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Abstract— 3D object detection is an essential part of au-
tomated driving, and deep neural networks (DNNs) have
achieved state-of-the-art performance for this task. However,
deep models are notorious for assigning high confidence scores
to out-of-distribution (OOD) inputs, that is, inputs that are not
drawn from the training distribution. Detecting OOD inputs
is challenging and essential for the safe deployment of models.
OOD detection has been studied extensively for the classification
task, but it has not received enough attention for the object
detection task, specifically LiDAR-based 3D object detection. In
this paper, we focus on the detection of OOD inputs for LiDAR-
based 3D object detection. We formulate what OOD inputs
mean for object detection and propose to adapt several OOD
detection methods for object detection. We accomplish this
by our proposed feature extraction method. To evaluate OOD
detection methods, we develop a simple but effective technique
of generating OOD objects for a given object detection model.
Our evaluation based on the KITTI dataset shows that different
OOD detection methods have biases toward detecting specific
OOD objects. It emphasizes the importance of combined OOD
detection methods and more research in this direction.

I. INTRODUCTION

3D object detection is a crucial part of autonomous
vehicles (AVs). However, state-of-the-art (SOTA) LiDAR-
based 3D object detection methods rely on deep neu-
ral networks [1–3], which are susceptible to the out-of-
distribution (OOD) problem: they can make predictions with
high confidence given an input not drawn from the training
distribution (not ID). It poses a safety concern that can
hinder the deployment of AVs on public roads. For instance,
misdetection of a bike rack or signboard on the roadside as
a pedestrian (as shown in Figure 1) can cause the AV to
apply a hard brake or other potentially dangerous evasive
maneuvers. OOD detection [4] aims to detect such cases.

OOD detection in the context of 3D object detection has
hardly been explored. Existing OOD detection research fo-
cuses mainly on image classification [4–16] or segmentation
tasks [17–20]. However, there are challenges unique to the
object detection task that such methods do not address.

The definition of OOD in classification cannot be directly
applied to object detection. In classification, the training
distribution consists of a finite set of classes, and samples
belonging to other classes are considered as OOD. For
example, for the MNIST handwritten digit dataset [21], any
image that does not contain handwritten digit is OOD. In
object detection, however, in addition to a finite number
of foreground (FG) classes, the model is also trained on a
highly heterogeneous background (BG) class which includes
all objects that do not belong to the FG classes. Since the
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(a) (b)

Fig. 1: Examples of OOD objects detected as foreground
objects by PointPillars [3]. The camera images are for visual
reference only; the corresponding fragments of the input
point clouds are to the right. (a) A bike rack is detected as a
pedestrian with 0.86 confidence. (b) A signboard is detected
as a pedestrian with 0.74 confidence.

union of FG and BG classes includes all possible objects,
using the same OOD definition from classification would
imply that all objects are ID and no object is OOD.

Furthermore, in contrast to image classification, inputs
to object detection may contain multiple objects. It brings
an extra challenge for OOD detection methods that rely
on raw inputs or feature maps. While OOD detectors for
classification can use the entire input or feature map, object
detectors may produce an arbitrary number of predictions per
input, and thus the OOD detectors need to extract inputs or
features associated with each prediction.

Lastly, evaluating OOD detection methods requires access
to OOD samples. OOD samples can be easily obtained for
the classification task but not as straightforward for object
detection due to sensor incompatibility between datasets and
lack of labels. It means point clouds from different LiDAR
sensors can differ significantly in terms of beam arrangement
and intensity values, making it difficult to directly utilize
data from different datasets. Moreover, LiDAR-based 3D
object detection datasets only provide labels for a handful
of foreground classes relevant to autonomous driving (e.g.,
cars, pedestrians, and cyclists). This makes it challenging
to gather diverse OOD objects from existing datasets even
though the LiDAR sensors are compatible. In order to tackle
aforementioned challenges:

1) We propose a definition of OOD for object detection.
Our analysis of OOD detection for object detection
identifies six types of OOD objects with respect to the
FG classes. We focus on the three of them for which
the detector produces detections.

2) We adapt and extend six existing OOD detection meth-
ods from classification to object detection. We design
a feature extraction method for individual objects for
methods that require a feature map as input.
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3) We propose a simple yet effective method to generate
OOD objects to augment the existing dataset and exten-
sively evaluate our proposed OOD detection methods.

4) We evaluate our OOD detection and object generation
methods and demonstrate that different OOD detection
methods have biases toward detecting specific types
of OOD objects. Thus, the best practices previously
identified for OOD detection in image classification may
not hold in all cases.

As far as we are aware, we are the first to explore OOD
detection for LiDAR-based 3D object detection and we wish
to aid and stimulate future research on this exciting topic.

II. RELATED WORK

A. LiDAR-based 3D Object Detection

The goal of LiDAR-based 3D object detection is to
produce 3D bounding boxes for the objects using LiDAR
point cloud input. Many architectures have been proposed to
detect 3D objects based on raw point cloud, voxelized point
cloud, or both [22, 3, 23, 2].

In this work, we adopt PointPillars [3] as our object detec-
tor. PointPillars first voxelizes point cloud input into vertical
pillars and extracts pillar features using PointNet [24]. The
pillar features are then processed by a 2D convolutional
backbone, followed by classification and regression heads to
generate the final predictions. We choose PointPillars due to
its good performance and low computational cost, which are
essential for resource-constrained and safety-critical systems.

B. Out-of-Distribution Detection

OOD detection has been investigated extensively under
terms such as anomaly detection, novelty detection or open-
set classificaiton [4]. The majority of existing work focuses
on classification [5–16], with some recent work on image
segmentation [17, 18, 25, 19, 20].

Hendrycks and Gimpel [9] propose a baseline method for
detecting OOD inputs for deep image classifiers using max-
softmax scores. ODIN [5] further improves the baseline by
applying temperature scaling and input perturbation. Hsu
et al. [16] propose Generalized-ODIN, removing the need
for OOD data for tuning. Lee et al. [12] propose to train
jointly a classifier and a GAN network that generates OOD
samples for training the classifier. Further, Lee et al. [8]
use Mahalanobis distance of the input sample to the nearest
class-conditional Gaussian distribution estimated from the in-
distribution data as the sample’s OOD score.

One-class classifiers such as OC-SVM [26] have been
successfully applied to OOD detection as well. Recently,
Abdelzad et al. [27] propose to use an OC-SVM trained
with features extracted from an optimal layer to detect OOD
samples. It shows that features from earlier layers work
well for OOD detection in image classification. Bishop [28]
suggests that a natural way to detect OOD samples is to
estimate the density of ID samples and check if samples
are in a low density area. Some works [29–32, 10] also use
generative models [33, 7, 34] to detect OOD samples.

Several works in image segmentation [17–20] have
adapted OOD detection methods from image classification
for OOD detection at pixel level. They aim to reject the
OOD pixels and improve segmentation performance.

In the automotive domain, Blum et al. [25] create a dataset
to benchmark OOD detection for image segmentation. Nitsch
et al. [35] evaluates OOD detection for image detection
applied to image patches. The OOD detector is trained on
KITTI and Nuscenes and tested in ImageNet. Wong et al.
[36] propose a method to tackle open set semantic segmen-
tation in the 3D point cloud. The method can recognize and
segment known and unknown classes in 3D point clouds.

III. OUT-OF-DISTRIBUTION IN OBJECT DETECTION

In this section, we propose a classification for ID and
OOD objects in the context of object detection and provide
examples for each case.

A. Assumptions
True Distributions: In object detection, all objects can be

categorized as either foreground (FG) or background (BG)
objects. FG classes are what the object detector is trained to
detect, and BG classes are what the object detector is trained
to ignore. We assume the existence of true distributions for
FG and BG objects as indicated by the solid-line ovals in
Figure 2a. For the sake of simplicity, but without loss of
generality, we only consider a single FG class and a single
BG class.

Training Distributions: FG or BG objects can be under-
represented in the training dataset due to the size of the
dataset and how the data is collected. For instance, a dataset
collected exclusively in Europe would not contain objects
that are not sold in Europe. It results in a different distribution
which we refer to as the training distribution (dashed ovals
in Figure 2a).

Decision Boundary: Given a training dataset, the object
detector learns a decision boundary that separates the FG
and BG objects (dashed lines in Figure 2a). We assume
this decision boundary is not perfect due to the inherent
ambiguity between FG and BG objects (i.e., aleatoric un-
certainty) and the shift between training distributions and
true distributions (i.e., epistemic uncertainty). The decision
boundary thus intersects the distributions which results in
four types of detections: true positive (TP), false positive
(FP), false negative (FN), and true negative (TN).

B. Types of ID and OOD Objects:
As shown in Figure 2a and Figure 2b, we can divide all

objects into eight categories based on 1) if they are FG or
BG, 2) if they are represented by the training distribution,
and 3) if they are detected by the object detector. We show
examples for the OOD categories in Fig. 2c. The categories
are as follows.

1© Detected FG objects in the training distribution.
2© Missed FG objects in the training distribution.
3© Detected FG objects out of the training distribution.

E.g., an unusual cyclist with a dog on his back correctly
detected by the detector.



FG class
(TP∪FN)BG class

(FP∪TN)

World = FG∪BG
True distribution
Train distribution
Decision boundary

TN = ⑥∪⑧

TP = ①∪③

FN = ②∪④

FP = ⑤∪⑦

①

②

③

④

⑤

⑥

⑦

⑧
③ ④ ⑤

Cyc 0.8
Ped 0.6

⑥ ⑦ ⑧

Ped 0.8

(a) (c)

(b)

Class

In train dist?

Detected?

① ② ③ ④ ⑤ ⑥ ⑦ ⑧
FG FG FG FG BG BG BG BG

Fig. 2: (a) Visualization of FG and BG object distributions and model decision boundary. (b) Classification of objects in
object detection. (c) Examples of different types of OOD objects with respect to FG training distribution.

4© Missed FG objects out of the training distribution. E.g.,
a person wearing costume not detected by the detector.

5© BG objects (in training distribution) misdetected as FG.
E.g., a common traffic cone detected as a pedestrian.

6© Undetected BG objects (in training distribution). E.g., a
common bush not detected as any FG object.

7© BG objects (out of training distribution) misdetected as
FG. E.g., an uncommon bike rack detected as a person.

8© Undetected BG objects (out of training distribution).
E.g., an uncommon goose not detected as any FG object.

In object detection, the goal is to detect FG objects, and
BG objects are not localized. Thus, we define OOD objects
for the FG training distribution, which are 3©- 8©. Objects in
3©- 4© include underrepresented or unseen FG objects, and
5©- 8© represent all BG objects that should not be detected

by the object detector.
In this work, we only focus on detecting objects of type

3©, 5©, and 7©, and do not consider objects of one FG class
as OOD for another FG class. Detecting 4© is covered in
the field of FN detection [37, 38] and is out of the scope of
this paper. Type 6© and 8© are undetected BG objects, and
thus do not affect the performance of the object detector and
other downstream tasks. We leave detecting these types of
OOD objects as future work as it would still be beneficial to
detect these cases for data collection and other purposes.

IV. OOD POINT CLOUD GENERATION

In this section, we describe our proposed method for
generating point clouds with OOD objects. Our method
inserts OOD objects into existing point clouds,which can be
used to evaluate OOD detection methods for LiDAR-based
3D object detection.

We first build an OOD object database consisting of
synthetic and real point clouds of individual OOD objects
using LiDAR simulation and real sensor data from other
compatible datasets. The intensity values for the object point
clouds are adjusted to match the intensity distribution of
the target dataset (i.e, in-distribution dataset). As discussed
previously, we focus on objects of type 3©, 5©, or 7© defined
in Section III.

To construct a point cloud with OOD objects, we first
randomly sample an OOD object point cloud from the OOD

object database and a scene point cloud from the target
dataset. Then, we insert the OOD object into the scene
via concatenation. We do not simulate “shadows” caused
by occlusions during insertion, since the object detector is
already exposed to similar object insertions as part of the
augmentations during training.

During insertion, we preserve the OOD object’s original
distance to sensor to keep the point cloud density consistent
with its location, but we randomly select the azimuth with
respect to the sensor for more diversity. We further make sure
that 1) the inserted OOD object does not overlap with any
existing objects, 2) the inserted OOD object can be detected
by the object detector with a confidence score greater than
some threshold τ , and 3) the predictions for the original
objects in the scene are not impacted by the new OOD object.
It is because low confidence predictions can be easily filtered
out by the object detector using its score threshold. As a
result, point clouds generated using this method are tailored
to a specific model. However, in practice we observed that
both synthetic and real OOD objects used in this work can be
consistently misdetected by multiple models. Figure 3 shows
some examples of the resulting point clouds. We can see that
the object detector misdetects the inserted OOD objects as
FG objects. The code for OOD dataset generation will be
released after this paper is published.

Note that the dataset splitting method [39] for generating
an OOD dataset for object detection is not applicable in our
context. In contrast to image-based object detection datasets
such as COCO [40] and PASCAL [41], datasets for LiDAR-
based 3D object detection, such as KITTI [42], Waymo
[43], and NuScenes [44], contain only a handful of labeled
classes that are relevant to autonomous driving. Furthermore,
unknown objects in [39] are not guaranteed to be detected
by the object detector.

V. OOD DETECTION FOR 3D OBJECT DETECTION

We adapt five OOD detection methods from classification
to LiDAR-based 3D object detection, namely, max-softmax
[9], uncertainty estimation (predictive entropy, aleatoric en-
tropy and mutual information) [15], Mahalanobis distance
[8], OC-SVM [26], and normalizing flows [45]. Among these
methods, Mahalanobis distance, OC-SVM, and normalizing
flows can be applied to intermediate features. We propose a



Fig. 3: Examples of injected Carla objects detected as ID
objects. Ground truth boxes are in green, Car predictions are
in red, and Pedestrian predictions are in black.

feature extraction method for object detection and evaluate
the quality of feature maps extracted from various layers for
OOD detection.

A. Feature Extraction

Feature extraction for the object detection task is different
from classification since each input can produce an arbitrary
number of predictions. Thus, using the entire feature map
may inadvertently include features from other predictions or
environmental objects. Instead, we identify a single feature
vector within each feature map for each prediction.

In this work, we use PointPillars [3] as our object detector.
In PointPillars, a set of predefined anchor boxes is assigned
to each pixel in the backbone feature map. Labels and
regression targets are assigned to the anchor boxes based
on the overlap with FG objects. To train the OOD detection
methods, we first identify the anchor boxes with positive FG
labels. We then extract feature vectors at their corresponding
pixel locations in the feature map. It is possible for one object
to correspond to multiple feature vectors during training, in
which case we treat them as independent training samples
and do not perform any aggregation. During testing, we
identify the anchors from which the final predictions are
generated and use their corresponding feature vector in the
feature map for OOD prediction.

In addition to the final backbone feature map, we also
extract features from three intermediate layers after each
convolution block in the backbone, which we denote conv2x,
conv4x and conv8x. For feature maps that are smaller than
the backbone feature map where the anchor boxes are
defined, we apply nearest neighbors upsampling and use the
aforementioned method to extract feature vectors for training
and testing.

B. OOD Detection Methods

Max-softmax: we follow previous work [9] and consider
the maximum predicted class probability as the baseline
method for OOD detection. Lower max-softmax score in-
dicates the prediction is more likely to be an OOD object.

Uncertainty estimates: aleatoric and epistemic uncer-
tainty estimates can be used as the OOD score [15]. Similar
to previous work by Feng et al. [46], we modify the 3D object
detector to obtain uncertainty estimates via MC-Dropout
[47].

Mahalanobis distance: the Mahalanobis distance (in logit
/ feature space) measures the distance between a sample and

class-conditional Gaussian distributions estimated from in-
distribution data. It has been used to detect OOD samples
in classification task [8]. In this work, we adopt this method
to 3D object detection and experiment with logit layer and
multiple feature layers.

OC-SVM: OC-SVM learns a decision boundary between
in-distribution data and the origin in Hilbert space that
maxizes the distance between the origin and the decision
boundary [26]. The signed distance from the sample to the
decision boundary can be used for OOD detection. Similar
to Mahalanobis distance, OC-SVM can be applied to logit /
feature space.

Normalizing flows: normalizing flows is a density esti-
mation method [7]. It aims to learn a series of differen-
tiable bijections that map complex distributions of observed
data to simple distributions of latent variables. Normalizing
flows can output log probabilities of the input sample. A
well-trained normalizing flows model will assign high log-
likelihoods for ID samples and low log-likelihoods for OOD
samples. Therefore, predicted log-likelihoods can be used as
an OOD score. In this work, we use RealNVP [45] in feature
space as an efficient method to learn the density of features
associated with ID samples.

VI. EVALUATION

A. Experimental Setup

Dataset: we use the KITTI dataset [42], which has 7481
frames with annotated 3D bounding boxes. We split the
official dataset into training and validation splits (3712 and
3769 samples, respectively) [3]. We use the training split for
training object detectors and extracting feature maps for the
OOD detection methods.

Object detector: we train a PointPillars model for three
foreground classes: Car, Pedestrian, and Cyclist. To estimate
classification uncertainty using MC-Dropout [47], we add
one dropout layer with dropout probability of 0.5 after each
deconvolution block. The classification head is also modified
to output softmax distribution instead of sigmoid scores. The
performance of the modified model is on par with vainilla
PointPillars.

OOD evaluation datasets: we use the method described
in Section IV with detection threshold τ = 0.3 to generate
OOD object datasets. We gather OOD objects from different
sources to insert into the KITTI dataset. For synthetic objects,
we use the Carla simulation [48]. For real objects, we use
the KITTI ignored objects, the KITTI False Positive (FP)
objects, and weird vehicle objects from the Waymo dataset.
The KITTI FP objects are background objects classified as
Pedestrians (see Figure 1). We manually label and categorize
them into five classes: potted plant, bike rack, low traffic
sign, sidewalk sign, and thin sign. We manually identify
objects among the Waymo vehicle class that are not FG in
KITTI, including motorcycle, scooter, digger and excavator.
Figure 3 depicts examples of Carla objects inserted in scenes
and detected by the object detector.

By collecting objects from different sources we ensure
that our inserted objects are diverse. Figure 4 shows the
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Fig. 4: The CDFs of max-softmax scores, predictive un-
certainty, aleatoric uncertainty and epistemic uncertainty of
OOD object datasets.

cumulative distribution of softmax scores, predictive entropy,
aleatoric entropy, and mutual information of the inserted
objects (i.e., OOD) and foreground objects (i.e., ID). Our
dataset covers objects with various ranges of uncertainties,
sofmax predicted scores and predictive entropy.

OOD detection methods: we extract features from
conv2x, con4x, con8x, and backbone to train OC-SVM,
Mahalanobis distance, and normalizing flows. For the OC-
SVM method, we train one OC-SVM with SGD per FG class
and use the highest score as the OOD score. We set ν = 0.01,
γ = 2.0 and train with a batch size of 64 for 5 epochs.
For Mahalanobis, we apply online mean/covariance update
with a batch size of 64 for 5 epochs. Normalizing flows is
implemented using RealNVP and trained with a batch size
of 8 for 2320 steps.

Evaluation metrics: we adopt the evaluation metrics
proposed by Hendrycks et al. [9]. We use AUROC and
FPR at 95% TPR as our primary metrics due to the space
limitation.

B. Results and Discussion

The results for all inserted OOD objects as well as each
OOD object type are shown in Table I. We apply class-
balanced resampling of ID and OOD samples during the
evaluation to remove any potential biases. For Mahalanobis
distance, OC-SVM, and normalizing flows, we report the
results of the layer with the best OOD performance. In total,
we repeat dataset generation, model training, and evaluation
process three times and average the results.

Overall observations: normalizing flows with backbone
features and max-softmax achieve the best OOD detection
performance. The performance of OC-SVM and epistemic
uncertainty (mutual information) via MC-Dropout are signif-
icantly lower than other methods, suggesting that they may
not be suitable for OOD detection in 3D object detection
context.

Performance of different feature layers: the best per-
forming layer for OOD detection can vary for different OOD

detection methods. In our experiments, the backbone features
are optimal for both Mahalanobis distance and normalizing
flows, whereas OC-SVM works best with conv8x features.

Our results are different from existing work on image
classification. Using logits with Mahalanobis distance as
proposed by Lee et al. [8] is out-performed by the backbone
features by a large margin in our experiments. Similarly, our
OC-SVM model with early layer features could not achieve
good separation between ID and OOD objects as observed
by Abdelzad et al. [27] in image classification.

This suggests that the optimal layer for each method can
depend on the specific model architecture or feature map
distribution. Existing results for image classification tasks
may not transfer to other tasks with specialized architectures
such as PointPillars.

Performance on different types of OOD objects: the
performance of each OOD detection method can vary sig-
nificantly for different types of OOD objects. For instance,
normalizing flows has 9% higher AUROC and 20% lower
FPR compared to max-softmax for KITTI FP objects and has
comparable results for Carla and Waymo objects. However,
it becomes much worse than max-softmax for KITTI ignored
objects with 10% difference in both AUROC and FPR. This
can also be observed for other OOD methods.

This variation can be due to the noticeable differences in
uncertainty and max-softmax probability between different
OOD objects (Figure 4). The main observations are: i) the
max-softmax scores and uncertainty estimations of the OOD
objects can vary across different OOD types, which affects
the performance of these methods, ii) Mahalanobis distance
applied to the backbone layer is relatively stable across
different types of OOD. However, for KITTI FP objects
with both high max-softmax score and high uncertainty,
its performance becomes significantly worse, and iii) for
normalizing flows with backbone layer, OOD objects with
higher aleatoric and lower epistemic uncertainty (Carla and
KITTI FP) have better performance.

In our experiments, we do not have a single OOD detection
method that works consistently well for all types of OOD
objects. This shows that depending on the type of OOD
objects and their characteristics, the optimal OOD detection
method could be different. A similar observation in the
classification context is also noted by Kaur et al. [49],
who suggest that a combination of multiple OOD detection
methods may be needed to cover different types of OOD.
We leave in-depth investigation and evaluation of combined
OOD detection methods for future work.

Qualitative results: we show in Figure 5 success and
failure OOD detections for the two best-performing methods:
max-softmax and normalizing flows.

VII. CONCLUSION AND FUTURE WORK

Deep LiDAR-based 3D object detectors play an important
role in autonomous driving, and making them robust to
OOD objects is key for assuring the safety of such systems.
Although OOD detection has been defined and investigated
extensively for classification, it has not been explored for



TABLE I: The OOD detection results for all inserted OOD objects and each OOD object type. For each metric, we underline
the best performing OOD method. For all results, we show the average and standard deviation over three sets of experiments.

OOD Method Layer AUROC ↑ FPR @ 95 TPR ↓
All Carla Ignored KITTI FP Waymo All Carla Ignored KITTI FP Waymo

Max Softmax - 89.95±0.2 96.04±0.4 95.58±0.5 82.84±0.4 83.18±2.0 33.83±1.3 10.39±1.1 21.23±3.6 36.41±0.6 52.17±6.1

Predictive Entropy - 83.49±1.3 85.34±1.8 78.65±0.5 86.92±0.3 80.64±2.1 39.60±3.0 35.55±2.8 41.66±2.5 29.69±0.4 53.69±6.4

Aleatoric Entropy - 83.09±1.4 85.30±1.9 78.24±0.8 86.76±0.3 80.01±2.3 41.77±3.6 37.87±3.4 43.93±3.3 30.09±0.3 53.97±6.1

Mutual Information - 60.48±0.8 45.04±4.0 52.09±3.0 70.62±1.5 67.53±2.8 97.07±0.7 98.75±0.5 99.13±0.3 85.78±2.8 90.14±2.1

Mahalanobis Backbone 83.77±0.9 88.34±1.6 86.25±3.0 72.48±2.2 88.30±0.5 51.01±1.0 37.49±2.2 54.35±11 59.52±3.7 43.53±3.7

OC-SVM Conv8x 65.44±3.0 66.49±2.9 66.95±2.9 63.22±3.0 64.74±2.3 66.20±5.0 63.49±5.6 62.58±5.7 72.03±6.8 67.81±3.7

Normalizing Flows Backbone 90.28±0.5 93.63±0.5 85.81±1.0 91.71±1.0 85.44±0.9 26.72±1.9 19.90±0.7 31.17±0.5 16.25±1.3 33.03±2.4
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Fig. 5: Qualitative results for max-softmax and normaliz-
ing flows. Red boxes and points represent OOD objects,
green boxes are predictions from the object detector. First
row shows examples where normalizing flows successfully
detects the OOD objects (indicated by low scores) but max-
softmax fails (high max-softmax scores). Second row shows
examples where normalizing flows fails and max-softmax
detects the OOD objects successfully.

LiDAR-based 3D object detection. In this paper, we define
different types of OOD samples for object detection and
adapt the state-of-the-art OOD detection methods from image
classification to LiDAR-based 3D object detection. In order
to use OOD detection methods that rely on intermediate
layers, we also propose a method for extracting feature
embeddings for the detected objects. To enable the evaluation
of the OOD detection methods, we propose a simple yet
effective method to generate OOD objects for LiDAR-based
3D object detectors. We evaluate the OOD detection methods
on the KITTI dataset augmented with a diverse set of real
and synthetic OOD objects, revealing a nuanced landscape
of how the current OOD detection methods perform in the
context of LiDAR-based 3D object detection. The results
demonstrate that each method is biased toward detecting
certain types of OOD objects. Furthermore, the best practices
proposed for image classification, such as selecting features
of specific layers for OOD detection, may not transfer to
object detection. We hope that our OOD dataset generation
and evaluation results will stimulate further research into ef-
fective OOD detection for LiDAR-based 3D object detection.

As future work, we plan to address the limitations of our

proposed OOD dataset generation method. More specifically,
we would like to 1) identify and insert unusual foreground
objects (type 3© OOD), 2) ensure that the LiDAR intensity
of the inserted objects is realistic and matches the intensity
of the dataset, and 3) place OOD objects more realistically
in the scene, possibly utilizing HD map information.

Furthermore, we would like to extend our work by evalu-
ating the OOD detection and object generation methods over
other large-scale automotive datasets such as Waymo. We are
also interested in understanding the characteristics of OOD
detection methods better and developing a combined OOD
detection method that is not biased toward specific types of
OOD objects.
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