNN, extracts an individual vehicle’s dynamics from its
historical trajectory. The interaction encoder uses a GNN to
summarize interaction features among a variable number of
vehicles. Then the future decoder uses another RNN to roll
out the future trajectory of the target vehicle. Details of these
main parts of the proposed model are described below.

1) History Encoder: The history encoder is shared across
all vehicles to encode individual dynamics from their own
historical trajectories. Eq. 3 shows that the encoder is applied
to historical tracks of all vehicles in parallel.

Rt = {r0t , r1t , · · · , rmt } = RNNhist(Emb(Ht)), (3)

where Emb() is a linear transformation embedding the low-
dimensional xy-coordinates into a high-dimensional vector
space, RNNhist is a shared RNN applied to the embedded
historical tracks of all vehicles, rit is the dynamics feature of
vehicle i at time t.

2) Interaction Encoder: Considering the fact that driving
is an interactive activity and the mutual influence between
two cars on each other is different, this method models
the inter-vehicular interaction as a directed graph, where



each node represents a vehicle and contains the vehicle’s
sequential feature.

Definition 1 (Directed Graph): A graph can be repre-
sented by G = (V,E), where V = {v0, · · · , vm} is the
set of m+ 1 nodes, and E ⊂ V × V is the set of edges. If
the edge from node i to node j is different from the edge
from node j to node i, the graph is a directed graph.

Since this work models the interaction among vehicles
as a graph, the structure of the graph will significantly
affect the performance and efficiency of method [16]. If
the graph contains only self connections, its performance
should be similar to a simple model working on the target
vehicle’s historical track only. While if the graph contains
all connections (every node is connected to the rest of the
nodes), it considers redundant connections, which increases
quadratically with the number of nodes. This work considers
up-to-eight neighboring vehicles and constructs the interac-
tive graph as a star-like graph.

Graph Construction. Without loss of generality, this
work sets the target vehicle as v0, and all the neighboring
vehicles as {v1, . . . , vm}. Then the edge set of the star-like
graph with self-loop is constructed.

E = {e0,j}(j=0,··· ,m) ∪ {ej,0}(j=1,··· ,m), (4)

where ei,j means that there is a directed edge from node j
to node i, that is, node j is the neighbor of node i and node
j’s behavior will affect node i’s behavior. An example of the
star-like directed graph with self-loop can be found in Fig. 1

Nodes in the constructed graph contain corresponding
vehicles’ sequential features rit and directed edges represent
their directed effects to others. Then the graph is processed
by a graph neural network to model the the interaction feature
g0t ∈ Gt as shown in Eq. 5:

Gt = GNNinter(Rt, Et), (5)

where Et represents the graph structure at time t, GNNinter

is the interaction encoder implemented with a 2-layer GNN,
and Gt = {g0t , · · · , gmt } contains the interaction features of
all vehicles at time t.

3) Future Decoder: The future trajectory f0
t is predicted

upon the target vehicle’s dynamics feature r0t and interaction
feature g0t using another RNN.

f0
t = RNNfut([g

0
t , r

0
t ]), (6)

where RNNfut is the future decoder implemented with RNN
and [g0t , r

0
t ] is the concatenation of g0t and r0t .

The model also uses proper fully-connected layers, which
are not shown in the equations. Further details can be found
in Sub.Sec. III-C and the released code.

III. EXPERIMENTAL SETUP

The experiments are set up with data pre-processing,
model implementing, and metric setting.

A. Dataset

This work uses vehicle trajectories extracted from the
publicly available NGSIM US-101 [11] dataset, collected
from 7:50 a.m. to 8:35 a.m. on June 15, 2005, for training and
validation. The study area is a 640 meters segment of U.S.
Highway 101, consisting of five main lanes, one auxiliary
lane, and on-ramp and off-ramp lanes. The vehicle trajectory
data are recorded at 10 Hz using eight synchronized digital
video cameras mounted from the top of a 36-story building.
This work selects roughly balanced data so that the lane-
keeping trajectories do not dominate the dataset.

B. Data Pre-processing

This work first selects target vehicles then selects data
pieces from their trajectory.

1) Target Vehicles Selection: A vehicle is selected as a
target vehicle upon following conditions:

• It has not been driven in lanes 7 (On-ramp) and 8 (off-
ramp).

• It only changed its lane once during the recording time.
• Its recorded track is at least 1,000 feet in length.
• Its lane-change maneuver happened within the range

from 300 to 1,900 feet in the study area.
• Its lane-change maneuver was obvious that the maxi-

mum lateral displacement before and after lane-change
is greater than 10 feet.

This step finally selects 124 ( out of 1,993) vehicles from
the 07:50am-08:05am segment, 106 (out of 1,533) vehicles
from the 08:05am-08:20am segment, and 68 (out of 1,298)
vehicles from the 08:20am-08:35am segment.

2) Data Selection: For a target vehicle, 260 frames from
13 seconds (130 frames) before lane-change to 13 seconds
(130 frames) after lane-change are considered as candidates
of the current frame (time t in Eq. 1). Then a data is stored
in the dataset if the following conditions are all satisfied:

• The target vehicle has a 3-second historical trajectory
and a 5-second future trajectory.

• All neighboring vehicles have a 3-second historical
trajectory.

This step selects totally 63,176 pieces of data with
23,803 from the 07:50am-08:05am segment, 24,559 from the
08:05am-08:20am segment, and 14,814 from the 08:20am-
08:35am segment.

Translation. A stationary frame of reference with its
origin fixed at the target vehicle’s current position is used
for each data piece.

Down-sampling. The raw data in NGSIM US-101 is
recorded with a sampling rate of 10 Hz. This work down-
sample the historical tracks by a factor of 2 and the future
trajectories by 5.

Edge indexes. The edge set representing the graph struc-
ture is constructed as described in SubSec. II-B.2.

Data format. A data with 3 parts is stored to the dataset.

data = {Ht, Et, yt}, (7)



where Ht is the historical tracks of all vehicles, Et is the
edge set containing the structure of the interactive graph, and
yt is the target vehicle’s ground truth future trajectory.

After the above processing, this work randomly selects
10,000 data pieces from the whole dataset as the validation
set and uses the rest of the dataset for training.

C. Implementation Details

All the models in this work are implemented with Py-
Torch [17] except the GNN layers, which are implemented
with PyTorch Geometric [18]. The history encoder is imple-
mented using a one-layer Gated Recurrent Unit (GRU) [19]
with a 32-dimensional hidden state, and the future decoder is
implemented using a two-layer LSTM with a 64-dimensional
hidden state. The interaction encoder is implemented with
two Graph Attention Network (GAT) [20] layers, which
adopt concatenated three-head attention mechanism to sta-
bilize the training process. This work uses LeakyReLU with
a 0.1 negative slope as the only activation function.

The proposed model is trained for 50 epochs to minimize
the same loss function as described in [15] using Adam [21]
with a learning rate of 0.001. Full implementation of the
proposed model can be found in the released code.

D. Metrics

This work uses root-mean-square error (RMSE) in meters
of the predicted trajectories against the ground truth future
trajectories to evaluate different models. RMSE is calculated
for each predictive time step tp within 5 seconds in the future.
Previous works [5], [15], [22] also adopt this metric.

RMSE(tp) =

√√√√ 1

n

n∑
i=1

((x̂i
tp − xi

tp)
2 + (ŷitp − yitp)

2), (8)

where n = 10000 is the size of test set, (x̂i
tp , ŷ

i
tp) and

(xi
tp , y

i
tp) are the predicted position of the target vehicle

in data i at time tp and the corresponding ground truth,
respectively.

IV. RESULTS AND DISCUSSION

This section compares the proposed two-channel model
with its ablations and previous works on the single trajectory
prediction task, followed by an investigation of its potential
for multiple trajectory prediction.

A. Single Trajectory Prediction (STP)

Following methods are implemented for comparison:
• Dynamics-only: this is the one-channel ablation of

the proposed model considering the target vehicle’s
dynamics feature only for prediction.

• Interaction-only: this is the other one-channel ablation
using the interaction feature extracted by the GNN only.

• Two-channel: this is the proposed two-channel model.
The above implementations are trained and validated using
the same dataset.

Results reported in some related works are also listed in
Tab. I. However, this work focuses on comparing results

Fig. 2. Box plots of the RMSE of implemented models. R is the
dynamics-only model, G the interaction-only model, and GR the proposed
two-channel model.

between the proposed method and its ablations, considering
that different works are using different training and validation
datasets.

TABLE I
PREDICTION PERFORMANCE COMPARISON (RMSE IN METERS)

Methods Prediction horizon
1 sec 2 sec 3 sec 4 sec 5 sec

1 Dynamics-only (Ours) 0.74 1.86 3.30 5.07 7.11
2 Interaction-only (Ours) 0.67 1.03 1.34 1.74 2.46
3 Two-channel (Ours) 0.68 0.99 1.21 1.53 2.14
4 CS-LSTM [5] 0.61 1.27 2.09 3.10 4.37
5 GRIP [1] 0.37 0.86 1.45 2.21 3.16
6 CNN-LSTM [15] 0.64 0.96 1.22 1.53 2.09

Tab. I compares different models. It shows that:
• Interaction-aware methods (2,3,4,5,6) outperform the

dynamics-only method (1). This demonstrates the ne-
cessity of modeling interactions for trajectory prediction
as stated in previous works [5], [15].

• The proposed two-channel model outperforms its
interaction-only ablation. This shows that the target
vehicle’s dynamics feature should be emphasized in
some way for trajectory prediction. This work sets an
additional channel for it.

• The proposed method matches the CNN-LSTM method
with advances in considering variable number of sur-
rounding agents and the potential for multi-trajectory
prediction.

• The proposed method outperforms GRIP and CS-LSTM
in longer-term prediction (3-5sec). However, for the
short-term prediction, GRIP shows better performance
possibly in that GRIP uses the whole dataset from
NGSIM, where the lane-keeping trajectories are domi-



Fig. 3. Visualized STP predictions. Squares are the considered vehicles
(target vehicle in blue and neighboring vehicles in gray). Gray lines are
the vehicles’ historical tracks over the last 3 seconds. The green line is the
ground truth (GT) future trajectory of the target vehicle. The blue line is
the prediction of the proposed two-channel model (GR). All the vehicles
move from left to right.

nant and less challenging for trajectory prediction.

Fig. 2 shows box plots of the RMSE errors of models
implemented in this study over a 5-second time in the future,
where the red boxes are the results of the dynamics-only
model (R), the green boxes the results of the interaction-
model (G), and blue boxes the proposed two-channel model
(GR). Triangles in a box represents its mean value. Out-
liers are ignored for clarity. In addition to Tab. I, Fig. 2
shows that the prediction of interaction-aware methods (G
& GR) is more stable (shorter interquartile range (IQR))
than dynamics-only model (R) and the proposed two-channel
model produces the shortest IQR. Please note that the mean
value shown in Fig. 2 is calculated using Eq. 9:

RMSE(tp) =
1

n

n∑
i=1

√
(x̂i

tp − xi
tp)

2 + (ŷitp − yitp)
2, (9)

which is slightly different to the results in Tab. I.
Fig. 3 visualizes prediction results in situations with dif-

ferent numbers of surrounding vehicles from the validation
set. It shows that the proposed model can predict the target
vehicle is going to keep or change lane in the next 5 seconds
regardless of how many surrounding vehicles are in sight.

Even though this work focuses on single trajectory pre-
diction, the proposed model has the potential to be applied
to multi-vehicular trajectory prediction since the interaction
encoder implemented with GNN processes all nodes simulta-
neously, see Eq. 5. The following section briefly formulates
the problem of multi-vehicular trajectory prediction (MTP)
and shows the proposed method’s performance on MTP.

B. Multiple Trajectory Prediction (MTP)

From the ego vehicle’s point of view, MTP wants to
predict future trajectories of up-to-eight target vehicles based
on historical tracks of more vehicles. In this formulation,
considered vehicles are separated into three categories: one
ego vehicle, up-to-eight target vehicles, and some other
surrounding vehicles. The MTP problem here is formulated
similar to Sub.Sec. II-A and the target vehicles are selected
as the selection of neighboring vehicle in Sub.Sec. II-A.
Please note that this part is only to investigate the proposed
method’s potential for multi-agent setting, and the only
difference to STP is the input and output data.

The input to the model is historical trajectories of all
considered vehicles,

Ht = {h0
t , h

1
t , · · · , hm

t , hm+1
t , · · · , hn

t }, (10)

where the h0
t is the ego vehicle’s historical track and 1 ≤

m ≤ 8 is the number of target vehicles. MTP simultaneously
predicts m target vehicles’ future trajectories, numbered from
1 to m, based on historical trajectories of n+ 1 vehicles.

The output is then the predicted future trajectories of the
target vehicles:

Ft = {f1
t , f

2
t , · · · , fm

t }, (11)

where f i
t = [pit+1, p

i
t+2, · · · , pit+Tf

] represents the sequence
of future trajectory of vehicle i at time t.

The dataset used here is pre-processed from the 08:05am-
08:20am segment of NGSIM US-101. The size of training
and validation datasets are 533,564 and 13,3392, respec-
tively.

TABLE II
MTP PERFORMANCE COMPARISON (RMSE IN METERS)

Methods Prediction horizon
1 sec 2 sec 3 sec 4 sec 5 sec

1 Two-channel (Ours) 0.54 1.12 1.80 2.63 3.67
2 GRIP(ALL) [1] 0.64 1.13 1.80 2.62 3.60

Tab. II compares the proposed method with a previous
work GRIP [1] on the MTP task. It shows that the proposed
model, when applied to multi-vehicular trajectory prediction,
matches the previous work in terms of RMSE.

Fig. 4 visualizes the prediction results of the proposed
model on the MTP task. It can be seen that the proposed
method can predict the multiple trajectories longitudinally
while it fails to predict the lane-change maneuver in the next
5 seconds. This can be explained by the imbalance of the
MTP dataset since the majority of the future trajectories in
the dataset are keeping lane, and it is hard to get a roughly
balanced dataset for MTP.

V. CONCLUSIONS

This work proposes a GNN-RNN-based method for tra-
jectory prediction to model the inter-vehicular interaction
among various vehicles. RNN is used to capture the dynam-
ics feature of vehicles, and GNN is adopted to summarize
the interaction feature. Another RNN serves as the decoder



Fig. 4. Visualized MTP predictions. Blue square is the ego vehicle
and gray squares represent the rest of considered vehicles. Only future
trajectories of target vehicles are plotted. Green lines are the ground truth
and dashed blue lines are the prediction future trajectory. All the vehicles
move from left to right.

jointly considers the dynamics and interaction feature for
prediction. This work finds that both the target vehicle’s
individual dynamics feature and its interaction with other
vehicles affect the prediction accuracy. The proposed method
matches state-of-the-art methods on the NGSIM dataset in
terms of RMSE.

This work can be improved to handle multi-vehicular
trajectory prediction properly, which is necessary for the
downstream decision-making module of autonomous driving.
It can also be extended to consider the multi-modality of
driving behaviors.
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