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Abstract— Automated vehicles require the ability to cooper-
ate with humans for smooth integration into today’s traffic.
While the concept of cooperation is well known, developing a
robust and efficient cooperative trajectory planning method is
still a challenge. One aspect of this challenge is the uncertainty
surrounding the state of the environment due to limited sensor
accuracy. This uncertainty can be represented by a Partially
Observable Markov Decision Process. Our work addresses
this problem by extending an existing cooperative trajectory
planning approach based on Monte Carlo Tree Search for
continuous action spaces. It does so by explicitly modeling
uncertainties in the form of a root belief state, from which
start states for trees are sampled. After the trees have been
constructed with Monte Carlo Tree Search, their results are
aggregated into return distributions using kernel regression. We
apply two risk metrics for the final selection, namely a Lower
Confidence Bound and a Conditional Value at Risk. It can be
demonstrated that the integration of risk metrics in the final
selection policy consistently outperforms a baseline in uncertain
environments, generating considerably safer trajectories.

I. INTRODUCTION

In the context of automated driving, uncertainties about
the real state of the environment exist due to the limited
accuracy of sensor systems. Further, the outcomes of actions
are uncertain as they depend on the unknown intentions
of other traffic participants as well as imprecise actuators
and controllers. Hence, trajectory planning algorithms should
incorporate these sources of uncertainty to reduce risks by
yielding more robust trajectories.

While Partially Observable Markov Decision Processes
(POMDPs) provide a sound mathematical framework for se-
quential decision making in uncertain environments, POMDP
solutions are intractable for all but the smallest problems due
to their inherent complexity [1] (i.e., curse of dimensionality
and curse of history [2]). Hence, approximation methods
have been developed [3] that are capable of determining
local policies online [1] if the state and action space are
low dimensional. These methods are applied for interactive
decision making in uncertain driving situations by a strong
reduction of the state and action spaces [4]–[7].

The cooperative trajectory planning algorithm this work
is based on plans in a continuous state and action space for
each agent [8]. Accounting for all possible states in the multi-
agent setting results in a complete solution space. The arising
complexity forbids the use of standard POMDP solution
methods. Hence, we address the uncertainty by substituting
the initial state s0 of a Markov Decision Process (MDP) with
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Fig. 1: Using the distribution of the belief state b0, possible
start states are sampled. For each start state s0, an MCTS is
run to determine the action values Q(s0, ·), yielding a return
distribution over start states S0.

an initial belief b0, modeling a distribution over all possible
states according to the current observation [9]. All successor
states are treated as fully observable in the corresponding
planning cycle, and thus standard MDP logic can be applied.

Our main contribution is the extension of prior work [8]
to be capable of handling uncertainties due to limited sensor
accuracy. We combine determinization, Monte Carlo Tree
Search (MCTS), and kernel regression to obtain return distri-
butions. By applying risk metrics to the return distributions,
robust actions are determined.

II. RELATED WORK
Uncertainties have been addressed with various MCTS

approaches in the literature. Kernel Regression UCT [10]
tackles the execution uncertainty in continuous action spaces
by employing the Upper Confidence Bound for Trees (UCT)
[11] and selecting actions according to a modified upper con-
fidence bound value that incorporates all action assessments
by kernel regression. Furthermore, the estimated value of a
selected action is refined by applying progressive widening
to add similar actions to the search tree. Another concept
is determinization which describes the process of sampling
several deterministic problems with perfect information from
a stochastic problem with imperfect information, solving
these problems, and fusing their results to get a solution
for the original problem [12]. For instance, Couëtoux et
al. [13] employ UCT with "Double Progressive Widening"
in a setting with stochastic state transitions and continuous
action and state spaces. Their method expands the set of
available actions and the set of sampled outcomes iteratively.
Another example is HOP-UCT [14] which uses "Hindsight
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Optimization" (HOP). Several deterministic UCT search
trees are constructed, and their results are averaged to de-
termine the action assessments. Ensemble-Sparse-UCT [14]
creates multiples trees and restricts the number of outcomes
for an action to a sampling width parameter. Afterwards,
the results of the search trees are combined. A different
approach is Information Set MCTS [15], which uses nodes
representing information sets. An information set comprises
all indistinguishable states for an agent. The approach uses a
determinization to restrict the search tree to regions consis-
tent with this determinization. The real-state uncertainty can
be modeled by a POMDP approach [2] that uses a search
tree with history nodes and an unweighted particle filter
representing the belief state. A black box simulator samples
successor states and observations, and actions are selected
according to the UCT criterion. Generally, POMDPs can be
solved online with search trees of belief states with Branch-
and-Bound Pruning, Monte Carlo Sampling, or Heuristic
Search [1].

In the domain of automated driving, the "Toolkit for
approximating and Adapting POMDP solutions In Realtime"
(TAPIR) [3] based on Adaptive Belief Trees [16] is success-
fully applied if the action space is sufficiently small [4]–
[6]. Another approach to account for uncertainty is to use
Distributional Reinforcement Learning in combination with
risk metrics [17]. Instead of learning a return for each state
and action, Distributional Reinforcement Learning learns a
return distribution. This can be done offline, exposing the
agent to various uncertainties during training. Online, during
inference, a risk metric is applied to the (risk-neutral) return
distribution to select the best action.

III. BACKGROUND
The following subsections provide related fundamentals.

A. Monte Carlo Tree Search
Monte Carlo Tree Search is a Reinforcement Learning

based method to search for an optimal decision within an
MDP [12]. It has proven to be applicable to problems
with large branching factors [2], [18]. The optimal decision
maximizes the (expected) sum of discounted future rewards,

Gt = Rt + γRt+1 + γ2Rt+2 + · · · =
∞∑
k=0

γkRt+k, (1)

with R being the reward function and γ being the discount
factor. It approximates the action-value function through
Monte Carlo sampling [19] by the arithmetic average of the
returns (1),

Q(s, a) = G
(s,a)

=
1

N(s, a)

N(s,a)∑
j=1

G
(s,a)
j , (2)

where N(s, a) denotes the visit count of action a from state
s and G

(s,a)
j is the j-th return sample of executing action a

from state s .
The objective is to find the optimal policy π∗ that provides

the maximum expected return. Given the optimal action-
value function q∗(s, a) = maxπ qπ(s, a), a deterministic

optimal policy can be determined by choosing the action
that maximizes q∗(s, a

′).
To estimate the optimal action-value function, the MCTS

applies the following four steps repeatedly until a computa-
tional budget is exhausted [12]:

1) Selection: The selection phase starts from the root node
and descends the search tree (e.g., by maximizing the UCT
value (3) of the next node) until a node is reached that is
non-terminal and has not been fully expanded (i.e., not all
available actions have been explored). This node is selected.

2) Expansion: The expansion phase selects an action
(e.g., at random) from the action space and expands the
previously selected node by executing the action, generating
a new child node.

3) Simulation: During the simulation phase, a simulation
is run from the new child node according to a rollout policy
πroll until a terminal state is reached.

4) Update: The update phase traverses the branch of the
tree starting from the added child node to the root node and
updates the node statistics (i.e., visit count and return of
actions).

The selection and expansion process is defined by a tree
policy πtree. For instance, the Upper Confidence Bound for
Trees (UCT) [11] is calculated during the selection phase for
all possible actions a from a given node v with

UCT(v , a) = G
(v ,a)

+ 2Cp

√
log N(v)

N(v , a)
(3)

where Cp ∈ R≥0 is a constant, N(v , a) the visit count of
action a from node v and N(v) is the total visit count of
node v . The child node with the highest UCT value gets
selected. UCT solves the exploration-exploitation dilemma
by balancing both phases throughout the search, with the
first term fostering exploitation and the latter exploration.
Further in-depth information about MCTS can be found in
[12].

B. Kernel Regression
The general objective of regression is to find the regression

function

m(x) = E[Y |X = x] =

∫∞
−∞ yf(x, y)dy∫∞
−∞ f(x, y)dy

(4)

specifying the conditional expected value of a random vari-
able Y given the realization of a random variable X [20].
Since the joint probability density function f is unknown,
kernel regression [20], [21] estimates f by

f̂(x, y) =
1

n

n∑
i=1

K̃(x− xi, y − yi) (5)

with a kernel K̃ (i.e., a non-negative smoothing function
whose integral over both dimensions equals one) from a
finite set of data samples {(x1, y1), . . . , (xn, yn)}. Under
mild requirements, the estimated regression function can then
be formulated as

m̂(x) =

∑n
i=1 yiK̃(x− xi)∑n
i=1 K̃(x− xi)

=

∑n
i=1 yi K(x, xi)∑n
i=1 K(x, xi)

(6)



where K̃(·) is the "marginal" kernel and the kernel value
K(x, xi) is just a simplified notation for K̃(x− xi) [20].

C. Risk Metrics

A risk metric is a "measure" for risk, but it is not a metric
in a mathematical sense since it does not represent a distance
function. Let Z : Ω → R be a random variable assigning
costs (in monetary units) that are caused by an action to
each outcome ω of the sample space Ω. Furthermore, let
Z denote the set of all cost random variables, then a risk
metric ρ : Z → R maps each cost random variable Z to
a real number that represents the "amount" of risk [22].
"Good" risk metrics should fulfill the following axioms [22]:
A1. Monotonicity, A2. Translation invariance, A3. Positive
homogeneity, A4. Subadditivity, A5. Comonotone additivity,
and A6. Law invariance. The proper mathematical definitions
can be found in [22]. The following subsections describe
two possible risk metrics, the Kernel Regression Lower
Confidence Bound (KRLCB) and the Conditional Value at
Risk (CVaR).

1) Kernel Regression Lower Confidence Bound (KRLCB):
The concept of kernel regression (see section III-B) can be
applied to estimate an action value. The kernel regression
value

KR[a|s,A] =

∑
a′∈AK(a, a ′)Q(s, a ′) N(s, a ′)∑

a′∈AK(a, a ′) N(s, a ′)
(7)

for an action a combines the action value estimates Q(s, a ′)
of all actions a ′ of a finite action set A from a state
s weighted by the visit counts N(s, a ′) and a kernel K
that specifies the similarity between the actions [10]. The
denominator in (7) is called the kernel density

W[a|s,A] =
∑
a′∈A

K(a, a ′) N(s, a ′) (8)

and specifies the exploration of action a and similar actions.
The kernel regression lower confidence bound

KRLCB[a|s,A] = KR[a|s,A]−c

√
log
∑

a′∈AW[a ′|s,A]

W[a|s,A]
(9)

subtracts a normalized exploration term scaled by a constant
c ∈ R≥0 from the KR value [10] and hence penalizes poorly
explored actions. In this context, the KRLCB is applied
to a return distribution represented by the value estimates
Q(s, a ′). It can be shown that some of the risk metric axioms
in section III-C are satisfied if the KRLCB definition is
adjusted for a cost distribution.

2) Conditional Value at Risk (CVaR): Let Z be a cost
random variable. Then, the Value at Risk

VaRα(Z ) := min {z ∈ R | P(Z > z) ≤ α} (10)
= min {z ∈ R | P(Z ≤ z) ≥ 1− α} (11)

specifies the smallest (1 − α)-quantile of Z for a given
probability α [22], [23]. The Conditional Value at Risk

CVaRα(Z ) := E [Z | Z ≥ VaRα(Z )] (12)

is defined as the conditional expected value of Z given all
costs are greater than or equal to VaRα(Z ). CVaR is a
risk metric that satisfies all six axioms [22]. In addition, the
Upper Value at Risk

VaR+
α (Z ) := inf {z ∈ R | P(Z > z) < α} (13)

= inf {z ∈ R | P(Z ≤ z) > 1− α} (14)

specifies the largest (1 − α)-quantile of Z for a given
probability α [23]. VaR+

α and VaRα only differ if the
cumulative distribution function is constant around (1− α).

IV. PROBLEM STATEMENT
The problem of cooperative trajectory planning in sce-

narios with multiple traffic participants and the associ-
ated sources of uncertainty is represented by a multi-agent
POMDP [9], specified by a tuple 〈Υ,S,A,T,R,O,O,γ〉
with:
• Υ = {1, . . . ,n}: the set of agents
• S: the state space
• A = A1 × · · · × An : the joint action space including

the action space Ai for each agent i ∈ Υ .
• T : S×A×S → [0, 1]: the state-transition function that

specifies the probability T(s,a, s ′) of reaching state s ′

after the joint action a is executed in state s .
• R : S×A×S → Rn : the reward function that specifies

the joint reward R(s,a, s ′) as a result of the transition
from state s to state s ′ by the joint action a.

• O = O1 × · · · × On : the joint observation space
containing the observation space Oi for each agent
i ∈ Υ .

• O : S ×A×O → [0, 1]: the joint observation function
that specifies the probability O(s ′,a,o) of making the
joint observation o on the condition that the agents
executed the joint action a and transitioned to the state
s ′.

• γ: a vector of discount factors. The discount factor
γi ∈ [0, 1) for an agent i ∈ Υ accounts for the inherent
uncertainty of future rewards by reducing their weight
in the return calculation.

In this paper, we focus on the real-state uncertainty
modeled by the observation function O. The unknown inten-
tions of other traffic participants are explicitly modeled, and
the execution uncertainty represented by the state-transition
function T is addressed by a "similarity update" in our
previous work [8]. The objective is to find the optimal joint
action a provided a specific observation o.

V. APPROACH
Our approach fosters cooperation between agents by em-

ploying a reward function for each agent that also incor-
porates the rewards for all other agents [8]. Each agent
chooses actions (∆velocity, ∆lateral position) independently
in a continuous action space to achieve the desired velocity
and lane while preventing collisions and invalid trajectories.
Based on the chosen actions, trajectories are generated using
fifth-order polynomials in a Frenet coordinate system [8],
[24].



We model the accuracy of a sensor system with Gaussian
distributions. The accuracy is described by its trueness and its
precision according to ISO 5725-1 [25]. The trueness states
the deviation of the arithmetic mean of data points from
their real value. Since we assume that the sensor systems
are unbiased, we set the means of the Gaussian distributions
to the real (simulated) values. The precision describes the
dispersion of the data points and can hence be expressed by
the standard deviations of the Gaussian distributions.

The following observation features for the agents’ vehicles
are modeled as stochastic: longitudinal and lateral position,
longitudinal and lateral velocity, length, width, and heading.
Furthermore, observations for the longitudinal and lateral po-
sition, length, width, and heading of obstacles are stochastic,
as well as the observed lane width.

A stochastic observation is represented by an m-
dimensional random vector X = (X1, . . . ,Xm)T that fol-
lows a Gaussian distributionN (µs′ ,Σ) with the mean vector
µs′ and the covariance matrix Σ. The elements of the mean
vector µs′ correspond to the real features of the current state
s ′ since the sensor systems are assumed to be unbiased. For
reasons of simplicity, we assume that the random vector X
contains only mutually independent components. This leads
to Σ being a diagonal matrix and each observation feature Xk
following its individual Gaussian distribution N (µs′k

, σ2
k).

Our approach addresses the uncertainty surrounding sensor
measurements by combining the results of search trees from
different start states, see Fig. 1. These start states S0 are
sampled in a modified way according to the initial belief state
b0 (i.e., based on the measurement uncertainties). Instead of
updating the belief state over time steps within the MCTS,
we employ determinization and treat the resulting states
as deterministic, applying standard MDP logic. Given the
distribution over possible states through the initial belief
state and the results from the determinization, more robust
actions can be found. Our approach does not address the
update procedure of the belief state over planning cycles.
Instead, we use a belief state that solely depends on the
current observation and the accuracy of the sensor systems.

The general concept is described in Alg. 1.

A. Start State Policies

The following describes the selection and expansion poli-
cies for start states.

1) Selection: Since the belief about the real state of the
environment is continuous and an MCTS-based approach
can only handle a finite set of discrete states, we apply
progressive widening (cf. [26], [27]) to extend the set of
start states S0 iteratively. During each iteration, it is checked
whether

|S0| ≥ cpw Nαpw (15)

with the start states S0, the constants cpw ∈ R≥0, and αpw ∈
[0, 1) and the iteration count N holds true. If it does not, the
start states are expanded by adding a new start state generated
according to section V-A.2. Otherwise, a start state is selected
uniformly at random from the set of collision-free and valid

Algorithm 1 Uncertainty Handling Concept

Input: belief state b0

Output: best action vector a∗

1: create initial start states S0
2: for iteration i← 1, . . . , I do
3: if start states S0 shall be expanded then
4: s0 ← create new start state
5: S0 ← S0 ∪ {s0}
6: else
7: s0 ← select existing start state ∈ S0

8: v ← select node in tree of s0 to be expanded
9: v ′ ← expand v by creating new node according to

selected action vector
10: add v ′ as child node of v
11: run simulation from v ′

12: update tree of s0 according to simulation results
13: update start state s0

14: a∗ ← FinalSelectionPolicy selects best action
vector given search trees

start states S ′0 ⊆ S0. In summary, (15) specifies the number
of sampled start states for a given number of iterations.

2) Expansion: Given the current belief, a new start state
is generated according to a specific sampling process. Since
we model the belief as Gaussian distributions, we also
use Gaussian distributions to sample start states. Let X =
(X1, . . . ,Xm)

T be an m-dimensional random vector that is
normally distributed (X ∼ N (µ, cΣ)) with the mean vector
µ and the covariance matrix Σ scaled by a factor c. Each
component Xk : Ω→ R specifies the value of a feature, for
instance the lateral position of a vehicle. The mean vector µ
and the covariance matrix Σ are set to the corresponding
parameters of the current belief state. Then, a start state
is sampled according to this distribution N (µ, cΣ). If the
sampled start state is invalid or in collision, the factor c gets
adjusted, and a new attempt is conducted. This procedure
is repeated until the start state meets the conditions or a
maximum limit is reached, with c defined as

c = min
{

(cstep)
lstep , cmax

}
, (16)

where cstep ∈ R≥0 is a constant, lstep is a step counter
and cmax ∈ R≥0 is the maximally allowed value. The step
counter

lstep =

⌊
lattempt
lstepSize

⌋
(17)

is dependent on the number of total attempts conducted so far
lattempt ∈ R≥0, and the step size lstepSize ∈ R≥0 specifies
the number of attempts for one step.

The mentioned procedure is executed independently for
the creation of several start states. Thus, the i-th start state
is a realization of the random vector Xi ∼ N (µ, ciΣ) with
an individual factor ci.



If ci increases, the variance of sampled start states also
increases, and hence the probability of obtaining a collision-
free and valid start state rises. Furthermore, the usage of
ci > 1 fosters the finding of more robust actions, as they
have to perform well from a greater variety of start states.
On the other hand, the constant cmax limits the scaling of
the variance to a realistic level. Future work may examine
whether evaluations from specific start states (e.g., near
collisions and invalidities) should be treated differently.

B. Final Selection

A final selection policy selects the most robust action
vector given the constructed search trees. We present two
different variants, namely the Lower Confidence Bound and
the Conditional Value at Risk. Both variants follow the same
steps stated in Alg. 2. For each agent i ∈ Υ , a set of
action candidates Ci is determined, comprising all actions
whose assessment contribute to the final result. This set
only contains actions explored from valid and collision-free
start states with a visit count exceeding a lower threshold.
Since we assume that planning is only conducted from valid
and collision-free states, results from other start states that
cannot represent the actual state of the environment are
rejected. As the variance of action value estimates decreases
with increasing visit counts, the threshold can be seen as
a variance reduction measure. If the condition is met for
an action, this action is appended to the action candidates,
and the start state from which the action was evaluated is
also stored. Therefore, the set of action candidates is not a
mathematical set because it is possible that a specific action,
e.g., "accelerate", is included several times from different
start states. On the other hand, a specific action from a
specific start state is only added once. In this sense, all
elements of Ci are distinct.

In case of an empty set of action candidates for an agent,
the default action of maintaining the current velocity and
the lateral position is selected. Otherwise, kernel regression
is conducted to combine the action assessments. In general,
the density of an action candidate a is defined as

W[a|Ci] =
∑
a′∈Ci

K(a, a ′) N(sa′ , a ′) (18)

with kernel K and the visit count N(sa′ , a ′) of action
candidate a ′ from the corresponding start state sa′ . We use
the kernel specified by the Gaussian radial basis function

K(a, a ′) = exp
(
−γ ‖a − a ′‖2

)
(19)

as a similarity measure for two actions a and a ′. Conse-
quently, the density is a measure for the exploration of an
action a and similar actions to a . The kernel regression value
is calculated as

KR[a|Ci] =

∑
a′∈Ci K(a, a ′)Q(sa′ , a ′) N(sa′ , a ′)∑

a′∈Ci K(a, a ′) N(sa′ , a ′)
(20)

where Q(sa′ , a ′) is the estimated action value of action
candidate a ′ evaluated from the corresponding start state
sa′ . Thus, it is a sum of value estimates weighted by the

Algorithm 2 Basic Final Selection Policy

Input: search trees of the planning phase
Output: best action vector a∗

1: a∗ ← 〈〉 . empty best action vector
2: for each agent i ∈ Υ do
3: Ci ← GETACTIONCANDIDATES(i)
4: if Ci = ∅ then
5: store default action in a∗

6: else
7: Wi,KRi ← KERNELREGRESSION(Ci)
8: Qi ← GETACVALUES(Ci, Wi, KRi)
9: a∗ ← arg maxa∈Ci Qi(a)

10: store a∗ in a∗

11: return a∗

visit counts and the similarity between a and the actions
candidates. After "action candidate values" Qi, describing
the final assessment of the action candidates, are calculated
according to the policy variants introduced in the next
subsections, the action with the maximum action candidate
value is chosen for the respective agent.

1) Kernel Regression Lower Confidence Bound (KRLCB):
This policy variant employs the Kernel Regression Lower
Confidence Bound (KRLCB) [10] to combine the action
assessments from the search trees. First, the function KER-
NELREGRESSION determines the density W[a|Ci] and kernel
regression value KR[a|Ci] for all action candidates a ∈ Ci
according to (18) and (20), respectively. Then, the function
GETACVALUES calculates the KRLCB value

KRLCB[a|Ci] = KR[a|Ci]− c

√
log
∑

a′∈Ci W[a ′|Ci]
W[a|Ci]

(21)
given a constant c ∈ R≥0 and the precomputed W[a|Ci] and
KR[a|Ci]. The second term in (21) represents the normalized
exploration of a and similar action candidates. By subtracting
this term, rarely explored action candidates and thus poor
value estimates are penalized, leading to a lower confidence
bound value. Since the KRLCB value incorporates the as-
sessment from all constructed trees, a well-explored action
that performs well from many start states has a large KRLCB
value and hence is selected finally as a robust action.

2) Conditional Value at Risk (CVaR): This policy variant
employs the Conditional Value at Risk (CVaR) [22], [23].
In section III-C.2, CVaR was introduced for a cost random
variable Z . Since we operate in the context of MDPs and
POMDPs, we derive a consistent CVaR definition for a
reward random variable R := −Z . Given (10), the Value
at Risk of Z can be transformed with

VaRα(Z ) = min {z ∈ R | P(−R > z) ≤ α}
= −max {r ∈ R | P(R < r) ≤ α}
= − inf {r ∈ R | P(R ≤ r) > α}
= − inf {r ∈ R | P(R > r) < 1− α}
(13)
= −VaR+

1−α(R)

(22)
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Fig. 2: CCVaR and upper VaR for an exemplary probability
density function (p.d.f.) describing a return distribution.

to the negative Upper Value at Risk of R. Given a cost
random variable Z , the best action a∗ of a finite set Ãi
of available actions for agent i has the smallest CVaR value
(23) and hence the smallest risk. The equation manipulations

a∗ = arg min
a∈Ãi

CVaRα(Z ) (23)

= arg min
a∈Ãi

E [−R | − R ≥ VaRα(Z )]

(22)
= arg min

a∈Ãi

E
[
−R | R ≤ VaR+

1−α(R)
]

= arg max
a∈Ãi

E
[
R | R ≤ VaR+

1−α(R)
]

(24)

show that the best action a∗ can also be selected by maximiz-
ing an expected value based on the reward random variable
R (24). We denote this expected value as "Complementary
Conditional Value at Risk" (CCVaR) and define it as

CVaR1−α(R) := E
[
R | R ≤ VaR+

1−α(R)
]

. (25)

In the context of MDPs and POMDPs, an agent selects the
action with the largest CVaR1−α(G) value where G denotes
the return (1). CCVaR and the upper VaR for an exemplary
return distribution are illustrated in Fig. 2.

The policy variant using the CCVaR, which is described
in Alg. 3, must determine a return distribution for each
action candidate a ∈ Ci at first. This is achieved by
calculating kernel regression values for different start states
as "unweighted particles" representing the distribution. The
function KERNELREGRESSION determines for each action
candidate a ∈ Ci and for each start state s0 ∈ S0 the
action candidates Cis0 ⊆ C

i that were evaluated from s0. The
density Wi

a,s0 := W[a|Cis0 ] (18) describes the exploration
of a and similar action candidates in the tree of s0. Only
if this density Wi

a,s0 is greater than or equal to a threshold
wmin ∈ R≥0, a "particle" for the start state s0 is added to
the return distribution. This condition ensures lower variance
of the return estimates. If the condition holds, the kernel
regression value KRia,s0 := KR[a|Cis0 ] (20) is calculated and
the results Wi

a,s0 and KRia,s0 are appended to the sets Wi

and KRi, respectively. After the kernel regression procedure
is completed, the return distribution for an action candidate
a ∈ Ci is represented by the unweighted particle set of kernel
regression values

KRia =
{
KRia,s0 | s0 ∈ S0 ∧ KR

i
a,s0 ∈ KR

i
}
⊆ KRi.

(26)

In the next step, the function GETACVALUE checks whether
KRia has enough elements for a meaningful representation.
Let

Ns0 = |{Cis0 | s0 ∈ S0
∧ Cis0 = {action candidates from s0} ⊆ Ci

∧ Cis0 6= ∅}|
(27)

be the number of start states from which actions have
been appended to the action candidates Ci. If the final
selection follows section V-B for the initialization of Ci, Ns0

corresponds to the number of collision-free and valid start
states visited more often than a threshold. Then, the condition

|KRia | ≥ cmNs0 (28)

with a constant cm ∈ [0, 1] indicates whether KRia is
meaningful. If (28) is satisfied, the CVaR1−α(KRia) (25)
with probability α is used as the action candidate value
for a ∈ Ci. Otherwise, the action candidate value is set to
negative infinity to avoid the selection of an action that has
been poorly assessed due to the sparse set KRia .

The CCVaR approach favors robust actions since it com-
bines the performances from several start states and limits
the influence of high-return outliers from few specific start
states.

VI. EXPERIMENTS

We evaluated our approach using 15 different scenarios
representing merging, overtaking, and bottleneck situations
as well as obstacle mazes with up to 8 vehicles [28]. The
scenarios, which are illustrated online1, describe various
urban situations. A scenario is completed when each agent
has left the scenario’s region of interest. Each experiment
was conducted with 300 random seed values with our
simulator. The results were assessed with the success rate
indicating the fraction of collision-free and valid trajectories.
An agent’s trajectory is valid if the agent stays within the
road boundaries and if the trajectory is physically drivable.
We compare the results for different numbers of iterations I
(cf. Alg. 1). The baseline, which is the cooperative trajectory
planner of our previous work [8], provides the results of
Fig. 3a in a deterministic environment (i.e., without uncertain
measurements). Scenarios one to six with two or three agents
yield a success rate close to 100 %. For scenarios eight
to eleven, the success rates increase with the number of
iterations as expected due to the improved action value
estimates and the exploration of new actions. Scenarios 13 to
15, which describe more complex situations such as obstacle
mazes, cannot be solved with 8000 iterations or less since
more iterations are necessary for a proper exploration of the
action spaces and for a greater planning depth into the future.
Thus, the results for these scenarios are neglected in the
evaluation.

If the baseline approach is applied in an uncertain environ-
ment with noisy observations, the results worsen according

1https://url.kurzer.de/ProSeCo-Scenarios

https://url.kurzer.de/ProSeCo-Scenarios


250 500 1000 2000 4000 8000
SC01
SC02
SC03
SC04
SC05
SC06
SC07
SC08
SC09
SC10
SC11
SC12
SC13
SC14
SC15
mean

Iterations

1.00 1.00 1.00 1.00 1.00 1.00
0.90 0.96 0.97 0.97 0.98 0.99
1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00
0.99 0.99 0.98 0.98 0.98 0.98
1.00 1.00 1.00 1.00 1.00 1.00
0.05 0.05 0.10 0.18 0.18 0.19
0.49 0.53 0.53 0.65 0.63 0.74
0.62 0.66 0.78 0.76 0.76 0.75
0.78 0.89 0.91 0.85 0.85 0.90
0.25 0.46 0.67 0.77 0.88 0.96
0.02 0.06 0.11 0.23 0.52 0.79
0.00 0.00 0.00 0.00 0.00 0.00
0.01 0.02 0.04 0.02 0.01 0.01
0.00 0.00 0.00 0.00 0.00 0.00
0.54 0.57 0.61 0.63 0.65 0.69

(a) baseline deterministic environment

250 500 1000 2000 4000 8000
SC01
SC02
SC03
SC04
SC05
SC06
SC07
SC08
SC09
SC10
SC11
SC12
SC13
SC14
SC15
mean

Iterations

1.00 1.00 1.00 1.00 1.00 1.00
0.07 0.18 0.28 0.45 0.82 0.96
1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00
0.94 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00
0.00 0.00 0.00 0.00 0.01 0.01
0.00 0.00 0.00 0.07 0.25 0.47
0.00 0.00 0.00 0.00 0.08 0.42
0.00 0.00 0.00 0.00 0.17 0.73
0.34 0.74 0.84 0.84 0.88 0.91
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.36 0.39 0.41 0.42 0.48 0.57

(b) KRLCB deterministic environment

250 500 1000 2000 4000 8000
SC01
SC02
SC03
SC04
SC05
SC06
SC07
SC08
SC09
SC10
SC11
SC12
SC13
SC14
SC15
mean

Iterations

1.00 1.00 0.99 0.99 1.00 1.00
0.06 0.15 0.20 0.40 0.69 0.91
1.00 1.00 0.97 0.98 0.99 1.00
1.00 1.00 0.97 0.98 0.99 1.00
0.90 0.99 0.99 1.00 1.00 1.00
1.00 1.00 0.99 1.00 1.00 1.00
0.00 0.00 0.00 0.00 0.00 0.01
0.00 0.00 0.00 0.01 0.12 0.35
0.00 0.00 0.00 0.00 0.01 0.15
0.00 0.00 0.00 0.00 0.00 0.26
0.09 0.49 0.70 0.76 0.80 0.79
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.34 0.38 0.39 0.41 0.44 0.50

(c) CVaR deterministic environment

250 500 1000 2000 4000 8000
SC01
SC02
SC03
SC04
SC05
SC06
SC07
SC08
SC09
SC10
SC11
SC12
SC13
SC14
SC15
mean

Iterations

0.75 0.64 0.45 0.58 0.47 0.50
0.42 0.38 0.32 0.27 0.19 0.17
0.87 0.72 0.68 0.63 0.41 0.42
0.70 0.54 0.48 0.48 0.30 0.26
0.76 0.73 0.75 0.74 0.77 0.82
0.78 0.77 0.73 0.76 0.75 0.82
0.04 0.02 0.04 0.02 0.02 0.01
0.33 0.36 0.21 0.17 0.10 0.11
0.26 0.27 0.19 0.08 0.03 0.03
0.31 0.25 0.21 0.20 0.12 0.14
0.05 0.04 0.05 0.06 0.06 0.06
0.01 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.01 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.35 0.31 0.27 0.27 0.21 0.22

(d) baseline uncertain environment

250 500 1000 2000 4000 8000
SC01
SC02
SC03
SC04
SC05
SC06
SC07
SC08
SC09
SC10
SC11
SC12
SC13
SC14
SC15
mean

Iterations

1.00 1.00 1.00 0.99 0.99 0.98
0.03 0.15 0.38 0.50 0.84 0.92
1.00 1.00 1.00 0.99 0.99 0.99
1.00 1.00 1.00 1.00 0.99 1.00
0.92 0.98 1.00 1.00 1.00 0.99
0.98 0.98 0.99 0.99 0.99 1.00
0.00 0.00 0.00 0.01 0.01 0.02
0.00 0.00 0.00 0.07 0.26 0.43
0.00 0.00 0.00 0.00 0.21 0.45
0.00 0.00 0.00 0.00 0.16 0.47
0.23 0.52 0.70 0.80 0.76 0.79
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.34 0.38 0.40 0.42 0.48 0.54

(e) KRLCB uncertain environment

250 500 1000 2000 4000 8000
SC01
SC02
SC03
SC04
SC05
SC06
SC07
SC08
SC09
SC10
SC11
SC12
SC13
SC14
SC15
mean

Iterations

1.00 1.00 0.99 0.98 0.99 0.98
0.06 0.10 0.22 0.38 0.69 0.82
1.00 1.00 0.95 0.98 0.98 0.97
1.00 1.00 0.94 0.98 0.99 0.99
0.91 0.96 0.97 0.98 0.98 0.99
0.94 0.97 0.97 0.98 0.98 1.00
0.00 0.00 0.00 0.01 0.00 0.01
0.00 0.00 0.00 0.02 0.10 0.32
0.00 0.00 0.00 0.00 0.04 0.30
0.00 0.00 0.00 0.00 0.01 0.19
0.05 0.24 0.50 0.61 0.62 0.50
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.33 0.35 0.37 0.39 0.43 0.47

(f) CVaR uncertain environment

Fig. 3: Comparison of the success rates between the baseline, KRLCB, and CVAR final selection policies in deterministic
(a, b, c) and uncertain (d, e, f) scenarios (SC) for different numbers of iterations.

to Fig. 3d. The success rates do not improve significantly or
even deteriorate in some scenarios with increasing iterations.
This is reasonable since the action value estimates overfit to
the observed state that can differ from the true state, possibly
leading to the selection of worse actions.

Our final selection policy with the KRLCB enhances
the results significantly (see Fig. 3e). The success rates
almost reach 100 % in scenarios one to six. Furthermore,
the performance increases with increasing iterations. This is
sensible since better estimates from more trees are combined,
robustifying action selection. If our approach is applied in
a deterministic environment (see Fig. 3b), the results are
similar but do not achieve the performance of the baseline.
This is reasonable, as the modeling and consideration of non-
existent uncertainties leads to the selection of suboptimal
actions. Especially in more complex scenarios such as SC07-
SC10, more iterations are necessary to mitigate this effect.

Similarly, the CVaR final selection policy also improves
the results in an uncertain environment significantly (see
Fig. 3f). The results are close to the results of the KRLCB
policy variant, but more iterations are necessary for the same
success rates. Moreover, the same statements also pertain in
a deterministic environment (see Fig. 3f).

The average runtime per planning step for the baseline
and our KRLCB and CVaR variants are stated in table I. A
planning step provides a sequence of actions for a maximum

TABLE I: Average runtime per planning step in milliseconds

Approach
Number of iterations

250 500 1000 2000 4000 8000
Baseline 25 52 112 249 638 1381
KRLCB 27 53 120 299 695 1464
CVaR 27 52 121 296 696 1479

duration of 10 s, but only the first action is executed for 0.8 s
in our simulation, leading to the next planning step given
a new observation. Both variants yield similar overheads
compared to the baseline. For instance, their durations are
greater by ≈ 7 % at 1000 iterations, 19 % at 2000 iterations,
and 6 % at 8000 iterations compared to the baseline. The
large overhead at 2000 iterations is due to the chosen
parameters for progressive widening of the set of start states.

VII. CONCLUSION

We propose an MCTS-based approach to plan robust
cooperative trajectories in an uncertain environment repre-
sented by a multi-agent POMDP. Our approach samples start
states in a modified way according to an initial belief state,
constructs deterministic search trees for all start states, and
combines their results by applying risk metrics to the return
distributions created by kernel regression. We employ the
Kernel Regression Lower Confidence Bound (KRLCB) and



Algorithm 3 CVaR Final Selection Policy

Input: action candidates Ci for agent i
Output: density distributions Wi and kernel regression

value distributions KRi for agent i
1: function KERNELREGRESSION(Ci)
2: Wi ← ∅
3: KRi ← ∅
4: for each action a ∈ Ci do
5: for each start state s0 ∈ S0 do
6: Cis0 ← {action candidates from s0} ⊆ Ci
7: Wi

a,s0 ←W[a|Cis0 ] . see (18)
8: if Wi

a,s0 ≥ wmin then
9: KRia,s0 ← KR[a|Cis0 ] . see (20)

10: appendWi
a,s0 toWi and KRia,s0 to KRi

11: return Wi, KRi

Input: action candidates Ci, densitiesWi, kernel regression
values KRi for agent i

Output: CCVaR values Qi for agent i
12: function GETACVALUES(Ci, Wi, KRi)
13: Qi ← ∅
14: . number of start states from which actions have

been appended to action candidates /
15: Ns0 ← see (27)
16: for each action a ∈ Ci do
17: KRia ←

{
KRia,s0 | s0 ∈ S0 ∧ KR

i
a,s0 ∈ KR

i
}

18: if |KRia | ≥ cmNs0 with cm ∈ [0, 1] then
19: Qia ← CVaR1−α(KRia) . see (25)
20: else
21: Qia ← −∞
22: append Qia to Qi
23: return Qi

the Conditional Value at Risk (CVaR) risk metrics to finally
select robust actions that perform well from many start states.
The results demonstrate that our approach outperforms our
prior cooperative trajectory planner significantly in uncertain
environments due to noisy observations while incurring only
a slight runtime overhead.
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