
Age of View: A New Metric for Evaluating Heterogeneous Information
Fusion in Vehicular Cyber-Physical Systems

Xincao Xu1, Kai Liu1, Qisen Zhang1, Hao Jiang1, Ke Xiao2 and Jiangtao Luo3

Abstract— Heterogeneous information fusion is one of the
most critical issues for realizing vehicular cyber-physical sys-
tems (VCPSs). This work makes the first attempt at quanti-
tatively measuring the quality of heterogeneous information
fusion in VCPS by designing a new metric called Age of
View (AoV). Specifically, we derive a sensing model based
on a multi-class M/G/1 priority queue and a transmission
model based on Shannon theory. On this basis, we formally
define AoV by modeling the timeliness, completeness, and
consistency of the heterogeneous information fusion in VCPS
and formulate the problem aiming to minimize the system’s
average AoV. Further, we propose a new solution called Multi-
agent Difference-Reward-based deep reinforcement learning
with a Greedy Bandwidth Allocation (MDR-GBA) to solve the
problem. In particular, each vehicle acts as an independent
agent and decides the sensing frequencies and uploading prior-
ities of heterogeneous information. Meanwhile, the roadside unit
(RSU) decides the Vehicle-to-Infrastructure (V2I) bandwidth
allocation for each vehicle based on a greedy scheme. Finally,
we build the simulation model and compare the performance
of the proposed solution with state-of-the-art algorithms. The
experimental results conclusively demonstrate the significance
of the new metric and the superiority of the proposed solution.

Index Terms— Vehicular cyber-physical system, Heteroge-
neous information fusion, Deep reinforcement learning

I. INTRODUCTION

Benefitting from current advances in sensing technologies
and vehicular communications, the development of vehicular
cyber-physical systems (VCPSs) [1] has received great atten-
tion in both industries and academia, which aims to enable
the next generation of intelligent transportation systems
(ITSs) by bridging the gap between the physical vehicular
environment and the cyber system view. With VCPS, het-
erogeneous information such as the status of traffic lights,
vehicle locations, point cloud data, and traffic surveillance
videos, could be synergistically sensed and uploaded, so as
to construct logical views of the physical environment and
facilitate the implementation of emerging ITS applications.

Great efforts have been devoted to enhancing system
performance in vehicular networks, including data dissem-
ination, information caching, task offloading, etc. Liu et al.
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considered the cooperative data dissemination problem in a
vehicular end-edge-cloud architecture and proposed a clique
searching-based scheduling scheme to enable collaborative
data encoding and transmission [2]. Singh et al. proposed an
intent-based network control framework, in which a neural
network is used to train the flow table and enable intelligent
data dissemination [3]. Dai et al. proposed a blockchain-
empowered distributed content caching framework, where
vehicles perform content caching and base stations maintain
the blockchain [4]. Xiao et al. developed a binary particle
swarm optimization based coding scheduling to exploit syn-
ergistic effects of network coding and vehicular caching [5].
Shang et al. studied energy-efficient computation offloading
in VEC and developed a deep-learning-based algorithm to
optimize transmission power and computation resources [6].
Liao et al. presented an intent-aware task offloading strat-
egy, which enables vehicles to learn the long-term strategy
under information uncertainty with multi-dimensions intent
awareness [7].

A number of studies have focused on developing VCPS,
including the prediction, scheduling, and control of sys-
tem status. Zhang et al. proposed a hybrid velocity-profile
prediction method, which integrates traffic flow state with
individual driving behaviors [8]. Zhang et al. predicted ve-
hicle status based on lane-level localization and acceleration
prediction [9]. A lane-change behavioral prediction model
and an acceleration prediction model are derived based on
historical driving data. Lian et al. presented a scheduling
method for vehicle path planning based on an established
map model [10]. Liu et al. proposed a scheduling algorithm
for temporal data dissemination in VCPS [11]. Liu et al.
presented a temporal data scheduling method considering the
dynamic snapshot consistency requirement in VCPS [12].
Xu et al. proposed a vehicle collision warning scheme based
on trajectory calibration by considering V2I communication
delay and packet loss [13]. Lv et al. presented an adaptive
algorithm to control vehicle acceleration under three typical
driving styles with different protocol selections [14].

Distinguishing from the above efforts, this work is dedi-
cated to designing a new metric for evaluating the quality of
heterogeneous information fusion in VCPS and proposing a
new solution to maximize system performance. The critical
issues to be addressed are summarized as follows. First,
the information uploaded by vehicles is time-varying, which
has to be sensed and updated in time. So, the synergistic
impact of sensing frequency, queuing delay, and transmission
delay has to be considered to keep the information fresh.
Second, due to the high mobility of vehicles, limited Vehicle-
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to-Infrastructure (V2I) communication range, and unreliable
wireless transmissions, how to enhance the completeness
of the information at the roadside unit (RSU) is another
critical concern. Third, since the information is intrinsically
heterogeneous in terms of distribution and updating fre-
quency, it is important yet challenging to construct a uniform
representation of different pieces of information.

The main contributions are outlined as follows.
• We propose a new metric called Age of View (AoV) to

quantitatively measure the quality of heterogeneous in-
formation fusion in VCPS. First, the multi-class M/G/1
priority queue is adopted to model the information
queuing sensed by vehicles. Then, the Shannon theory
is applied to model the packet delay and loss via V2I
communication. On this basis, we formally describe the
uniform representation of heterogeneous information.
Finally, the AoV is defined by modeling the timeliness,
completeness, and consistency of information fusion.

• We propose a new solution called Multi-agent
Difference-Reward-based deep reinforcement learning
with Greedy Bandwidth Allocation (MDR-GBA), which
enables distributed sensing at vehicles and centralized
bandwidth allocation at the RSU. Specifically, vehicles
act as independent agents and decide the sensing fre-
quencies and uploading priorities of heterogeneous in-
formation. Then, a greedy bandwidth allocation scheme
is designed to allocate V2I bandwidth by considering
vehicle mobility and ITS application requirements.

• We build the simulation model and compare the per-
formance of the proposed algorithm with competitive
deep reinforcement learning based solutions, including
Centralized Deep Deterministic Policy Gradient (C-
DDPG) [15], Multi-agent Actor-Critic (MAC) [16], and
a variation of MAC called MAC-GBA. Realistic vehicle
trajectories extracted from Didi GAIA Initiative [17]
are adopted for performance evaluation. The simulation
results conclusively demonstrate the significance of the
new metric AoV and the superiority of the proposed so-
lution. In particular, MDR-GBA outperforms C-DDPG,
MAC, and MAC-GBA by around 16.43%, 16.71%,
and 4.91%, respectively, in terms of maximizing the
cumulative system reward.

The rest of this paper is organized as follows. Section
II designs the new metric AoV. Section III proposes the
new solution MDR-GBA. Section IV evaluates the system
performance. Finally, Section V concludes this work.

II. AGE OF VIEW FORMULATION

A. Notations

The set of discrete time slots of the system is denoted by
T =

{
τ1, τ2, · · · , τt, · · · , τ|T |

}
, where |T | is the number of

time slots, and the time slot length is denoted by ε. The set of
vehicles is denoted by S =

{
s1, s2, · · · , si, · · · , s|S|

}
, where

|S| is the number of vehicles. The heterogeneous information
is divided into J categories and each category has K data
items, which is denoted by DJ×K , where djk is the k-th
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Fig. 1. System model

information of the j-th category. The size of djk is denoted
by |djk|. The RSU is denoted by e = 〈le, re, be〉, where
le, re, and be denote the location, communication range,
and bandwidth of the RSU e, respectively. The distance
between vehicle si and RSU e is denoted by a function
of time distie , distance (lti , le), where distance (·, ·) is the
Euclidean distance.

B. System Model

As shown in Fig. 1, the queuing time of each cate-
gory of heterogeneous information sensed by vehicles is
modeled by multi-class M/G/1 priority queue [18]. The
information sensed by vehicle si is denoted by Di =
{Di1, Di2, · · · , Dij , · · · }, where Dij is the set of the j-
th category information sensed by vehicle si. The arrival
rate of Dij in vehicle si at time τt is determined by the
sensing frequency and denoted by λtij . Due to the limited
sensing ability, we have 0 < λmin

ij ≤ λtij ≤ λmax
ij ,∀Dij ⊆

Di,∀si ∈ S,∀τt ∈ T , where λmin
ij and λmax

ij are the
minimum and maximum of sensing frequency for the j-th
category information in vehicle si, respectively. The inter-
arrival time intij of Dij is the interval of arrival time
between adjacent data items of the j-th category in vehicle
si, which is computed by intij = 1

λtij
.

The uploading priority of Dij at time τt is denoted by
ptij ∈ (0, 1),∀Dij ⊆ Di,∀si ∈ S,∀τt ∈ T . The information
with higher priority will be uploaded earlier to the RSU.
The transmission time of data items in Dij from vehicle si to
the RSU e follows a General distribution with mean E [serij ]
and finite second moment E

[
ser2ij

]
. The uploading workload

for vehicle si can be represented by ρti =
∑
∀Dij⊆Di λ

t
ij ·

E [serij ]. To guarantee the existence of the queue steady-
state, it requires ρti < 1. The overall workload of Dij∗ , which
has higher uploading priority than Dij , is denoted by ρtij =∑
∀Dij∗⊆Di 1{p

t
ij∗ ≥ ptij} ·λtij∗ ·E [serij∗ ], where 1{ptij∗ ≥

ptij} is an indictor function, 1{ptij∗ ≥ ptij} = 1, if ptij∗ ≥ ptij ,
otherwise, 1{ptij∗ ≥ ptij} = 0. Then, the average queuing



time waiij of Dij can be computed by:

waiij =
1

1− ρtij + λtijE [serij ]

E [serij ] +
µtij

2
(
1− ρtij

)
− E [serij ]

(1)
where µtij =

∑
∀Dij∗⊆Di 1{p

t
ij∗ ≥ ptij} · λtij∗ · E

[
ser2ij∗

]
.

Then, we model the packet transmission time and the
successful transmission condition via V2I communications
based on Shannon theory. The set of vehicles within the
radio coverage of RSU e at time τt is denoted by Ste ={
si | distie ≤ re,∀si ∈ S

}
, Ste ⊆ S. The bandwidth of vehi-

cle si allocated by RSU e at time τt is denoted by bti], and we
have 0 ≤ bti ≤ be,∀si ∈ Ste,∀τt ∈ T , and

∑
∀si∈Ste

bti ≤ be,
where be is the bandwidth of RSU e. The Signal to Noise
Ratio (SNR) [19] of V2I communications between vehicle
si and RSU e at time τt is computed by:

SNRt
i =

1

N0
· |hie|2 · ψ · distie

−ϕ · π (2)

where N0 is the additive white Gaussian noise, hie is the
channel fading gain, ψ is a constant that depends on the
antennas design, ϕ is the path loss exponent, and π is the
transmission power. Due to the high mobility of vehicles,
the SNR of signal received at RSU e from vehicle si may
fall below an SNR threshold, which is called SNR wall [20]
and calculated by SNRwall = σ2−1

σ , where σ is a function
of noise uncertainly N∗0 measured by dB, σ = 10N

∗
0 /10.

According to the Shannon theory, the achievable transmis-
sion rate δti of V2I communications between vehicle si and
RSU e at time τt is calculated by δti = bti · log2

(
1 + SNRt

i

)
.

The transmission time traij of djk ∈ Dij from vehicle si to
RSU ek is calculated by traij =

|djk|
δti

. A successful trans-
mission refers to the event that the received SNR is above
the SNR wall during the packet transmission. Therefore, the
successful transmission condition of djk is represented by:

Ptij =

{
1,∀τt∗ ∈ [τt, τt + traij ] ,SNRt∗

i > SNRwall

0,∃τt∗ ∈ [τt, τt + traij ] ,SNRt∗

i ≤ SNRwall
(3)

C. The Metric of AoV

The set of views is denoted by V ={
v1, v2, · · · , vg, · · · , v|V |

}
. The information requirement

for view construction is denoted by vg ∈ {0, 1}|S|×J ,
where vtij = 1 indicates that the construction of view vg
requires data item in Dij sensed by vehicle vi at time τt,
otherwise, vtij = 0. The set of required views by the RSU
e at time τt is denoted by V te ⊆ V . Then, we define the
three characteristics of heterogeneous information including
timeliness, completeness, and consistency as follows.

Definition 1 (Timeliness): The timeliness θg ∈ [0,+∞)
of view vg is defined as the sum of inter-arrival time,
queuing time, and transmission time of each heterogeneous
information received at the RSU.

θg =
∑
∀vtij∈vg

vtij · Ptij · (intij + waiij + traij) (4)

Definition 2 (Completeness): The completeness χg ∈
[0, 1] of view vg is defined as the ratio between received
and required heterogeneous information of the view.

χg =

∑
∀vtij∈vg

vtij · Ptij∑
∀vtij∈vg

vtij
(5)

Definition 3 (Consistency): The consistency ξg ∈
[0,+∞) of view vg is defined as the quadratic sum of the
difference between information received time and average
information received time.

ξg =
∑
∀vtij∈vg

∣∣∣∣∣waiij + traij −

∑
∀vtij∈vg

waiij + traij∑
∀vtij∈vg

vtij · Ptij

∣∣∣∣∣
2

(6)
Finally, we give the formal definition of AoV, which

synthesizes the three critical characteristics to measure the
quality of a view.

Definition 4 (Age of View, AoV): It is defined as a
weighted average of normalized timeliness, completeness,
and consistency of view vg .

AoVg = W1θ̂g + W2(1− χg) + W3ξ̂g (7)
where θ̂g and ξ̂g are the normalized timeliness and con-
sistency using min-max scaler formula; W1,W2,W3 are
weighting factors for the normalized timeliness, complete-
ness, and normalized consistency of view, respectively, and
we have W1 + W2 + W3 = 1.

Given a solution x = (Λ,P,B), where Λ denotes
the determined sensing frequencies and is represented by
Λ =

{
λtij | ∀Dij ∈ Di,∀si ∈ S, ∀τt ∈ T

}
; P denotes the

determined uploading priorities and is represented by P ={
ptij | ∀Dij ∈ Di,∀si ∈ S,∀τt ∈ T

}
, and B denotes the de-

termined V2I bandwidth allocation and is represented by
B = {bti | ∀si ∈ Ste,∀τt ∈ T }, the objective is to minimize
the average AoV in the scheduling period T , which is
represented by:

min
Λ,P,B

1

|T |
∑
∀τt∈T

1

|V te |
∑
∀vg∈V te

AoVg

s.t. C1 : λtij ∈ [λmin
ij , λmax

ij ],∀Dij ∈ Di,∀si ∈ S, ∀τt ∈ T
C2 : ptij ∈ (0, 1),∀Dij ∈ Di,∀si ∈ S, ∀τt ∈ T
C3 : bti ∈ [0, be],∀si ∈ Ste,∀τt ∈ T

C4 :
∑

∀Dij∈Di

λtij · E [serij ] < 1,∀si ∈ S, ∀τt ∈ T

C5 :
∑
∀si∈Ste

bti ≤ be,∀τt ∈ T

(8)
Constraint C1 requires that the sensing frequencies of in-

formation in vehicle si at time t should meet the requirement
of its sensing ability. C2 guarantees the uploading priority
of information in vehicle si at time t. C3 states that the V2I
bandwidth allocated by the edge node e for vehicle si at time
t cannot exceed its bandwidth capacity be. C4 guarantees
the queue steady-state during the scheduling period T . C5
requires that the sum of V2I bandwidth allocated by the edge
node e cannot exceed its capacity be.



III. PROPOSED SOLUTION

We propose a new solution called Multi-agent Difference-
Reward-based deep reinforcement learning with Greedy
Bandwidth Allocation (MDR-GBA). As shown in Fig. 2,
the MDR-GBA includes three parts, namely, initialization,
replay experiences storing, and training. In the initialization
part, each vehicle acts as an independent agent and consists
of a local actor, a target actor, a local critic, and a target critic
network. The parameters of local actor and critic network
of vehicle si are denoted by θµi and θQi , respectively. The
parameters of target actor and critic network are denoted
by θµ

′

i and θQ
′

i , respectively. The parameters of each local
actor and critic network of vehicles are randomly initialized.
The parameters of target networks are initialized as the
same with the corresponding local networks, θµ

′

i ← θµi ,
θQ
′

i ← θQi ,∀si ∈ S. An experiment replay buffer D with a
maximum size |D| is initialized to store replay experiences.

In the replay experiences storing part, the vehicles and
RSU decide the actions and store the experiences of interac-
tions between the physical environment. At the beginning of
each iteration, a random process N is initialized for explo-
ration, and the system status is o1. The RSU broadcasts its
view requirements of particular applications and cached in-
formation. The partial observation of physical environments
by vehicle si at time τt is denoted by oti = {Dt

i , D
t
e, V

t
e },

where Dt
i represents the set of sensed heterogeneous infor-

mation in vehicle si at time τt, and Dt
i ⊆ Di. Dt

e represents
the set of cached information in the RSU, and Dt

e ⊆ D.
V te represents the set of views required by a particular
application at time τt. Hence, the system status at time τt is
denoted by ot =

{
Dt

1, · · · , Dt
i , · · · , Dt

|S|, D
t
e, V

t
e

}
.

The action space of vehicle si at time τt consists of the
sensing frequency and uploading priority of the j-th category
information sensed by vehicle si. The action of vehicle si at
time τt is ati = µi (oti | θ

µ
i ) +Nt, where Nt is exploration

noise for increasing the diversity of vehicle actions. The set
of actions of vehicles is denoted by atS = {ati | ∀si ∈ S}.
Then, the RSU selects the action ate = {bti | ∀si ∈ Ste}
on determining the V2I bandwidth allocation according to
a Greedy Bandwidth Allocation (GBA) scheme. The set of
heterogeneous information sensed by vehicle si and required
by views V te at time τt is denoted by Dt

i,Req = {Dij |
vij = 1,∀vij ∈ vg,∀vg ∈ V te ,∀Dij ⊆ Di}, and its size
can be obtained by ‖Dt

i,Req‖ =
∑
∀djk∈Dti,Req

|djk|. The
mobility patterns of vehicles are predicted using Expectation-
Maximization (EM) method [21] with historical relative
distances between vehicles and the RSU. Furthermore, the
locations of vehicle si at the time interval [τt+1, τt+h] is
predicted based on the EM-based mobility pattens prediction
Trajti =

{
l̂t+1
i , l̂t+2

i , . . . , l̂t+hi

}
, where l̂t+1

i is the predicted
location of vehicle si at time τt+1. Thus, the average distance
of vehicle between RSU is computed by d̄is

t
ie = 1/

∣∣Trajti
∣∣ ·∑

∀x∈[1,h] d̂is
t+x

ie , where d̂is
t+x

ie is the distance between the

predicted location of vehicle si and the RSU, d̂is
t+x

ie =
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distance
(
l̂t+xi , le

)
. The allocated bandwidth of vehicle si

for V2I communications is calculated by bti = be
ω+ranki

,
where ω is a constant, and ranki is the sort ranking by
the sequence of

∥∥Dt
i,R

∥∥ in descending order, and d̄is
t
ie in

ascending order.
With the determined actions of vehicles and the RSU, a

system reward r (atS ,a
t
e | ot) and a new system status ot+1

of next time slot are received. In view of the system opti-
mization objective, which is to minimize the average AoV,
we define the average transformed AoV (i.e., 1−AoVg) in a
certain time slot as the system reward, which is represented
by r (atS ,a

t
e | ot) = 1

|V tk |
∑V tk
vg

(1−AoVg). To evaluate the
contribution of each vehicle, it is expected to further assign
the system reward into individual rewards for independent
vehicles to evaluate their contributions. Accordingly, the
Difference reward (DR) [22], which is a popular way to
perform credit assignments, of vehicle si, denoted by rti ,
is defined as the difference between the system reward and
the reward achieved without its action:

rti = r
(
atS ,a

t
e | ot

)
− r

(
atS−i,a

t
e | ot

)
(9)

where r
(
atS−i,a

t
e | ot

)
is the system reward achieved with-

out the contribution of vehicle si, and it can be obtained
by setting null action set for si. Then, the set of difference
rewards of vehicles is represented by rtS = {rti | ∀si ∈ S}.
Finally, the experiences are stored in the replay buffer.

In the training part, each vehicle samples a minibatch of
M transitions from experience replay buffer D for actor and
critic network training. One transition of the M minibatch is
denoted by

(
omi ,a

m
S , r

m
S ,o

m+1
i

)
. The loss function of local

critic network of vehicle si is computed by:

L
(
θQi

)
=

1

M
Σm

(
ym −Qi

(
omi ,a

m
S | θ

Q
i

))2
(10)

where ym = rmi + γQ′i

(
om+1
i ,am+1

S | θQ
′

i

)
and the action

of vehicle si at time τm+1 is given by the target actor net-
work based on next observation am+1

i = µ′i

(
om+1
i | θµ

′

i

)
,

and γ is the discount rate. Then, the parameters of local actor
network of vehicle si are updated via policy gradient.

∇θµi J ≈
1

M

∑
m

∇ami
Qi

(
omi ,a

m
S | θ

Q
i

)
∇θµi µi

(
om+1
i | θµi

)
(11)



Vehicles softly update the parameters of target networks,

θµ
′

i ← niθ
µ
i + (1− ni)θµ

′

i ,∀si ∈ S

θQ
′

i ← niθ
Q
i + (1− ni)θQ

′

i ,∀si ∈ S
(12)

where ni � 1,∀si ∈ S.

IV. PERFORMANCE EVALUATION

A. Settings

In this section, we implement a simulation model using
real-world vehicle trajectories collected from Didi GAIA
Initiative [17]. In particular, we extract a 3km×3km area of
Qingyang district in Chengdu, China from 8:00 am to 8:05
am on 16 Nov. 2016. The data sizes are uniformly distributed
in the range of [100B, 1MB]. The transmission power of
each vehicle is set to 1 mW. The additive white Gaussian
noise, the mean channel fading gain, the second moment
of the channel fading gain, and the path loss exponent of
transmission between vehicles and the RSU are set to -90
dBm, 2, 0.4, and 3, respectively [19]. The bandwidth of the
RSU is set to 3 MHz. The noise uncertainly set is uniformly
distributed in the range of [0, 3] dB [20]. We implement
three comparative algorithms as follows.

• Centralized Deep Deterministic Policy Gradient (C-
DDPG) [15]: it implements an agent at the edge node to
determine the sensing frequencies, uploading priorities,
and V2I bandwidth allocation in a centralized way based
on the system state. Meanwhile, the system reward is
received by the agent to evaluate its contribution.

• Multi-agent Actor-Critic (MAC) [16]: it implements
agents in vehicles to decide the sensing frequencies and
uploading priorities based on local observation of the
physical environment, and an agent in the edge node to
decide the V2I bandwidth allocation. The system reward
is received by each agent to evaluate their contributions,
which is the same for each agent.

• MAC with Greedy Bandwidth Allocation (MAC-GBA):
In order to make MAC better at V2I bandwidth alloca-
tion, we further design a variation called MAC-GBA,
where the RSU allocates the V2I bandwidth based on
a greedy scheme by considering vehicle mobility and
particular ITS applications requirements.

Furthermore, the following metrics are designed for per-
formance evaluation.

• Cumulative Reward (CR): it is the cumulative system
reward in the scheduling period T , which is computed
by
∑
∀τt∈T r (atS ,a

t
e | ot).

• Composition of Average Reward (CAR): it is defined
as the percentage of the normalized timeliness, com-
pleteness, and consistency in the average reward and
formulated by < 3

10 (1− θ̂g), 4
10χg,

3
10 (1− ξ̂g) >.

• Average Queuing Time (AQT): it is defined as the
sum of queuing time of the sensed information divided
by the number of information, which is computed by∑
∀τt∈T {{

∑
si∈S{

∑
∀Dij⊆Di waiij}/|Di|}/|S|}/|T |.

• Service Ratio (SR): it is defined as the number
of views which satisfy the completeness require-
ment over the total number of required views dur-
ing the scheduling period T , and it is computed by∑
∀τt∈T

∑
∀vg∈V te

1{χg ≥ χthreshold}/
∑
∀τt∈T |V

t
e |.

B. Results and Analysis

1) Effect of RSU bandwidth: Fig. 4(a) compares the CR
of algorithms under different RSU bandwidths. The CR of
MDR-GBA outperforms C-DDPG, MAC, and MAC-GBA
at around 17.63%, 12.62%, and 6.34%, respectively. It is
observed that the difference between MDR-GBA and MAC-
GBA decreases when the bandwidth increases from 4 MHz
to 5 MHz. The reason is that when there is sufficient
bandwidth for data uploading, the scheduling significance is
getting weaker. Fig. 4(b) compares the CAR, and MDR-GBA
achieves better performance than the other three algorithms.
This is mainly because the cooperation of sensing and
uploading information among vehicles is more efficient in
MDR-GBA under the limited bandwidth. Fig. 4(c) compares
the AQT, as noted, the AQT of MDR-GBA maintains the
lowest under different RSU bandwidths, which reflects that
the designed GBA scheme can allocate the bandwidth more
efficiently. The advantage can be further justified by Fig.
4(d), which shows the SR of the algorithms. The SR of
MDR-GBA remains at the highest level across all the cases.

2) Effect of application requirements on views: Fig. 5(a)
compares the CR of the algorithms under different applica-
tion requirements on views. The CR of MDR-GBA outper-
forms C-DDPG, MAC, and MAC-GBA at around 15.25%,
19.80%, and 3.49%, respectively. Note that the CR of MDR-
GBA, MAC-GBA, and MAC is similar when the average
view size is small (i.e. around 1.62 MB). It is because a
smaller data size has a higher probability to be successfully
uploaded. Fig. 5(b) compares the CAR, and it is observed
that the performance difference between MDR-GBA and
MAC-GBA is small when the average view size increases
from 0.25× to 0.5×. This is because the scheduling effect is
insignificant when sufficient resources meet the requirements
of a smaller average view size (i.e., around 1.62 MB and
3.23 MB). Figs. 5(c) and 5(d) compare the AQT and SR,
showing that the MDR-GBA can remain the lowest AQT, and
meanwhile achieve the highest SR in most cases. It is noted
that MAC-GBA achieves the lowest AQT and the highest SR
when the average view size is 2×, which reflects that the
GBA scheme can allocate the bandwidth more efficiently.

V. CONCLUSION

In this work, we designed a new metric AoV to evaluate
the quality of heterogeneous information fusion in VCPS. In
particular, a multi-class M/G/1 priority queue was adopted
to model the queuing of sensed information at vehicles, and
the Shannon theory was applied to model the V2I-based
information uploading. A solution called MDR-GBA was
proposed, in which vehicles act as independent agents and
decide both sensing frequencies and uploading priorities. A
greedy scheme was designed for V2I bandwidth allocation



(a) CR (b) CAR (c) AQT (d) SR

Fig. 3. Performance comparison under different RSU bandwidths

(a) CR (b) CAR (c) AQT (d) SR

Fig. 4. Performance comparison under different application requirements on views

at the RSU. Finally, we build the simulation model, and
the results demonstrate the significance of the AoV and the
superiority of MDR-GBA.
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