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Abstract—The thorough development of the hyperloop system
does require the availability of reduced-scale models. They can
be used for the fast prototyping of various components, as
well as for studying critical phenomena that takes place in
this peculiar transportation system without the need to develop
complex and expensive full-scale setups. In this respect, in
this paper, we present a process for the optimal assessment
of the scaling factor; it is to be used for the development of a
reduced-scale hyperloop model, starting from the knowledge of
the technical characteristics of its full-scale counterpart.

The objective of the proposed process is the minimisation of
the difference between the normalized power profiles associated
with the reduced-scale and full-scale models of a hyperloop
capsule traveling along a pre-defined trajectory with a pre-
determined speed profile. By considering the hyperloop full-
scale model as a reference, we propose a set of equations that
link the above-mentioned metric with the constraints dictated
by the kinematics of the hyperloop capsule, the capsule’s
battery-energy storage and propulsion systems, the capsule’s
aerodynamics, and the operating environmental conditions. We
then derive a closed-form expression for the assessment of the
optimal scaling factor and eventually use it to study the scaled-
down version of an application example of a realistic hyperloop
system.

I. INTRODUCTION

The use of reduced-scale (RS) model testing has been
extensively adopted in several engineering disciplines to
predict the behaviour of full-scale (FS) devices and structures
by studying their equivalent RS models. The RS-model
testing represents an efficient approach not only to reduce
the cost of FS-model development but also to support fast
prototyping and to study critical phenomena on the RS model
before the FS model is built.

The RS-model testing relies on the similitude of physical
laws, which enables the rigorous definition of the necessary
conditions for designing an RS model that is equivalent
to its FS counterpart. Examples of similitude laws apply
to the testing of hydraulic machines [1], wind-turbine fluid
dynamics [2]- [4], rocket-fluid dynamics [5]- [7], and struc-
tural engineering [8] to mention a few. With respect to the
development of hyperloop systems, the use of RS models
is fundamental in order to develop several components of
the capsule (e.g., its propulsion system), as well as to study
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the École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
This paper has not been submitted elsewhere.

the influence of the operation of the infrastructure on the
energy need of the whole system [9]. A first example related
to the definition of a hyperloop RS model is discussed in
[10]. In this paper, the authors were interested in studying
the vehicle dynamics via the development of a 1/10 scale
model. By relying on the dynamic-motion similarity laws,
the authors of this study investigated vertical and lateral
motions of a hyperloop capsule to infer its complete dynamic
characterization and to validate a corresponding numerical
model.

To the best of our knowledge, the current literature has not
defined suitable RS models of the whole hyperloop system
in order to study the capsules’ propulsion and its link with
the operation of the hyperloop infrastructure. In this respect,
we fill this gap by proposing a method that computes the
optimal scaling factor of the physical characteristics of the
capsule by taking into account the model of the hyperloop
infrastructure and the model of the capsule’s propulsion and
kinematics [13].

As the physics laws governing the various components of
a hyperloop exhibit different behaviours, with respect to a
dimensional scaling process, we analyse this first fundamen-
tal aspect. The main physical phenomena that are considered
are the kinematics of the hyperloop capsule, the capsule’s
battery-energy storage system (BESS), the propulsion system
(PS), the capsule’s aerodynamics, and the operating environ-
mental conditions. We introduce and justify the metric given
by the normalized aerodynamics losses, with respect to the
maximum BESS power output. The link of this metric with
the models of the above-mentioned physical phenomena, and
with the scaling factor, results in a closed-form equation that
enables the assessment of the optimal scaling factor between
the FS and the RS capsules’ models.

The structure of the paper is as follows: in Section II,
we recall the main physical phenomena that govern the FS
hyperloop model with particular references to the capsule’s
kinematics, BESS, PS, and aerodynamics. In Section III, we
describe the RS model. In Section IV, we first introduce
and justify the metric used by the scaling process; then,
we illustrate the process of analytically linking the proposed
metric with the FS and RS models for the optimal assessment
of the scaling factor. In Section V, we illustrate an application
example related to a scaling process of a realistic hyperloop
system. In the last section, we conclude the paper with our
final remarks and observations regarding the applicability of
the proposed process.



II. FULL-SCALE HYPERLOOP SYSTEM

A. Hyperloop General Characteristics

The hyperloop is a new transportation system where
vehicles travel along pre-determined trajectories and in a
dedicated/confined environment (i.e., tunnels or tubes), where
the pressure is kept at relatively low values (i.e., in the range
of tens of mbars). These aspects are very specific to the
hyperloop system hence largely differentiate it from existing
modes of transportation that do not permanently isolate
vehicles from the external environment. As a result, weather
conditions and unexpected perturbations of an uncontrolled
environment do not affect the operation of the hyperloop.
Furthermore, there is the possibility of optimally controlling
the pressure in a hyperloop confined environment, in con-
junction with the off-line optimisation of the speed profile of
the capsules. This pressure control can substantially reduce
the energy needs for the operation of the whole system, thus
making it the most energy-efficient transportation system for
intra-continental travels [9].

Nevertheless, even if the pressure is reduced to to relatively
low values, there are still some hard limitations. Indeed, the
maximum speed of hyperloop capsules is limited by two
main factors. The first is the ratio between the capsule’s
cross sections and that of the tube must be limited to ensure
the flow around the capsule as it is subsonic. The second
factor is the associated drag coefficient, as it limits the
capsule’s cruising speed for a given traction power (Indeed,
such a dependency largely influences the energy required
by the capsules, especially when approaching near-sonic
speeds). In the following sub-sections, we first recall the
limitations associated with the main aerodynamic phenomena
in this system. Then, we give the fundamental equations to
represent the FS hyperloop model as they are used later in
the manuscript to derive the scaling process.

B. Aerodynamic Limitations of the Hyperloop System

The Hyperloop is a complex system and the definition of
the RS model characteristics requires macroscopic/integral
models that are subsequently translated into a specific design
of the RS model.

Regarding the aerodynamics, even if a hyperloop capsule
in a tube does not have an axis-symmetric geometry, the
physical phenomena regarding the flow can be studied by
looking at a simplified geometry allowing to study the com-
pression of the flow around the capsule due to the reduction
of the available area. Indeed, the fluid-compressibility effects
play a major role in the design of high-speed hyperloop
capsules as they travel in a confined environment. Indeed,
as the objective is to keep the fluid around the capsule in a
subsonic regime in order to limit energy consumption, the
capsules’ and tubes’ cross sections, and/or the maximum
speeds, are constrained by the compressibility of the air near
the capsule. This phenomenon, called Kantrowitz Limit, is
well-known [11]. In this paper, we consider capsules’ speeds
between 400km

h − 780km
h as a recent study [9] has shown

detrimental effects of higher speeds on the energy used by
the whole hyperloop system.

1) Problem Definition: a 2D slice of the 3D problem can
be considered and studied as a fluid flow accelerating in a
converging nozzle. The following assumptions are made:

• 2D steady flow;
• unidirectional flow;
• isentropic compression;
• constant heat capacity ratio of air (i.e., γair = 1.4032);
• constant specific gas constant (i.e., rair = 287[ J

kg·K ]);

The geometry of the problem is represented in Fig. 1,
where Stube

fs [m2] represents the FS cross section of the tube,
Scapsule
fs [m2] represents the FS cross section of the capsule,

and Aext[m
2] represents the difference between Stube

fs and
Scapsule
fs .

M∞ MextAext

Sfscapsule
Sfstube

Fig. 1: Schematic 2D representation of a hyperloop capsule
traveling in a tube.

The Mach number of the far-field flow, M∞, can be related
to (i) the speed of the capsule, vfs[ms ], and (ii) the speed
of sound in the tube, vsound[

m
s ] =

√
γ · rair · T∞, where

T∞[K] represents the temperature of the tube’s environment.
Therefore, the expression of M∞ is given here below.

M∞ =
vfs√

γ · rair · T∞
(1)

As the flow encounters the capsule, the cross-section
available for the flow decreases. This process leads to the
acceleration of the flow’s speed around the capsule that, in
view of the previous considerations, needs to stay subsonic.

2) Limiting Area Ratio: the main objective is to determine
Aext = Asonic

ext . In [11] and [12], the cross section’s ratio, at
which the flow becomes sonic as a function of the far-field
flow Mach number, is derived and recalled in (2).

Stube
fs

A∗
ext

=
1

M∞
[

2

γ + 1
(1 +

γ − 1

2
M∞)]

γ+1
2(γ−1) (2)

Considering Stube
fs = Scapsule

fs + Aext and Sratio =
Scapsule
fs

Stube
fs

, we need to determine Sratio as a function of
M∞ for a given internal tube temperature, T∞. The main
constraint is to ensure that, for a given cross section’s ratio,
the flow remains subsonic everywhere around the capsule.

By referring to the Mach number limit, we need to have
the airflow around the capsule cross section such as Mext =
Mlim. For instance, if Mlim = 1, this means we have reached
the isotropic limit. Therefore, we can derive the relation that
provides the dependency of Sratio with M∞ and Mlim, as
in (3).
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Fig. 2 shows the dependency of Sratio with M∞ and
Mlim.
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Fig. 2: Assessment of the chocked-flow regime of the fluid
around the hyperloop capsule.

C. Model of the Capsule’s Propulsion System

The FS tube’s and capsule’s models and parameters are
adapted from [9]. Therefore, all the assumptions associated to
the capsule’s propulsion are taken from the same manuscript
and not repeated here. The air-density of the full-scale
infrastructure is ρfs[ kgm3 ], and the pressure inside the FS tube
is pfstube[bar]. We assume that the cross section of the tube
is circular.

1) Capsule’s Trajectory and Kinematic Models: as shown
in Fig. 3, the length of the FS trajectory, Lfs[m], is divided
into n different zones: {M1,M2, ...,Mn} each one corre-
sponding to a given state of the capsule (i.e., acceleration,
regime/constant speed, and deceleration). Along the trajec-
tory, we can define the generic capsule’s acceleration and
speed, afs[

m
s2 ], vfs[

m
s ]. As done in [9], Fig. 3, shows the

discrete 1D model of the capsule trajectory, where j and
i are the space- and time-discrete sampling indexes. The
trajectory’s space interval [0, L] is sampled at regular steps
∆j[m], j = 0, 1, ..., L

∆j . The corresponding time steps ∆i[s]
for the capsule to travel each discrete space step are non-
constant and derived from ∆j = vfs(j−1)∆i+ 1

2afs(j)∆i2.
As the capsule can move only forward, for each j, we
can associate a corresponding unique discrete time index
i = 0, ..., tLk

, ..., tL[s] where tLk
=

∑
Lk

∆ik.
2) Capsule’s PS Model: In order to track a pre-defined

(optimal) speed profile, we introduce the model that links
the main physical characteristics of the capsule with the
power necessary to propel it. The capsule is assumed to
be an energy-autonomous vehicle, where the PS is formed
by a BESS feeding a voltage source inverter (VSI) that is
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Fig. 3: Generic Trajectory of Hyperloop Capsules. Adapted
from [9].

connected to a linear induction motor (LIM). The equations
for modelling the behaviour of the capsule’s PS can be
found in [9] and [13]. Here, we introduce the main capsule’s
parameters, as they are functional in the scaling process:

• m0[kg]: mass of the mechanics and payload;
• Ns: number of BESS cells in series;
• Np: number of BESS cells in parallel;
• mcell[kg]: single cell mass embedding the cell’s tabs

wiring;
• ηV SI : VSI power transfer efficiency;
• ηLIM : LIM-to-traction power transfer efficiency;
• PmaxCell[W]: maximum power provided by a single

cell;
• k1[

kg
W ]: LIM weight-per-unit power density;

• k2[
kg
W ]: VSI weight-per-unit power density;

• cos(ϕ): minimum power factor of the VSI (i.e., lowest
power factor of the LIM).

The total mass of the FS capsule can be derived as a
function of the aforementioned main capsule’s parameters
as presented in [9].

mfs = m0 +NsNpmcell +
1

cos(ϕ) · ηV SI
PmaxCellNsNpk2+

+
1

ηLIM
PmaxCellNsNpk1

(4)
We can also easily define the power losses associated with

the aerodynamic drag force of the FS capsule, P fs
drag[W ], as

in (5) (where Cfs
D is the drag coefficient that is a function

of vfs
1). As this force is a function of the capsule’s speed,

it has to be defined for every discrete position, along the
trajectory, of the capsule .

P fs
drag(j) =

1

2
Scapsule
fs Cfs

D (v)ρfsv
3
fs(j) (5)

1Note that Cfs
D is a function of Re for given (i.e., fixed) vfs and

Scapsule
fs .



Then, we can derive the mechanical power of the FS
capsule necessary for propelling it in order to track the
speed/acceleration profiles. It is worth noting that the mag-
netic drag has been disregarded as thrust and levitation are
supposed to be both provided by the LIM as mentioned in
[14]- [17].

P fs
tr (j) = mfsafs(j)vfs(j) + P fs

drag(j) (6)

Finally, the electrical power that has to be provided by the
BESS of the FS capsule, P fs

batt[W ], can be directly related
to P fs

tr through the efficiency of the LIM, ηLIM and the
efficiency of the VSI, ηV SI .

P fs
batt(j) =

P fs
tr (j)

ηLIM · ηV SI
(7)

III. REDUCED-SCALE MODEL OF A HYPERLOOP SYSTEM

This section describes how key physical phenomena of the
hyperloop system are scaled-down. We refer, in particular,
to the capsule’s (i) masses, (ii) kinematic model, (iii) power
profiles, (iv) BESS energy capacity, and (v) aerodynamics.

More specifically, we first introduce the definition of the
scaling factor. Then, we discuss the scaling of the capsule’s
kinematic model, its masses, power profiles, and environment
operating conditions. We separately discuss the scaling of the
capsule’s aerodynamics, as it requires a dedicated section, in
view of the need for numerical assessing its dependency with
the scaling factor and the capsule’s speed.

A. Scaling of the Capsule’s Kinematic Model, Masses, Power
Profiles, and Environment

Let k ∈ R+ the scale factor, with k > 1. Distances, speeds,
accelerations, time and masses of the RS model, as well as
environmental conditions, power profiles, and BESS energy
capacity, can be derived in a straightforward way.

1) Distances, Speeds, Accelerations, Time, and Masses:
As the times of the RS and FS models are unaltered by the
scaling process, the kinematic quantities of the capsule’s RS
model can be directly linked to the corresponding ones of
the FS model, as in (8).

trsL = tfsL
vrs =

vfs

k
ars =

ars

k

Lrs =
Lfs

k

(8)

Regarding the masses of the RS model, as in [10], [18]-
[20], we assume that the components of the capsule have to
maintain the same relative density factor of their materials.
As the RS and FS models are characterised by materials with
the same volumetric densities, the overall mass of the capsule
RS model, mrs[kg], is inversely proportional to the cube of
the scaling factor times the mass of the capsule FS model,
mfs (see (9)). In other words, the overall mass of the RS
capsule model scales-down like its overall volume does.

mrs =
mfs

k3
(9)

2) Tube Environment: the operational conditions of the
RS tube, namely the air-density ρrs[

kg
m3 ] and temperature,

are assumed to be identical to those of the FS. The same
consideration applies to the tube’s pressure, prstube[bar]. The
RS cross section of the tube varies with the FS cross section
of the tube, as shown in (10).

ρrs = ρfs
prstube = pfstube

Srs
tube =

Sfs
tube

k2

(10)

3) Powers: The power losses due to the aerodynamic drag
force in the RS model can be defined similarly to (5), for
every discrete position of the capsule along the RS trajectory
and, as a function of the RS model, the drag coefficient Crs

D

and speed vrs[
m
s ]. Note that, in (11), the drag coefficient

cannot be directly linked to the RS capsule speed in a closed
form. This aspect is discussed in the following sub-section.

P rs
drag(j) =

1

2
Scapsule
rs Crs

D (v)ρrsv
3
rs(j) =

=
1

2

Scapsule
fs

k2
Crs

D (vrs)ρfs
v3fs(j)

k3

(11)

The mechanical power of the capsule is defined in (12).

P rs
tr (j) = mrsars(j)vrs(j) + P rs

drag(j) =

=
mfs

k3
afs(j)vfs(j)

k2
+ P rs

drag(j)
(12)

The electrical power provided by the BESS RS model,
P rs
batt[W ], is directly related to P rs

tr through the VSI power-
transfer efficiency, ηV SI , and the LIM-to-traction power-
transfer efficiency, ηLIM . As we will see later, the values
of these two efficiencies in the RS and FS models do not
play any role.

P rs
batt(j) =

P rs
tr (j)

ηLIM · ηV SI
(13)

B. Scaling of the Capsule’s Aerodynamics and Drag Coeffi-
cient

The drag coefficient of the RS capsule, Crs
D , is a coefficient

that takes into account the flow behaviour around a specific
object. Crs

D models the effects of the pressure and viscous
forces parallel to the flow direction exerted on the capsule’s
surface. Although it can be defined as in (14), as a function of
the previously introduced quantities and parameters of both
RS and FS models, the drag force F rs

drag(k,
vfs

k )[N ] does
not have a closed-form expression that links it to the scaling
factor k (e.g., [5]- [7]). Such a link has to be quantified
numerically by means of a dedicated computational fluid
dynamics (CFD) analysis, as a function of the scaling factor
k or, in case, that is determined experimentally.

Crs
D =

2 · F rs
drag(k, vrs)

ρrsv2rsS
capsule
rs

=
2 · F rs

drag(k,
vfs

k )

ρfs
v2
fs

k2

Scapsule
fs

k2

(14)



More specifically, we have carried-out a CFD analysis by
using the COMSOL© Multiphysics simulation environment,
with respect to a discrete set of values of the scaling factor
k that starts from a given shape of the FS capsule’s aeroshell
and tube diameter. The single-phase turbulent flow was
solved using a Reynolds-averaged Navier-Stokes (RANS)
Low Reynolds k-ϵ model, because large Eddy simulations
(LES) were too computationally demanding. We have se-
lected this model because it provides a good compromise
between computation time, resources, robustness, and accu-
racy of results. It is worth saying that a comparison between
the two models is beyond the scope of this manuscript.

The simulations refer to a steady-state condition at the
capsule’s cruising speed. Such a condition was selected as
the capsule spends the majority of the time in this state.

Section V contains all the results regarding this specific
set of simulations as it enables us to make a numerical
quantification of the function Crs

D (k).

IV. OPTIMAL ASSESSMENT OF THE SCALING FACTOR

In order to optimally determine the scaling factor k, there
is the need to determine a specific metric to be minimised.
To define such a metric, there are two fundamental consider-
ations to take into account: (i) the hyperloop system should
achieve the least possible energy use per passenger-per-km,
and (ii) the high speed achieved by the capsule requires
substantial power provided by the on-board BESS. Therefore,
the FS and RS capsule models should be characterised
by the same energy that is normalised by the maximum
power output of the BESS (as this device is the only power
source of the capsules). In other words, if we define Efs

norm

=
∫ P fs

batt(t)

max(P fs
batt(t))

dt as the normalized energy consumption

of the FS capsule and Ers
norm =

∫ P rs
batt(t)

max(P rs
batt(t))

dt as the
normalized energy consumption of a RS capsule, these two
values have to be as similar as possible.

As the time for the RS and FS models are unaltered by
the scaling process, we can transform the above-mentioned
metric in terms of powers provided by the FS and RS
capsules’ BESSs. In other words, we seek the least difference
between the normalised power profiles of the RS and FS
models.

This similarity cannot be guaranteed all along the tra-
jectory (essentially due to the non-linear relations of the
power profiles with the scaling factor and capsules’ speeds).
Therefore, we will require it with respect to the capsule’s
cruising speed as in (15).

min
k

(f(k) =
P rs
batt(k, v

rs
max)

max(P rs
batt(k))

−
P fs
batt(v

fs
max)

max(P fs
batt)

)

subject to (5)− (7), (10)− (13)

(15)

In view of (11), (12), and (13), and by recalling that at
cruising speed the capsule acceleration is null, the first term
of the objective function, say T1 in (15), can be written as
in (16).

T1 =
P rs
batt(k, v

rs
max)

max(P rs
batt(k))

=

Prs
tr (k,vrs

max)

ηLIM ·ηV SI

Prs
tr,max

ηLIM ·ηV SI

=
P rs
tr (k, vrsmax)

P rs
tr,max

=
Scapsule
fs Crs

D (k;
vfs
max
k

)ρfs(v
fs
max)

3

max(2mfsafs(ĵ)vfs(ĵ) + Scapsule
fs Crs

D (k; vrs(ĵ))ρfsv
3
fs(ĵ))

(16)

where the index ĵ refers to the position that, along the
trajectory, corresponds to the maximum value of the P rs

batt.
In view of (5), (6), and (7), and by recalling that at cruising

speed the capsule acceleration is null, the second term of the
objective function, say T2 in (15), can be written as in (17).

T2 =
P fs
batt(v

fs
max)

max(P fs
batt)

=

P
fs
tr (vfs

max)

ηLIM ·ηV SI

P
fs
tr,max

ηLIM ·ηV SI

=
P fs
tr (vfsmax)

P fs
tr,max

=
Scapsule
fs Cfs

D (vfsmax)ρfs(v
fs
max)

3

max(2mfsafs(ĵ)vfs(ĵ) + Scapsule
fs Cfs

D (vfs(ĵ))ρfsv
3
fs(ĵ))

(17)

Note that, in view of the above, the objective function
presented in (15) is independent of both the VSI power-
transfer efficiency ηV SI and the LIM-to-traction power-
transfer efficiency ηLIM , even if these two efficiencies are
different in the FS and RS models. Therefore, ηLIM and
ηV SI do not play any role in the scaling-down process.

Here, we apply (15) to determine the optimal scaling factor
for a realistic hyperloop test case.

V. APPLICATION EXAMPLE

A. Full-Scale Model Assumptions

1) Main Numerical Assumptions: in order to apply the
proposed process for infering the scaling factor, we refer
to an FS hyperloop system whose characteristics have been
determined in [9]. More specifically, (18) provides a sum-
mary of the main parameter of such a system. Furthermore,
Fig. 4 shows the FS acceleration profile, afs(i), where the
maximum acceleration is slightly below 1.5m

s2 . Fig. 5 shows
the FS model speed profile vfs(i) where the maximum
(cruising) speed is equal to 600km

h . In Fig. 6, the FS model
power-time profile of the traction and BESS, respectively,
P fs
tr (i) and P fs

batt(i), are also presented. The maximum value
of P fs

batt(i) along the trajectory is 6MW . Note that the
parameter Cfs

D was validated within the CFD simulation, at
the given vfsmas speed.





ηLIM = 0.65
ηV SI = 0.95
Lfs = 500km

Scapsule
fs = 3.14m2

Stube
fs = 12.56m2

pfstube = 50.53mbar
mfs = 21243.47kg

tfsL = 53.75minutes
vfsmax = 594.4km

h

Cfs
D = 0.51

(18)
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Fig. 4: FS hyperloop model acceleration profile as a
function of time, afs(i). Adapted from [9] for a hyperloop

trajectory length Lfs = 500km.
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Fig. 5: FS hyperloop model speed profile as a function of
time, vfs(i). Adapted from [9] for a hyperloop trajectory

length Lfs = 500km.
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Fig. 6: FS hyperloop model traction and BESS power
profiles as functions of time, P fs

tr (i) and P fs
batt(i).

k[−] Crs
D [−]

4 0.4327
5 0.4189
6 0.4188
7 0.4139
9 0.4343
11 0.4668
12 0.5679
14 0.7834
16 0.9156
18 1.0397

TABLE I: CFD-determined values of Crs
D (k,

vfs
max

k ).

B. Reduced-Scale Model Assumptions

1) Aerodynamics: A hyperloop capsule aeroshell was
specifically designed. Its shape is shown in Fig. 7.

Fig. 7: Aeroshell model

Specific CFD simulations were carried out with the fol-
lowing assumptions: (i) the simulation domain is composed
of a half tube from which the capsule was subtracted
(we take advantage of the model symmetry), and (ii) the
simulation domain comprises air at T0 = 293.15K and
prstube = 50.53mbar.

CFD simulations were carried out for various values
of k to numerically infer the dependency Crs

D (k,
vfs
max

k ),
where the imposed velocity of the air at the inlet of the
simulation domain was adapted for each k as in (8). The
value of the FS capsule cruising speed, vfsmax, is the one
reported in (18). The values of Crs

D (k,
vfs
max

k ) for k =
{4, 5, 6, 7, 9, 11, 12, 14, 16, 18} are given in Table I. These
discrete values of Crs

D (k,
vfs
max

k ) were linearly interpolated as
shown in Fig. 8. The sudden increase in drag coefficient,
as a function of k for values larger than k = 11, can be
interpreted as the transition to a laminar-flow field around
the RS model. The skin-friction drag becomes predominant
no matter the shape of the aeroshell, as it is an intrinsic
limitation of the scaling process.

C. Results

The values of the objective function of the problem (15)
are shown in Fig. 9. It is interesting to note that any RS
model with 4 ≤ k ≤ 11 can produce satisfactory results
with respect to the minimisation of the metric proposed in
the paper. Therefore, RS hyperloop models with a relatively
broad range of scaling factors can be considered.
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Fig. 9: Values of the objective function of the problem (15)
for various values of the scaling factor, k.

The normalized-power profiles, as functions of time, are
shown in Fig. 10 for different values of the scaling factor
(the FS normalised power profile, i.e., for k = 1, is reported
as well). In the constant-speed zone, the proximity of the
normalised powers for 4 ≤ k ≤ 11 with the FS one can be
clearly seen. Fig. 11, shows the speed profiles (always as a
function of time) for the same values of the scaling factor,
whereas Fig. 12 and Fig. 13 show the acceleration and the
non-normalised power profiles, respectively.

It is interesting to note that, for the selected values of
the scaling factor, the RS model’s maximum speeds vary
between 33− 149km

h , whereas the RS model’s masses vary
between 3− 332kg, as shown in TABLE II. The maximum
power provided by the RS BESS models varies between
3.4 − 5702W . These values of speeds and BESS powers
are certainly easy to handle by a dedicated RS hyperloop
mockup.

VI. CONCLUSIONS

The development of an FS hyperloop prototype system is
an expensive and time-consuming process that entails limited
flexibility of the realised setup. In this respect, we have
proposed a suitable framework that is capable of determining
not only the scaling factor but also the main variables and
parameters of a hyperloop mockup. More specifically, the
proposed framework relies on the operating conditions of
the hyperloop infrastructure and the models of the capsule’s
kinematics, BESS, PS and aerodynamics.

k[−] mrs[kg]

4 331.92
5 169.94
6 98.34
7 61.93
9 29.14

11 15.96
12 12.29
14 7.74
16 5.18
18 3.64

TABLE II: RS mass values, mrs function of k.

Fig. 10: Normalized power profiles as functions of time of
both FS and RS hyperloop models for the considered

values of the scaling factor k.
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Fig. 11: Speed profiles as functions of time of the
hyperloop RS model for the various considered values of

the scaling factor k.

By introducing a suitable metric that takes into account
both the energy and power demands of the hyperloop FS
and RS capsules, we have shown how the above operating
conditions and models can be used to optimally determine the
scaling factor of the hyperloop RS model. Furthermore, we
have discussed and assessed the importance of the hyperloop
capsule’s aerodynamics, with respect to the scaling process,
and the means of integrating a numerical CFD analysis into
the proposed framework.

By making reference to an FS hyperloop system whose
characteristics were already determined in a previous study
(i.e., capsule’s maximum speeds of 600km/h, capsule’s mass
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Fig. 13: Power profiles as functions of time of the
hyperloop RS model for the various considered values of

the scaling factor k.

of 22tons and maximum BESS power of 6MW ), in the
proposed framework, we have identified a range of values of
the scaling factor, i.e., 4 ≤ k ≤ 11; it is quite large. Within
such an interval, the objective function of the proposed
framework does not exhibit substantial changes and gives an
opportunity to the modeler to adopt the value of the scaling
factor that is more convenient, as the maximum BESS power
of the RS model vary between 3.4 − 5702W with speeds
between 33− 149km/h.

Future work will be focused on the construction of an RS
hyperloop mockup by using the proposed framework. Such
an RS hyperloop model will be used to study the viability of
the various technical solutions of the FS hyperloop system in
an efficient way, as it simplifies the fast prototyping of vari-
ous components of the hyperloop capsules and infrastructure.

REFERENCES

[1] International Electrotechnical Commission IEC (2019) “International
Standard IEC 60193: Hydraulic turbines, storage pumps and pump-
turbines - model acceptance tests”, Edition 3.0, 2019-04.

[2] W. Yossri, S. Ben Ayed and A. Abdelkefi, ”Three-dimensional compu-
tational fluid dynamics investigation on size effect of small-scale wind
turbine blades”, AIAA Scitech 2021 Forum, 11–15 and 19–21 January
2021.

[3] T. Revaz, M. Lin and F. Porté-Agel, ”Numerical Framework for
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