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Abstract— When planning motions for autonomous vehicles,
traffic rules must be obeyed to ensure safety and reject liability
claims. However, present solutions do not scale well with the
complexity of traffic rules or even consider them. To solve this
problem, we propose a scalable approach based on constrained
policy optimization to improve traffic rule compliance of motion
planners for autonomous vehicles. Qur approach encodes traffic
rules as constraints of the optimization problem and does not
require an explicit model of the environment. We evaluate our
approach using the highway dataset highD and show that agents
trained using our method can effectively learn to reach a goal
region while following traffic rules.

I. INTRODUCTION

Motion planning for autonomous vehicles is challenging
because traffic conditions are very dynamic and unpre-
dictable. Fortunately, traffic rules help traffic participants
to better handle the uncertainty and dynamics of traffic.
Obviously, not only conventional traffic participants, but also
autonomous vehicles must follow traffic rules; this is ideally
achieved by formalizing traffic rules in a machine-readable
way [1]-[3].

Due to the complexity of complying with traffic rules,
we employ constrained reinforcement learning (RL), which
explicitly considers constraints originating from traffic rules.
Constrained RL is particularly beneficial for learning to obey
traffic rules since it does not require an explicit model of the
environment.

A. Related Work

Subsequently, we review the literature on traffic-rule-
compliant motion planning and constrained RL.

1) Traffic rule compliance: Various temporal logic can
be employed to formalize traffic rules in an unambiguous
and machine-interpretable way. For instance, linear temporal
logic (LTL) is used in [2], [4]-[6]. However, time is not
explicitly considered in LTL. To add temporal constraints,
Maierhofer et al. [1], [3] use metric temporal logic (MTL) to
formalize interstate and intersection traffic rules, which uses
Boolean values to represent rule satisfaction. The authors
of [7], [8] use signal temporal logic (STL), which extends
MTL to continuous time. Furthermore, MTL and STL are
equipped with quantitative semantics, indicating the degree
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of satisfaction of a trajectory with respect to a specification,
and are equivalent in our setting.

Different methods have been proposed to synthesize plans
that satisfy temporal logic specifications. Automata-based
approaches convert the temporal logic specifications to finite
automata, incorporate the corresponding system dynamics,
and generate rule-compliant trajectories using receding hori-
zon approaches [9], [10] or sampling-based approaches [11],
[12]. However, the resulting automata’s size grows expo-
nentially with the specification’s length [13], limiting their
application to high-dimensional problems. Instead, mixed-
integer programming is employed in [13] to encode the tem-
poral logic specifications as mixed-integer linear constraints.
However, mixed-integer programming struggles to scale to
complex specifications and long time horizons. On the other
hand, deep RL approaches have shown better scalability
for high-dimensional systems [14], [15]. However, no direct
comparison with the previously mentioned methods has yet
been conducted.

2) Constrained RL: Constrained reinforcement learning
methods are classified into primal and primal-dual methods
in [16]. Primal methods [16]-[18] satisfy the constraints by
considering them in the update process of a policy. Chow
et al. [17] project the policy parameter to a safe set formed
from constraints defined using Lyapunov functions. Liu et al.
[18] employ an interior-point approach to augment the policy
optimization objective with logarithmic barrier functions. Xu
et al. [16] propose to update the reward and cost objective
alternately, without the demand for a dual variable. However,
primal methods have been much less popular compared to
primal-dual methods, since one cannot tune the trade-off
between the primal objective and constraints due to the
absence of dual variables. Primal-dual methods augment the
optimization objective with the given constraints weighted
by dual variables. Therefore, the original constrained prob-
lem becomes unconstrained. We further divide primal-dual
methods into two sub-categories: trust-region and Lagrangian
methods. Trust-region approaches [19], [20] approximate
constraints linearly within the trust region. Lagrangian meth-
ods [21]-[23] use Lagrange multipliers to tune the trade-off
between performance and constraint satisfaction.

Among these researches, the closest to ours is [23], which
also combines distributional RL and constrained RL. How-
ever, the authors of [23] have not considered temporal logic
constraints and did not apply their approach to autonomous
vehicles. Additionally, they integrate their approach with an
off-policy RL algorithm, which we demonstrate in Section [[V]
is less stable for our problem compared to our method. To
summarize, a solution to the problem of learning traffic rule



compliance without an explicit model does not yet exist.

B. Contributions

We present the first study on learning traffic rule com-
pliance for autonomous vehicles using a distributionally
constrained policy optimization approach. Particularly, our
contributions are threefold:

o We propose the first approach to integrating distribution-
ally primal-dual-constrained RL with a policy gradient
approach;

o We develop a traffic-rule-compliant motion planner for
autonomous vehicles based on constrained reinforce-
ment learning;

o We demonstrate the effectiveness of our method using
the highD dataset [24].

The remainder of this paper is organized as follows: Sec-
tion || introduces the required preliminaries of our method.
In Section [T, we present our approach to integrating dis-
tributionally constrained RL with policy gradient methods,
which is then demonstrated in Section using the highD
dataset. Finally, Section E concludes our research.

II. PRELIMINARIES

In this section, we introduce the basic concepts of con-
strained Markov decision processes and distributional RL,
notations of cost/risk measures, and the syntax of MTL.

A. Constrained Markov Decision Process

We model our problem as a constrained Markov decision
process (MDP) [25] defined as a tuple (S, A, p, 7, ¢, Climit, Y):
a state space S represents a set of continuous states s, an
action space A represents a set of actions a, a transition func-
tion p(s’|s, a) is the distribution describing the probability of
reaching state s’ from state s taking action a, r represents
the immediate reward, c represents the immediate cost, cjimit
is a given threshold for the cumulative cost, and v € [0, 1]
represents the discount factor. Note that a constrained MDP
is a special form of an MDP, where the policy maximizes
the cumulative reward subject to constraining the cumulative
cost to stay below a user-defined limit cjjpiz [25]. In the
rest of this paper, we focus on definitions of costs and omit
definitions for rewards, which can be obtained by replacing
c with r. Without loss of generality, we use subscripts g
and *; to denote a variable at time step 0 and ¢, respectively.
The future discounted cost, called cost return, is defined as:

C=> Aa, e)
t=0
and the cost value of the state s following policy 7 is:

VI(s) =E[C|so = s, 7], 2)

(&)

where E[-|7] denotes the expected value over all future states
following policy .

C‘

risk-neutral ~T— risk-averse

Fig. 1. Conditional value-at-risk (CVaR) of the distribution of C.

B. Distributional RL

Compared with traditional RL, which learns the approx-
imate expectation of returns, distributional RL learns the
approximate distribution of returns instead. Bellemare et al.
have shown the advantages of learning distributions instead
of expectations in [26]. We approximate the distribution of
the state-dependent return (I)) following policy 7 with a
Gaussian distribution as proposed in [23], [27]:

C™(s) ~ N(V(s),YTZ(s)), 3)
where the variance Y7 (s) is calculated by [28, Eq. (2.35)]:
Y7(s) = E[C?|so = s, 7] — V.7 (5)2. 4)

C. Conditional Value-at-Risk

A policy that optimizes the expectation of return (I)) might
have high variance, therefore frequently generating actions
that result in more constraint violations. Risk-sensitive RL
tackles this challenge by considering various risk-related
metrics of the distributions of return instead. Conditional
Value-at-Risk (CVaR) is a popular metric to describe risk
representing the percentiles of the distribution of return. For
interested readers, Sarykalin et al. demonstrate the relation
between chance constraints and percentiles of a distribution
in [29, Eq. (14)]. The benefit of CVaR is that we can optimize
the policies toward various levels of risk aversion through a
parameter « € [0, 1], called risk level, as demonstrated in
Fig. [I] Let p. denote a general distribution of cost return,
then CVaR of p. with risk level « is [23, Definition 1]:

CVaR,, := E[C|C > F7'(1 - a)], 5)

where F, represents the cumulative distribution function of
Pe- CVaR of a Gaussian distribution (@) can be calculated as
[30, Proposition 1]:

Vivar(s) = VI (s) + a7 'o(@7H () VTE(s),  (6)

where ¢(-) and ®(-) are the standard normal distribution’s
the probability density function and cumulative distribution
function, respectively. Note that we omit superscript *™ in
the rest of this paper to enhance readability.

D. Past-Time MTL

The traffic rules that our agent aims to learn are formalized
in the past fragment of metric temporal logic (past-MTL)
[31], which defines finite traces over Boolean signals using
bounded-time operators. Let p denote an atomic proposi-
tion that can be either true or false; — and V denote



Ve
Cost Critic cost features L |
> —
[128,128] ~
St C(fmcatenated Actor o
eatures (256,128]
_’Reward Critiq reward features I_
[128,128] |_ v,

Shared Layers Model-Specific Layer(s)

Fig. 2. An overview of our model architecture. The number of neurons
in each layer is marked in the respective models. We omit the numbers for
the last layer of cost expectation, cost variance, and reward since each of
them only has one neuron.

Boolean operators not and or; G denotes the temporal
operator globally, indicating that formula ¢ must hold at
all times; P and Oj denote the bounded past temporal
operator previously and once, indicating that ¢ must hold
at the previous time step and at least once during a past
time horizon respectively, where the subscript I C (0, c0)
describes time constraints relative to the current time. With
this, the syntax of past-MTL is defined as follows:

o= —"pVo|p|Gp| Py Or¢. (7)

For a formal definition of the semantics of past-MTL, we
refer interested readers to [32].

III. APPROACH

We propose a novel approach to integrate distributional
RL, risk-averse RL, and constrained RL, which is then used
to train an agent to obey traffic rules.

The architecture of our model is shown in Fig. 2] and
the overall algorithm in Alg. |I} The reward value and cost
value are estimated using two separate neural networks,
namely, the cost critic and the reward critic. This separate
structure decouples the features of cost and reward, therefore
simplifying the training. We stack the features outputted by
the cost critic and reward critic (i.e., concatenated features in
Fig. 2) and feed them into the layers of the policy network,
also called the actor, since the actor requires both features
to learn to maximize the reward value while maintaining the
cost value below a given threshold cjjpit-

A. Distributional Cost Critic

As shown in Fig. 2| we used a shared network to estimate
the cost return’s expected value and variance, i.e., V.(s)
and Y.(s), since they might have common features (i.e.,
cost features in Fig. [2). Tang et al. derived the variance of
reward return in [27], which depends on the state and action,
i.e., their critic approximates the Q-value, whereas our critic
approximates the state value. We make this choice because
the advantage function [33, Eq. (3)] can be calculated using
the state value directly, as introduced in Sec. The

variance of the cost return is
Te(s) = c(s)® = Ve(s )2

+ 2ve(s) Z Zp "Is,a)Ve(s")
+’YQZ (als) Zp (s']s,a)Ye(s") ®
+722 (als) Zp s, a)Ve(s').

A detailed proof is given in To obtain the

distributional Bellman update of V,(s) and Y .(s), we replace
the expected future values with the estimated values for the
next state, i.e., we utilize the one-step estimation [34, Chapter
6.1] for an arbitrary variable X:

S w(als) S p(s'ls @) X (')
We expand (2) as [34, Eq.(3.14)]:
Ve(s) =Y _m(als) Y p(s's,a)ee +yVe(s')].

a

~ X(St+1). (9)

(10)

Then the Bellman updated expectation and variance are:

Ve(st) Binfly et +7Ve(si41)
T (11D

Te(st) a8 C? - Vc(st)2 + 2y Ve (se41)
+ 72 e(s5041) + Y2 Ve(s041)2.

To train our distributional cost critic, we require a loss
function to measure the distance between the current cost
distribution N (V.(s), Y.(s)) and the Bellman updated dis-
tribution N'(V.(s), Tc(s)). We choose the 2-Wasserstein
distance, as proposed in [23], [27], since the Bellman update
using the 2-Wasserstein distance is a contraction operator

[26, Lemma 3]. The loss function is

Ly, = [Ve(se) = Ve(so)lI3

Ly, = YC(St) + Tc(st) -2 \/ T0(51‘/) Tc(st)'

In contrast to the cost critic, the reward critic is not chosen
to be distributional since we aim to constrain the worst-
case behavior with respect to the costs while optimizing the
average behavior in terms of performance. Thus, we use the
temporal difference error as its loss [34, Chapter 6.1]:

Vi (s) 13-

Note that we weigh the loss of the reward and cost value
equally, but one could perform a hyperparameter search to
find a better choice.

(12)

Ly, = ||re + vVi(s¢41) — (13)

B. Worst-case PPO

On-policy approaches tend to be more stable and less sen-
sitive to hyperparameters compared to off-policy approaches
[35]. Therefore, we build our approach on top of the state-of-
art on-policy approach—proximal policy optimization (PPO)
[36]. We denote the actor in PPO as 7¥ with a parameter
vector #. The loss of the actor comprises two parts: reward-
dependent loss L? and cost-dependent loss LY. We first



calculate the distributional cost’s advantage function based
on CVaR. By replacing the value function with Vioyagr in
the general advantage estimator (GAE) [33, Eq. (16)], we
obtain

ACVaR,t =6+ (V81 + -4+ (vB) T 6y,
with 6 = ¢ + 'YVCVaR(SH-l) — VCVaR(St), (14)

where 8 € [0, 1] denotes a discount factor of the advantage
estimator and makes a compromise between variance and
bias. The two loss functions of the actor are [36, Eq. (7)]

LY = B, [max(k(0) Acvar., ketip.t(0) Acvar.¢)]

L} = —By[min(ky(0) Ar, keiip,o (6) A¢)], (13

where the probability ratio is defined by ki(0) =
mo(at|st)/me. 4 (at|st), mo,,, denotes the old policy before
the update, kciipt(0) = clip(ki(0),1 —€,1 + €), € is a
hyperparameter, defining the trust region’s size, clip is an
operator for limiting the operand in a given range, and
[,[- -] denotes the empirical average over a finite batch of
samples.

C. PID Lagrangian PPO

To combine the two loss functions of the actor (13),
we choose Lagrangian optimization since it introduces a
Lagrange multiplier that enables us to avoid tuning the
trade-off between performance and constraint satisfaction
manually. The combined loss is defined as:

16 1 0 0
rnemL =1z )\(Lr + ALY,
where A € [0, +00) represents the Lagrange multiplier. Note
that we use an extra weight 1/(1+ \) to rescale the original
Lagrangian objective as proposed in [22] to prevent large
updates of 6 when \ is large.

Naive Lagrangian methods calculate A as a learnable
parameter along with 6. However, as shown in [22, Figure
1], dual updates of A and 6 could cause oscillations in the
cost and thus unstable training. To overcome this problem,
we update A\ using the approach proposed in [22, Sec. 5.3],
which adopts a PID controller to tune the value of A based
on LY.

(16)

Algorithm 1 Distributional PID Lagrangian PPO
Require: cjy,;, initial parameters of the actor 6y, reward
critic v, o, cost critic for expectation v. o and variance
vt 0, risk-level «, and number of episodes N
1: fori=1,2,., N do
: T < execute policy 7% in the environment and
collect samples of (s,a,r,c)
Vevar < (@)
ACVaR — @I), Lg “— @
A < update with [22, Sec.5.3]
0;11 < update with L computed in
Upi+1s Uc,i+1, UT,i+1 < update with LVM LTC,LVT

computed in (I2) and (13)

8: end for

A A

TABLE I
TRAFFIC RULES CONSIDERED FOR OUR PROBLEM [38].

Rule past-MTL formula
in-same-lane(Zego, Tobs) A in-front-of (Tego, Tobs)
R_Gl1 A=0g, 1] (cut-in(Tobs;, Tego) A P (—cut-in(Zobs; Tego))
= keeps-safe-distance-prec(Tego, Tobs)
R_G2 brakes-abruptly (zego) = necessary-to-brake(Zego, Zobs) *
R G3 keeps-lane-speed-limit(zego) A keeps-type-speed-limit(zego) A

keeps-brake-speed-limit(zego) A keeps-fov-speed-limit(zego)
R_G1 AN R_G2 A R_G3

R_GO

* necessary-to-brake(Zego, Tobs) = 30bs € Tego :
precedes(Zego; Tobs) A (—keeps-safe-distance-prec(Zego, Tobs)
V—brakes-abruptly-relative(Zego, Tobs))

TABLE II
HYPERPARAMETERS USED IN TRAINING AND TRAFFIC RULES

Parameters as in [22] Value \ Constants as in [38]  Value
PID-Kp 0.5 | Qabrupt 2.0
PID-K; 0.001 | vgoy 50.0
PID-Kp 0.0 | wviype(truck) 22.22
Samples / Epoch 8192 | Uprake 43.0
PPO Batch Size 2048 Climit 7.5
PPO Epochs 8

IV. NUMERICAL EXPERIMENTS

We evaluate the proposed method on the highD dataset
and demonstrate its effectiveness by comparing it to other
state-of-the-art methods.

A. Environment

1) Dataset: We built the training environment on top of
CommonRoad-RL [37]. All training and testing scenarios
are generated from the highway drone (highD) dataset [24],
which contains 16.5 h of vehicle trajectories with a time step
of At = 0.04s. Note that we choose recorded data for its
diverse driving behavior compared to existing driver models
in a simulator. Additionally, the scenario becomes more
critical when other vehicles do not react to the ego vehicle,
since the existing driver models are more conservative than
human drivers. We convert the dataset into 2000 scenarios
with a duration of 40s. For each scenario, we randomly
choose a vehicle as the ego vehicle, create a planning
problem using its initial and final states, and remove this
vehicle from the scenario. The scenarios are split into 70%
training set and 30% test set. An exemplary scenario in the
highD dataset is shown in Fig. [3]

2) Traffic rules: We use three general highway traffic
rules formalized in [38] in our experiments, as listed in
Tablem The variables z¢g, and x5 represent the ego vehicle
and obstacles’ states, respectively. Note that the traffic rules
are formalized in STL in [38]. However, we reformalize
them in past-MTL, since they are equivalent for discrete time
[39]. Additionally, we add rule R_GO, the conjunction of all
rules, to track the overall traffic rule compliance. For detailed
definitions of predicates used in Table [I, we refer interested
readers to [38, Sec. III-C]. User-defined parameters for the
predicates are given in Table



3) Training settings: The cost is defined by the indicator
function representing whether rule R_GO is violated:

¢t = 1R_Go_violated o))

We make sure that the agent always begins in a safe state,
i.e., ¢g = 0, as done in the benchmark environment for
constrained RL safety-gym [40]. The reward is chosen as:

Tt = 50 - 1reach7goa1 —20- 1collision —20- 10ffﬁroad (18)

— 10 - 1time ous + 0.025 [sgoal(t —-1) - sgoal(t)]
+0.025 [dgoar (t — 1) — dgour (1)),

where sgoa1(t) and dgoa1(t) represent the longitudinal and the
lateral distances between the ego vehicle and the goal region
at time ¢, respectively. 1, is an indicator function that equals
one if an event * happens and zero otherwise.

We adopted the observations from [37, Table II] and
captured the surrounding vehicles in a lane-based fashion as
demonstrated in [37, Fig. 2(a)]. For each vehicle, the longitu-
dinal distance, relative velocity, and relative acceleration are
observed. Note that we include relative acceleration since this
information is crucial for learning rule R_G2. Additionally,
we include the speed limits used in the rule R_G3 in the
observations. The ego vehicle’s actions are defined as the
control inputs, i.e., the accelerations of a point-mass model
defined in [41, Sec. III-A]. Note that since the absolute
acceleration is bounded by the friction circle in the used
vehicle model, the RL agent’s actions are always feasible.

B. Results and Discussions

1) Training results: We train five groups of agents: un-
constrained as a baseline, constrained ones using our method
with a = 0.5 and a = 0.9, respectively, and constrained
ones using a worst-case soft actor-critic (WCSAC) proposed
in [23], each trained with two random seeds. The hyperpa-
rameters are given in Table |[I, which are found empirically
using grid search. Note that strict constraints that should
never be violated can be enforced by setting cjipmi;y = 0, which
however did not converge in our experiments. Fig. [3] shows
the learning progress of all constrained agents, where the
curves and shaded area indicate the mean and the standard
deviation of two runs, respectively. Both agents trained using
our method converged to a high goal-reaching rate fast
and steadily learned to reduce the cost. Instead, WCSAC
agents showed high variance regarding the goal-reaching rate
between two random seeds, therefore they are less stable
and less robust compared to our approach. Furthermore, the
converged costs of all agents are lower than the threshold
because of the impact of «. The smaller « is, the lower the
converged costs. Additionally, although the WCSAC agents
converged to slightly lower total costs than our agents, the
curves of episode length suggested that their episodes were
terminated earlier. Therefore, the average cost for each step
was actually higher.

2) Test results: Next, we analyze the performance and the
traffic rule compliance of the trained agents in test scenarios.
We measure the agents’ performance based on collision
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Fig. 3. Learning curves of our method and WCSAC.
TABLE III
PERFORMANCE ON THE TEST SCENARIOS
Agent Collision Off-road  Goal-reaching
rate rate rate
a = 0.5 (WCSAC) 4.0% 45.9% 47.3%
a = 0.9 (WCSAC) 2.4% 11.3% 81.0%
a = 0.5 (ours) 3.0% 2.4% 91.2%
a = 0.9 (ours) 1.8% 1.5% 91.3%

rate, off-road rate, and goal-reaching rate since they are the
primary aspects covered by the reward function (I8). The
performance of all constrained agents is given in Table
whereas the rates of traffic rule compliance of all agents are
shown in Fig. @ In addition to the agents introduced above,
we include the evaluation of the recorded human trajectories
as a baseline.

Table [I1I] shows that both our agents had a lower collision
rate, a lower off-road rate, and a higher goal-reaching rate
compared to the WCSAC agents for the same «, thus they
performed better. As for the rule compliance behavior, as
shown in Fig. [ all constrained agents outperform the human
benchmark for the overall compliance for three rules, i.e., for
R_GO. The slight difference between each rule is because
R_GI1 and R_G2 depend on other vehicles and therefore
are harder to learn. Furthermore, our agents obeyed traffic
rules very similar to the WCSAC agents. For our method,
reducing o from 0.9 to 0.5 increases compliance for R_GO
by 2%, whereas WCSAC shows no difference in overall
compliance for different «. Using our method, future studies
could include « as an input of the policy, thus making it
possible to learn to behave on different levels of risk during
deployment.

To further validate the robustness of our method, we
introduce noise to the observations. For an error bound of
25%, the compliance for R_GO of our agent only decreased
by 3%.

Combining all findings, we can conclude that our approach
outperformed WCSAC since our agents reached the goal
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Fig. 5.  An exemplary scenario where the WCSAC agent violates R_G2

and collides with the road boundary, whereas our agent reaches the goal at
the end. Both agents were trained using o = 0.5.

more frequently while experiencing fewer accidents and
adhering to traffic rules similarly compared to the WCSAC
agents. We show an exemplary scenario in Fig. [5] for which
the WCSAC agent violates rule R_G2 and collides with the
road boundary, whereas our agent successfully reaches the
goal. Note that the noise in the accelerations can be reduced
by adding a punishment to the reward function or using the
jerk as a control input.

V. CONCLUSIONS

We propose a method to integrate PID-controlled La-
grangian constrained PPO with distributional reinforcement
learning. Our method trains agents to comply with traffic
rules formalized in past-MTL. By encoding the traffic rules
in the constraints, our approach can effectively learn complex

traffic rules. We evaluated our method using the highD
dataset. Our numerical experiments show that our method
is more stable and agents trained using our approach reach
a goal area more frequently while following the traffic rules
similar to state-of-the-art approaches.
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APPENDIX

A. Proof of (B)

We define ET[-] := E[|sg = s, 7] for readability. Note that
all variables with a time index are (functions of) random
variables in the subsequent proof.

ETC? RET((co+ 3 vter)?)
t=1

= C(Q) + 2¢y Eg [Z ’)/tct] + Eg[(z ’tht)z}.
t=1 t=1
For two events A and B, we get the conditional probability
[28, Eq.(1.32)]:

19)

p(4, B) = p(B)p(A|B). (20)

Combining the conditional expectation [28, Theorem 2.42]
and the expected value of a function f of discrete random
variables x and y [28, Theorem 3.10], we obtain

Elf(z,9)] = Y p()Elf(z,9)|ly = y/].
y'€y
By an abuse of notation, we use = and y to represent
sequences of random variables. For i € {1, 2}, we derive

]E?[(ti_o:1 V)] = E”[(i v'er)'|so = o]

—;Zps ,als) ;'th i|so = s,a0 = a, 5 = ']
=722 (s als) B Zv o
=7 ZZps als) ny o)

7r(a,|8) ( |s a) usmg@)for A=s',B=a
and stochastic policy p(a|s)_7r(a| )

where (D is based on (ZI) for y = (ag,s1),y’ = (a,s’),
(o)
), and (Z ver)t = f(x,vy), because

t=1
the cost return depends on all future states and actions.
For i = 1, inserting (I),@) in (22)), we obtain

2L

1)'[s1 = 5]

(22)

T = (CI,17827U;2,S3,' o

Zv o] = VZ (als) Zp ls,a)VI(s"), (23)
and for i = 2, inserting (1),(2), (E[) in 22):
Ef[(Zy cr)?l =7 Z (als) (24)

t=1

Zp(s |5,a)(TZ(s") + VI (s")?).

After inserting (23) and 24) into (T9), which in turn is
inserted in (@), we obtain

Ti(s) =cg— V7I(s)?
—|—2CO'yZ (als) Zp "Is,a)VI(s")
+V22 (als) ZP (s'|s,a) (YT (s") + VI (s')%). O
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