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Abstract

Traction adaptive motion planning and control has potential to improve an an automated
vehicle’s ability to avoid accident in a critical situation. However, such functionality require an
accurate friction estimate for the road ahead of the vehicle that is updated in real time. Current
state of the art friction estimation techniques include high accuracy local friction estimation in
the presence of tire slip, as well as rough classification of the road surface ahead of the vehicle,
based on forward looking camera. In this paper we show that neither of these techniques in
isolation yield satisfactory behavior when deployed with traction adaptive motion planning and
control functionality. However, fusion of the two provides sufficient accuracy, availability and
foresight to yield near optimal behavior. To this end, we propose a fusion method based on
heteroscedastic gaussian process regression, and present initial simulation based results.

1 Introduction

One of the remaining challenges in the development of automated driving (AD) and advanced driver
assistance systems (ADAS) is fully automated operation in critical situations i.e., situations where
an accident is imminent, for example due to unpredictable behavior of other traffic agents or rapid
changes in the operational conditions. In critical situations, full utilization of the physical capacity
of the vehicle is paramount to minimizing the risk of an accident, since overly cautious behavior will
impair accident mitigation performance. This motivates research in motion planning and control
at the limits of handling - a field that has seen a lot of progress in the last decade [1–5]. At the
limit of tire adhesion, longitudinal, lateral and yaw dynamics are tightly coupled. Therefore, the
traditional approach of performing motion planning, lateral- and longitudinal control in isolation
is being outperformed by combined optimization approaches, where the lateral and longitudinal
motion planning and control is performed by solving a single optimization problem [2,4].

To further complicate the problem of motion planning and control in critical situations, the
physical motion capacity of a vehicle is far from static. Instead, it varies greatly with the operational
situation, e.g. road surface and tire conditions. In our previous work, we tackle the problem of
motion planning and control under time-varying traction constraints [6, 7]. We show that such
an approach improves the vehicle’s ability to avoid accident in critical situations, and thus have
potential to improve safety performance of AD and ADAS systems. However, the performance
increase hinges on run-time availability of a tire-road friction estimate over the planning horizon,
i.e., ahead of the vehicle. We refer to this concept as a predictive friction estimate. One of
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Figure 1: Illustration road surface classification within a lane, based on forward looking camera.
Classes: orange - dry, purple - wet, blue - snow/ice

the conclusions drawn from our previous work is that in critical situations, accident avoidance
performance is negatively affected by both over- and under-estimation in the predictive friction
estimate. Over-estimation leads to the planning of dynamically infeasible motions, and under-
estimation to poor utilization of the available traction, which can needlessly lead to accidents in
e.g., a collision avoidance situation. To summarize, accurate predictive friction estimation is key
for autonomous accident mitigation at the limits of handling.

Fortunately, research over the past two decades have presented several viable methods of ob-
taining such estimates [8, 9]. In later years, the rapid development in supervised machine learning
and computer vision have greatly improved performance of such functionality, mainly through road
surface classification from forward looking camera images [10, 11], providing a predictive estimate
online with high availability. However, due to the limited number of visually distinguishable road
surface classes (e.g., dry, wet, snow/ice), accuracy is poor compared to state of the art local fric-
tion estimation methods. Local friction estimation methods [12, 13] use vehicle dynamics models
and traditional estimation techniques to estimate the friction coefficient locally around the vehicle.
Such methods have high accuracy but the estimate is only available in the presence of tire slip [14],
and provide no foresight about the conditions ahead of the vehicle. Considering the high level
properties of the two paradigms;

• Camera based: high availability, foresight, low accuracy,

• Local: low availability, lack of foresight, high accuracy,

we hypothesize that using either method individually could lead to poor performance in the context
of traction adaptive motion planning. However, the indication that the two paradigms are to some
extent complementary, motivates investigation in fusion of the two.

Gaussian process (GP) regression [15] is a nonparametric Bayesian approach to regression, that
has become an increasingly popular modeling tool in optimization based control. In contrast to
the traditional approach of modelling the system to be controlled from first principles, a GP rep-
resentation of the system does not make strong assumptions of the underlying dynamics, instead
the dynamics, including a direct representation of model uncertainty, is inferred from input/output
data. Previous approaches uses GP representations either to completely replace, [16–19] or to com-
plement a traditional dynamics model [20–23], by representing residual dynamics and uncertainty.

This work differentiates from the previous efforts by using a GP representation of time varying
input constraints, rather than the dynamics. We extend the framework of [7], with a novel, GP
regression based method for merging predictive and local friction estimates, and quantitatively
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represent uncertainty in the fused estimate. We show that such a fusion strategy is able to exploit
the virtues of both camera based and local friction estimation. In summary, the contributions of
this paper are:

• Justification for the argument that neither camera based nor local state of the art friction
estimation techniques in isolation is sufficient for traction adaptive motion planning and
control.

• Preliminary results indicating that fusion of the two complementary estimation paradigms
can produce near-optimal behavior.

• A proposed GP regression based method for fusion of predictive and local friction estimates
that benefits from the virtues of both paradigms.

2 Background

Here follows a summary of the traction adaptive motion planning and control framework which
forms a basis of this work. See [7] for a detailed account. At each planning time t, a constrained
finite time optimal control problem

min
u0|t,...,uN−1|t

J(Tt)

s.t., xk+1|t = f
(
xk|t, uk|t

)
,

uk|t ∈ Uk|t,
xk|t ∈ Xk|t,

∀k ∈ {0, 1, . . . , (N − 1)},
x0|t = xt, xN |t ∈ Xk|t,

is solved over a prediction horizon k ∈ {0, 1, . . . , (N − 1)}. The predicted input sequence
{u0|t, u1|t, . . . , uN−1|t} is applied to the vehicle model f(·, ·), yielding the corresponding predicted
state sequence {x0|t, x1|t, . . . , xN |t}. We compactly denote a predicted trajectory consisting of state

and control sequences as Tt = {{xk|t}Nk=0, {uk|t}
N−1
k=0 }. The vehicle model f(·, ·) is a dynamic bi-

cycle model with tire force inputs, expressed in a road aligned coordinate frame (See Appendix B
of [7]). The behavior of the resulting optimal trajectory T ?

t is dictated by a cost function J(Tt)
and time varying state and input constraints Xk|t, Uk|t. State constraints Xk|t are used to encode
lane boundaries as well as static and dynamic obstacles.

We use the time varying input constraint Uk|t as a mechanism to encode the tire adhesion limit
in the presence of local traction variations. For each timestep k in the prediction horizon, tire force
inputs are upper bounded by a convex polygon. The size and shape of each polygon is set based
on a tire model, predicted normal forces and a predictive friction estimate µ̂(s).

3 Fusing Heterogeneous Friction
Estimates through GP Regression

The aim of the proposed fusion method is to obtain a vector µ̂(s), that represents the tire-road
friction at a sequence of discrete distances ahead of the vehicle, s ∈ {0, ds, . . . , sf}, with sf cor-
responding to the spatial extension of the prediction horizon of the planning/control framework
introduced in Section 2. The estimate should be
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(a) Conservative - in the sense that the probability of over-estimation is low. This is a generally
applied principle in using online friction estimates for vehicle control, because over-estimation
of the friction coefficient may lead to loss of control of the vehicle [24,25].

(b) Not overly conservative - to avoid that collision avoidance performance deteriorates, e.g., in
the manner described in [7].

Our proposed fusion strategy is to infer a distribution over functions f?(s) at s ∈ {0, ds, . . . , sf},
that with high probability encompasses the true predictive friction values µ(s). The distribution
is obtained through heteroscedastic GP regression based on input data from predictive and local
friction estimates, including their associated estimation uncertainties, which are propagated from
the individual methods. From such a distribution f?(s) we then select a µ̂(s) that satisfies both
(a) and (b). See Fig. 2 for a visual example and Appendix A for a brief outline of GP regression
preliminaries.

We start by selecting a prior f(s) ∼ GP(η(s), k(s, s′)), with mean function η(s) and kernel
function k(s, s′), based on domain knowledge, i.e that it is probable that µ(s) resides in the interval
0.1 to 1.0, and that some spatial correlation exists, i.e., that positions close to each other are likely
to have similar friction coefficients. For k(s, s′), we use a squared exponential kernel, Equation
(2) of Appendix A, and select η(s) and σf of (2) such that the interval [0.1, 1.0] represents a 95%
confidence interval for the prior distribution over functions, as illustrated in Fig. 2. The prior is
determined offline, in contrast to the subsequent steps that are to be executed online.

Next, we prepare the input data. We combine friction estimates and associated margins of error
from predictive and local friction estimation algorithms into two input data vectors

µ̂′(s),m′(s) =

{
µ̂l,ml if local available & s < sl,

µ̂p(s),mp(s) otherwise.

Subscripts (·)l and (·)p indicate local and predictive estimates respectively. The predictive friction
estimate µ̂p(s) is set as the mean value of its road surface class along with a margin of error mp(s)
set such that for all s ∈ {0, ds, . . . , sf}, µ̂p(s) ± mp(s) encompasses all friction coefficient values
within the road surface class associated with s. If tire slip is sufficient to make a local estimate
µ̂l available, the predictive estimates at s ∈ {0, ds, . . . , sl} are replaced by µ̂l and ml. The local
margin of error ml is set as the worst case estimation error of the local estimation method. A
tunable threshold sl dictates how far ahead the local estimate will influence the input data.

Next, we compute the mean function and covariance matrix of the posterior predictive distribu-
tion f?(s) ∼ GP(η?(s),Σ?) at locations s ∈ {0, ds, . . . , sf}, from the prior and the input data µ̂′(s)
and m′(s) using equations (4) and (5) of Appendix A. Here, we interpret the interval µ̂′(s)±m′(s)
as a 95% confidence interval to obtain the standard deviation of the input data σ′(s) = m′(s)/1.96.
Finally, we select the fused predictive friction estimate as the lower bound of the 95% confidence
region of f?(s).

µ̂(s) = η?(s)− 1.96σ?(s) with

σ?(s) =
√

diag(Σ?).

Fig. 2 shows an example plot of the prior distribution, the input data, the posterior distribution
and the final predictive friction estimate for a single planning iteration, in a scenario where the
vehicle is approaching a low µ section. The resulting estimate benefits both from foresight of the
predictive and the accuracy of the local estimate to meet conditions (a) and (b).
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Figure 2: Example showing how the proposed method merges domain knowledge encoded in the
prior (gray) with local and predictive friction estimates (black dots) of varying uncertainty (black
bars). The resulting estimate is selected as the lower bound of the 95% confidence region of the
posterior distribution

4 Results and Discussion

In this section, we evaluate the impact of friction estimation performance in the context of traction
adaptive motion planning. In a simulated environment, we emulate (i.e., replicate the output of)
state of the art predictive and local friction estimation algorithms in terms of their availability,
foresight and accuracy. We then compare local only, predictive only and fused configurations to
ground truth, in terms of the resulting motion behavior.

4.1 Delimitations and Experimental Setup

For the purposes of the evaluation we emulate rather than implement state of the art friction
estimation algorithms. This choice is motivated by practical as well as methodological reasons.
The focus of this paper is to evaluate various strategies for handling uncertain and not always
available friction estimates, in the context of traction adaptive motion planning. Given this purpose,
implementing our own and/or a selection of state-of-the-art methods for friction estimation would a)
be a substantial time investment and b) introduce an additional risk of biasing the resulting motion
behavior through stochastic variations or inperfections in the implementation. Instead, we have
opted for parameterizing the performance of state of the art estimation algorithms, and emulating
them in a simulation environment. This way we can draw conclusions based on the fundamental
properties of the methods. Simulations are performed using an extended version of the Gazebo
based FSSIM simulator [26], that have been modified and tuned to represent the REVERE lab’s
Volvo FH16 test vehicle, which was used in the experimental evaluation of [7].

Based on the literature summarized in Section 1, we select parameter specifications to represent
current state-of-the-art performance in local and predictive road friction estimation in Table 1.
Variables ep and el denote estimation errors for the predictive and local methods respectively. The
parameter λt ∈ [0, 1] denotes the momentary utilization of available tire force.

4.2 Evaluated Configurations

We compare four different friction estimation configurations: Ground truth (GT), Local Only (L),
Predictive only (P), and Fused (F). Here follows a description of each configuration.
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Accuracy Availability

Local (L) max{|el|} = 0.025, [14] λt > 0.5, [14]

Predictive (P)
max{|ep|} ≈ 0.1 to 0.3

classes: dry, wet, snow/ice [10]
s ∈ {0, ds, . . . , sf},

sf = 50m

Table 1: Selected performance parameters for state of the art friction estimation methods

The first configuration, GT, is a non-realistic benchmark, representing the optimal behavior
on the current road surface. The traction adaptive motion planner/controller is provided the true
friction values from the track ahead of the vehicle, i.e.,

µ̂(s) = µgt(s) for all s ∈ {0, ds, . . . , sf}.

In the local only configuration, L, we emulate a local friction estimate being propagated over the
whole prediction horizon, i.e., µ̂(s) = µ̂l for all s ∈ {0, ds, . . . , sf}, with

µ̂l = −max{|el|}+

{
µgt(0) + el if local available

µ̂0 otherwise

The estimate is conservative in the sense that we subtract the worst case error before passing the
estimate to the planner, so as to prevent over-estimation. If the local estimate is unavailable, the
latest available estimate µ̂0 is used.

In the predictive only configuration, P, the planner/controller is provided a conservative pre-
dictive friction estimate. The estimate is conservative in the sense that it takes the minimum value
of the surface class associated with the point s

µ̂(s) =


0.6 if 0.6 < µgt(s) class: dry

0.4 if 0.4 ≤ µgt(s) < 0.6 class: wet

0.1 if 0.1 ≤ µgt(s) < 0.4 class: snow/ice.

In the fused configuration F, we emulate both local and predictive friction estimation such that
the combined information from configurations 2 and 3 is made available.

µ̂′(s),m′(s) =
0.8, 0.2 if 0.6 < µgt(s) class: dry

0.5, 0.1 if 0.4 ≤ µgt(s) < 0.6 class: wet

0.25, 0.15 if 0.1 ≤ µgt(s) < 0.4 class: snow/ice

µgt(0) + el, max{|el|} if local available & s < sl

For the predictive estimates, instead of directly providing the lowest value in each class, we extract
the mean values µ̂′(s) along with the margins of error m′(s). With this input data, we obtain a
fused estimate µ̂(s) using the method described in Section 3.

Notice that configurations L, P and F, all set conservative estimates with respect to the available
information. As mentioned in Section 3, this is a generally applied principle in using online friction
estimation for vehicle control.

We evaluate the four configurations in two simulated critical situations; Scenario 1, Turn at low
µ, and Scenario 2, Collision avoidance at high µ. For both scenarios, we set adversarial worst case
friction estimation errors, i.e., worst case over-estimation in the low µ turn scenario (where inability
to realize large planned tire forces will lead to accident) and worst case under-estimation in the
collision avoidance scenario (where overly restrictive tire force constraints will lead to accident).

6



(a) Local only, s = 0m (b) Local only, s = 15m (c) Local only, s = 30m (d) Local only, s = 55m

(e) Fused, s = 0m (f) Fused, s = 15m (g) Fused, s = 30m (h) Fused, s = 55m
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(k) Planned front tire forces at tc = 0
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Figure 3: Simulation results for the first critical scenario - a 90 degree turn at low µ with worst case
over-estimation of friction. Subfigures 3a through 3h show snapshots from the online visualization
of the planned motion. The first row (3a - 3d) correspond to the local only configuration and the
second row (3e - 3h) correspond to the proposed fused configuration. Subfigures 3i and 3j show
the vehicle’s distance to the lane center and velocity for the four configurations. Subfigure 3k show
planned front tire forces at tc = 0s, s = 0m and the prevailing force limits. Subfigure 3l shows the
corresponding friction estimate for the fused configuration, including uncertainty.

4.3 Scenario 1 - Turn at low µ

At the start of the first scenario, tc = 0, s = 0, the vehicle is approaching a 90 degree turn at a
velocity of 12m/s. Its objective is to maintain velocity and stay at the lane center. The traction in
the corner is locally reduced, µ(s) = 0.4 for s ≥ 0m, from previously good conditions µ(s) = 0.8 for
s < 0m. Fig. 3, shows an analysis of the generated motion behavior for the four friction estimation
configurations.

At first glance at Figures 3i and 3j, we see that configurations GT, P and F generate similar
behavior while L shows distinctly different behavior. Under the L configuration, the vehicle enters
the turn at the center of the lane, and plans to stay at the center throughout the turn, Fig. 3a. Upon
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entering the corner, Fig. 3b, the vehicle starts slipping toward the outside of the lane, deviating
from the planned motion. At the middle of the turn, Fig. 3c, the vehicle has slipped well into the
opposing lane, at risk of colliding with oncoming traffic. By now however, the vehicle has managed
to reduce its speed such that it is able to recover to the lane, Fig. 3d.

The reason behind this undesired motion behavior is the that the L configuration relies entirely
on a local friction estimation, which is only available when tire force utilization λ > 0.5. While
travelling on the straight road before the turn at constant velocity, λ << 0.5. Thus tire force
constraints are set based on the latest available friction estimate, here µ̂0 = 0.8. As is shown in
Fig. 3k, the planned tire forces at tc = 0 for configuration L exceeds the prevailing tire force limit
by a wide margin. The moment the vehicle starts turning, Fig. 3b, the planner reduces the tire
force constraints and adjusts the planned motion, but at this time, it is physically impossible to
avoid veering out into the opposing lane.

In contrast, the other three configurations GT, P and F exhibit the behavior represented by
F in Subfigures 3e - 3h. Before entering the turn, Fig. 3e, the vehicle has positioned itself on the
outside of the lane, and plans to cut across to the inside of the corner by the middle of the turn
and then back to the outside of the lane by the end of the turn, while slightly reducing speed. As
is shown in Figures 3f, 3g and 3h, the vehicle does not deviate from the planned motions, and the
updated plans are consistent with the previous ones.

The reason behind the difference in behavior is the foresight provided by the predictive fric-
tion estimate. This in combination with a conservative selection of tire force limits ensures that
the planned tire forces do not exceed the physical limits in either of the three configurations 3k.
The traction adaptive planner/controller realizes the reduced tire forces by a coordinated speed
reduction and lateral motion in the lane as shown in Figures 3i and 3j.

For the F configuration, because the maneuver is initiated earlier, the local friction estimate
becomes available earlier compared to the L configuration. Fig. 3l shows the fused friction estimate
at tc = 0.5. In this scenario, where the emulated friction estimation error equals the worst case
over-estimation, the fused predictive estimate more or less coincides with the ground truth friction
value. The same is the case for P. For this reason, the three configurations show very similar
planned tire forces in Fig. 3k, and consequently similar motion behavior. In cases where the
estimation errors are below the worst case over-estimation, configurations P and F will generate
more conservative planned forces, through keeping the same lateral motion pattern, but reducing
velocity even more before the turn. Between the two, configuration F will be less conservative due
to the higher accuracy of the local estimate. Next, we evaluate the effect of this phenomenon in
collision avoidance.

4.4 Scenario 2 - CA at high µ

At the start of the second scenario, tc = 0, s = 0, the vehicle is cruising at a speed of 20m/s, when
an obstacle appears suddenly in the middle of the lane 20m ahead of the vehicle. The local traction
on the road surface is high, i.e., µ(s) = 1.0 for s ≥ 0m. Fig. 4, shows an analysis of the generated
motion behavior for the four friction estimation configurations.

Similar to the result of Section 4.3, three configurations yield similar behavior and one shows
a distinct difference in Figures 4h, 4i and 4j. However, contrary to the turn scenario, here it is
the behavior for configuration P that is distinctly different, while GT, L and F generate similar
behavior. Upon detecting the obstacle under the P configuration, Fig. 4b, the vehicle plans an
evasive maneuver. However, under the conservative tire force constraints associated with the friction
estimate, green dashed line in Fig. 4j, no collision free trajectory exists. As such, it selects the least
violating option and subsequently collides with the obstacle, Fig. 4c, at an impact velocity of
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(a) Predictive only, s = 0m (b) Predictive only, s = 2m (c) Predictive only, s = 18m,
(collision)

(d) Fused, s = 0m (e) Fused, s = 2m (f) Fused, s = 18m (g) Fused, s = 40m

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

tc (s)

0.0

0.5

1.0

1.5

∆
m

(m
) GT

L

P

F

(h) Distance to obstacle

0 1 2 3 4 5

tc (s)

14

16

18

20

v x
(m

/s
) GT

L

P

F

(i) Velocity

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

tc (s)

0

10000

20000

30000

40000

50000

60000

F
f

(k
N

)
(p

la
n

n
ed

)

Limit

GT

L

P

F

(j) Planned front tire forces at tc = 0.5
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Figure 4: Simulation results for the second critical scenario - collision avoidance at high µ with
worst case under-estimation of friction. Subfigures 4a through 4g show snapshots from the online
visualization of the planned motion. The first row (4a - 4d) correspond to the predictive only con-
figuration and the second row (4d - 4g) correspond to the proposed fused configuration. Subfigures
4h and 4i show the vehicle’s distance to the obstacle and velocity for the four configurations. Sub-
figure 4j show planned front tire forces at tc = 0s, s = 0m and the prevailing force limits. Subfigure
4k shows the corresponding friction estimate for the fused configuration, including uncertainty.
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∼ 17.5m/s.
The reason behind this undesirable behavior is the overly conservative tire force constraints,

which in turn stem from the low accuracy of the predictive friction estimate. In order to ensure
that tire forces are never over-estimated, the P configuration selects the lowest friction coefficient
value of the associated road surface class. Here, in case of the worst case under-estimation, this
corresponds to a 32.6% reduction in utilization of available tire force, compared to GT.

In contrast to P, configurations GT, L and F plans a more aggressive evasive maneuver, as
shown in Fig. 4h and represented by F in Fig. 4e. The vehicle is able to track the more aggressive
plan, Fig. 4f, clears the obstacle with a margin of ∼ 0.5m and safely recovers to the lane, Fig. 4g.

The reason that the L and F configurations perform better than P here is that they benefit
from the high accuracy of the local friction estimate. As soon as the vehicle engages in the evasive
maneuver, the tire force utilization exceeds the availability threshold, λ > 0.5 such that the local
estimate can be utilized in the next planning iteration. Since max{|el|} << max{|ep|}, the resulting
tire force constraints are substantially less conservative (5.6% reduction in utilization of available
tire force, compared to GT).

The L configuration propagates the local estimate and its worst case error over the whole
prediction horizon. This turns out to be a good strategy for scenario 2 but a poor one for scenario
1. The F configuration in contrast performs well in both scenarios. Fig. 3l shows the fused friction
estimate at s = 0. The accurate local estimate influences the initial part of the prediction horizon
whereas the more conservative predictive estimate dominates the farther part. This way, the fusion
strategy exploits the accuracy of the local estimate, while maintaining the foresight of the predictive
estimate.

4.5 Discussion

The two scenarios selected for evaluation in this paper represent worst case situations with respect
to friction estimation error. Hence performance in terms of accident avoidance will not be worse
for any estimation error in the intervals [−max{|el|},max{|el|}], [−max{|ep|},max{|ep|}] provided
the underlying assumptions on the algorithms, described in Section 4.1, hold. In scenario 1, in
cases where the estimation errors are below the worst case over-estimation, P and F will yield more
conservative planned forces, resulting in a larger distance to the traction limit. In scenario 2, in
cases where the estimation errors are above the worst case under-estimation, L and F will yield
even less conservative planned tire forces, resulting in behavior even closer to that of GT.

5 Conclusions and Future Work

In this work we have highlighted the impact of accuracy, availability and foresight of predictive
friction estimation functionality for traction adaptive motion planning in critical situations. Initial
simulations with emulated state of the art friction estimation algorithms indicate that fusing hetero-
geneous friction estimates enables exploiting the virtues of predictive (foresight, high availability)
and local (high accuracy) friction estimates. Further, we show that the proposed fusion strategy
is conservative in that it avoids over-estimation of the friction coefficient while not being overly
conservative, even at worst case adversarial estimation errors (e.g., maximum 5.6% reduction in
tire force utilization, compared to GT, in the collision avoidance scenario).

Next steps of this research work is to move development of the method and simulation based
evaluation to real world validation on a test vehicle, with state of the art local and predictive friction
estimation. Longer term future directions include extending the fusion method to include shared
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uncertain friction estimates communicated via vehicle-to-vehicle and/or vehicle-to-infrastructure
networks.
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Appendix A Gaussian Process Regression

A Gaussian Process (GP) is a class of random processes, in which any finite collection of random
variables have a multivariate normal distribution. A GP

f(x) ∼ GP(η(x), k(x, x′)) (1)

is fully specified by its mean function η(x) and kernel function k(x, x′), the latter specifying the
covariance between pairs of random variables. Since the distribution of a GP is the joint distribution
of possibly infinitely many random variables, it can be interpreted as a distribution over continuous
functions. GP regression is the process of taking an existing such distribution over functions (a GP
prior) and update it with respect to new data to obtain a refined distribution over functions (a GP
posterior). Thus, in contrast to the majority of regression methods, the aim of GP regression is
not to fit a single function to data, but rather to fit a distribution of functions to data.

A GP prior is specified by selecting η(x) and k(x, x′) in (1), based on prior knowledge about
the properties of the function we wish to identify. There exists a multitude of alternative kernel
functions [15]. The squared exponential, or radial basis function kernel

k(xi, xj) = σ2fexp

(
− 1

2l2
(xi − xj)>(xi − xj)

)
, (2)

used in this project, is one example. Parameters σf and l are used to tune the smoothness and
vertical variation of the prior.

The posterior is obtained by conditioning the prior on input data. Consider n input data points
y(x) with uncertainty σy(x), and n? test points x? at which we wish to predict the mean and
covariance of the posterior f?(x?). The joint distribution of input data and the predicted function
values at x? is given by[

y(x)
f?(x?)

]
∼ N

(
0,

[
K(x, x) + σy(x)I, K(x, x?)
K(x?, x), K(x?, x?)

])
,

where the matrices K(·, ·) represent the covariance of all permutations of the input and evaluation
points. Applying standard rules for the conditioning of Gaussians [15] yields the posterior predictive
distribution

f?(x?) ∼ GP(η?(x?),Σ?) with (3)

η?(x?) = K(x?, x)(K(x, x) + σy(x)2I)−1y(x), (4)

Σ? = K(x?, x?)−K(x?, x)(K(x, x) + σy(x)2I)−1K(x, x?), (5)

where Σ? denotes the covariance matrix of the posterior distribution.
Standard GP regression builds on the assumption that all measurements have the same mea-

surement noise, i.e., that σy(x) = σy is constant for all x. This limitation is lifted by Heteroscedastic
GP regression. The extension is described e.g., in [27,28].
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